ภาคผนวก ง <u>การทบทวนเอกสารที่เกี่ยวข้องเกี่ยวกับการผลิตไบโอดีเซล</u> (Reviewed Literatures of Biodiesel Production)

ตารางที่ ง-1 <u>การผลิตน้ำมันดีเซลชีวภาพจากวัตถุดิบชนิดต่าง ๆ</u> (Production of Biodiesel from Several Raw Materials)

Author / Year	Title	Materials	Objectives	Methods / Analysis	References	
1.1 Zheng, et	Acid-catalyzed	WVO derived from	- To study the effects of feed composition,	Esterification &	Biomass &	
al (2006)	production of biodiesel	Rape seed oil,	temperature, and rate of mixing on the	Transesterification /	Bioenergy	
	from waste frying oil	Methanol, Conc.	kinetics of the acid-catalyzed	GPC	Vol. 30	
		Sulfuric acid	transesterification reaction.			
			- To determine the optimal conditions for			
			the reaction.			
1.2 Ghadge,	Biodiesel production from	Mahua oil, Methanol,	- To determine the optimize conditions for	Esterification &	Biomass &	
et al (2005)	mahua (Madhuca indica)	Sulfuric acid,	the pretreatment process and to study the	Transesterification /	Bioenergy	
	oil having high free fatty	Potassium Hydroxide	properties of the biodiesel production from	ASTM D 6751-02, DIN	Vol. 28	
	acids		mahua oil.	EN 14214		
1.3 Zhang, et	Biodiesel production from	Refined & WVO	- To study an economic feasibility of each	Esterification &	Bioresource	
al (2003)	waste cooking oil: 1.	derived from Canola	process (alkai & acid – catalyzed system)	Transesterification /	Technology	
	Process design and	oil, Methanol, Conc.	in the commercial scale by using process	UNIQUAC, NRTL &	Vol. 89	
	technological	Sulfuric acid, Sodium	simulation and design (HYSYS).	HYSYS		
	assessment	hydroxide				

Author / Year	Title	Materials	Objectives	Methods / Analysis	References
1.4 Al-Widyan,	Experimental evaluation	Waste Palm oil,	- To examine the possibility of	Transesterification /	Bioresource
et al (2002)	of the transesterification	Ethanol, Sulfuric	transesterifying a WVO for the production	Model of Newtonian	Technology
	of waste palm oil into	acid, Hydrochloric	of biodiesel.	fluid	Vol. 85
	biodiesel	acid	- To study the effect of catalyst		
			concentration, catalyst type, and excess		
			alcohol on conversion efficiency (yield).		
1.5 Foidl, et al	Jatropha curcas L. as a	Jatropha curcas oil,	- To study the chemical and fuel properties	Transesterification / GC	Bioresource
(1996)	source for the production	Methanol, Ethanol,	of methyl and ethyl ester which produced		Technology
	of biofuel in Nicaragua	Potassium Hydroxide	from Jatropha curcas oil?		Vol. 58
1.6 Darnoko,	Kinetics of Palm Oil	Palm oil, Methanol,	- To study the kinetics parameters of	Transesterification / GC	JAOCS Vol.
et al (2000)	Transesterification in a	Potassium Hydroxide	transesterification (that can be used to		77
	Batch Reactor		predict the extent of the reaction at any		
			time under particular conditions).		
1.7 Dorado, et	Kinetic Parameters	Used olive oil,	- To study the kinetic parameters that	Transesterification / GC	Energy &
al (2004)	Affecting the Alkali-	Methanol, Ethanol,	affecting a low-cost transesterification		Fuels Vol. 18
	Catalyzed	Potassium	process by using waste olive oil.		
	Transesterification	Hydroxide, Sodium			
	Process of Used Olive Oil	Sulphate			

Author / Year	Title	Materials	Objectives	Methods / Analysis	References
1.8	Methanolysis of used	Used sunflower	- To find out the most appropriate	Transesterification /	Fuel
Tomasevic, et	frying oil	frying oil, Methanol,	parameters of reaction for the	TLC	Processing
al (2003)		Potassium hydroxide	methanolysis of the used frying sunflower		Technology
		or Sodium Hydroxide	oil.		Vol. 81
1.9 Felizardo,	Production of biodiesel	WVO (produced	- To determine the optimum conditions for	Transesterification / GC	Waste
et al (2006)	from waste frying oils	from sunflower seed)	biodiesel production using waste frying		Management
		, methanol, Sodium	oils as raw material in the		Vol. 26
		Hydroxide,	transesterification process.		
		Magnesium Sulphate			
1.10 Bannwal,	Prospects of biodiesel	Vegetable oil	- To review the possibilities of using neat	-	Renewable &
et al (2005)	production from		vegetable oils and biodiesel, the		Sustainable
	vegetable oils in India		processes available, fuel characteristics,		Energy
			performance analysis and economic		Reviews Vol.
			analysis of biodiesel production in India.		9
1.11	Transesterification	Soybean oil,	- To study the kinetic parameters & other	Transesterification / GC	JAOCS Vol.
Freedman, et	Kinetics of Soybean Oil	Methanol, or 1-	process conditions for the biodiesel		63
<i>al</i> (1986)		butanol, Sodium	production process from soybean oil.		
		Hydroxide			

ตารางที่ ง-2 <u>การศึกษาลักษณะการเผาไหม้ การปลดปล่อยก๊าซ และผลที่มีต่อเครื่องยนต์ดีเซลของน้ำมันดีเซลชีวภาพ</u> (The Combustion, Emission characteristics, & the Effect on the diesel engine of Biodiesel)

Author / Year	Title	Materials	Objectives	Methods /	References
				Analysis	
2.1 Schol	, Combustion of soybean	Methyl ester produced from	- To investigate the combustion of soybean	A direct	SAE Special
K.W., et a	l oil methyl ester in a direct	soybean oil	oil methyl ester in a direct injection diesel	injection diesel	Publications
(1993)	injection diesel engine		engine, and compare it to that of a	engine / Flue	
			conventional diesel fuel.	Gas Analyzer	
2.2 Tashtoush	, Combustion performance	WVO, Ethanol,	- To evaluate the biodiesel that produced as	A water-	Applied Thermal
G., et a	I and emissions of ethyl	Hydrochloric acid	a fuel in liquid burners such as in residential	cooled	Engineering Vol.
(2003)	ester of a waste		heating boilers where diesel fuel is used.	furnace / Flue	23
	vegetable oil in a water-		- To evaluate the feasibility study of any	Gas Analyzer	
	cooled furnace		potential fuel from combustion behavior and		
			the aspects of heat transfer and emissions.		

Author / Year	Title	Materials	Objectives	Methods /	References
				Analysis	
2.3	Comparative	Vegetable oils or bio-	- To evaluate and compare the use of various	Ricardo/Cusso	Energy
Rakopoulos, et	performance and	diesels of various origins,	Diesel fuel supplements at blend ratios of	ns `Hydra'	Conversion &
<i>al</i> (2006)	emissions study of a	i.e. cottonseed, sunflower	10/90 and 20/80, in a standard, fully	Diesel engine /	Management
	direct injection Diesel	oil and their ME, as well as	instrumented, four stroke, direct injection	Flue Gas	Vol. 47
	engine using blends of	rapeseed oil methyl ester,	(DI), Ricardo/Cussons `Hydra' Diesel engine	Analyzer	
	Diesel fuel with vegetable	palm oil methyl ester, corn	located at the authors' laboratory.		
	oils or bio-diesels of	oil and olive kernel oil.			
	various origins				
2.4 Pramanik,	Properties and use of	Jatropha curcas oil,	- To decrease the viscosity of jatropha curcas	Fuel	Renewable
et al (2003)	jatropha curcas oil and	commercially diesel oil	oil by dilution with diesel.	properties &	Energy Vol. 28
	diesel fuel blends in		- To see the effect of heating on reduction in	Engine test	
	compression ignition		viscosities of the blends (biodiesel + diesel).	were	
	engine		- To evaluate the engine performance using	determined	
			the prepared blends as fuel.	corresponded	
				to standard	
				method	

ตารางที่ ง-3 <u>การศึกษาการเสื่อมสภาพของไบโอดีเซลและวัตถุดิบ</u> (The Degradation Effect of Biodiesel and Raw Materials)

Author /	Title	Materials	Objectives / Results	Methods / Analysis	References
Year					
3.1 Canakci,	Accelerated oxidation	Biodiesel	- To accelerate & study the effects of oxidation processes in	Measured Peroxide	Transactions
M., et al	processes in biodiesel	produced from	biodiesel.	Value, Acid Value, &	of the
(1999)		vegetable oil	- The results show the impact of time, oxygen flow rate,	Kinematic viscosity	American
			temperature, metals, and feedstock type on the rate of		Society of
			oxidation.		Agricultural
			- This oxidation also results in increases in peroxide value, acid		Engineers Vol.
			value, and viscosity.		42
3.2 Liang,	Comparison of four	Animal Fats	- To evaluated the oxidative stability of lard and tallow with and	Rancimat method, Active	JAOCS Vol. 75
C., et al	accelerated stability	(Lard & Tallow)	without antioxidants by four accelerated stability methods.	Oxygen Method, oxygen	
(1998)	methods for lard and		- The results indicated that the oxidative stability of animal fats	bomb test, and Schaal	
	tallow with and without		and the relative effectiveness of an antioxidant in the fats could	oven test	
	antioxidants		have different mechanisms and the Rancimat method may be		
			the least reliable method compared with AOM, oxygen bomb		
			test, and Schaal oven test.		

Author /	Title	Materials	Objectives / Results	Methods / Analysis	References
Year					
3.3 Leung,	Degradation of biodiesel	Biodiesel	- To investigate the biodiesel degradability characteristics	Acid Value measurement,	Bioresource
D. Y. C., et	under different storage	produced from	under different storage situations.	% Purity & Composition	Technology
<i>al</i> (2006)	conditions	rapeseed oil	- The study provides insights on how biodiesel degrades with	by GC	Vol. 97
			time under specific conditions.		
			- So, this information will be useful to both biodiesel producers		
			and users for designing their biodiesel storage system and for		
			maintaining the quality of biodiesel in the fuel or storage tank.		
3.4 Dunn,	Effect of antioxidants on	Soybean oil	- To study the effectiveness of five such antioxidants , tert-	The pressurized-DSC (P-	Fuel
R.O.(2005)	the oxidative stability of	Fatty Acid	butylhydroquinone (TBHQ), butylated hydroxyanisole (BHA),	DSC) for determined the	Processing
	methyl soyate (biodiesel)	Methyl Ester	butylated hydroxytoluene (BHT), propyl gallate (PrG) and a-	oxidation temperature	Technology
		(SME),	Tocopherol in mixtures with SME.	(OT). Acid Value,	Vol. 86
		Antioxidants		Peroxide Value, &	
		such as phenolic	- Finally, this study recommends BHA or TBHQ (concentrations	Kinematic Viscosity	
		antioxidants;	up to 3000 ppm) for safeguarding biodiesel from effects of	measurement	
		BHA, BHT, etc.	autoxidation during storage.		

Author /	Title	Materials	Objectives / Results	Methods / Analysis	References
Year					
3.5	Long storage stability of	Biodiesel	- The study was conducted for a period of 30-months. At	Acid Value, Peroxide	Fuel (2007)
Bouaid, A.,	biodiesel from vegetable	produced from	regular intervals, samples were taken to measure the following	Value, lodine Value, &	
<i>et al</i> (2007)	and used frying oils	fresh Vegetable	parameters: acid value (AV), peroxide value (PV), viscosity (V),	Viscosity measurement.	
		& used frying oil	iodine value (IV) and insoluble impurities (II).		
			- Results showed that AV, PV, ${f v}$ and II increased, while IV		
			decreased with increasing storage time of samples. However,		
			slight differences were found between samples exposed and		
			not exposed to daylight before a storage time of 12 months.		
			But after this period the differences were significant.		
3.6	Long storage stability of	Biodiesel	- To study the degree of physical & chemical deterioration of	Thermal Oxidative	JAOCS Vol.78
Mittelbach,	biodiesel made from	produced from	biodiesel produced from rapeseed & used frying oil under	Stability Testing, Acid	
M., et al	rapeseed and used frying	fresh Rapeseed	different storage conditions.	Value & Viscosity	
(2001)	oil	& used frying oil	- The results showed that	measurement.	
			1. The viscosity & neutralization numbers rose during storage		
			owing to the formation of dimers & polymers and to hydrolytic		
			cleavage of methyl esters into FA.		
			2. The value for the induction period of the distilled product		
			was very low, the induction period values for the undistilled		
			samples decreased very rapidly during storage, esp. with		
			exposure to light & air.		

Author /	Title	Materials	Objectives / Results	Methods / Analysis	References
Year					
3.7 Dunn,	Oxidative stability of	Soybean oil fatty	- To examine the Oil Stability Index as a parameter for	Oxidative Stability	JAOCS Vol. 82
R.O.(2005)	soybean oil fatty acid	acid methyl	monitoring the oxidative stability of soybean oil FAME (SME).	instrument, lodine Value	
	methyl esters by oil	esters (SME)		measurement.	
	stability index (OSI)		- The results showed that		
			1. OSI may be used to measure relative oxidative stability of		
			SME samples as well as to differentiate between samples from		
			different producers.		
			2. OSI was more sensitive than iodine value in detecting the		
			effects of oxidative degradation in its early stages when		
			monitoring SME during storage.		
3.8 Du	Stability studies on	Fatty acid esters		Peroxide, Ultraviolet	JAOCS Vol. 62
Plessis, L.	Methyl and Ethyl fatty	with high	- To study the long-term engine tests for Fatty acid esters with	absorption, Free Fatty	
M., et al	acid esters of Sunflower	Linoleic acid (of	high linoleic acid for obtain more information on optimal	Acid, Viscosity, and	
(1985)	seed oil	Sunflower seed	storage requirements & general stability characteristics.	Ansidine values	
		oil)		measurements	
			- The results showed that storage of esters in contact with air,		
			esp. at a temperature above 30 °C, caused of significant		
			increases in peroxide, ultraviolet absorption, free fatty acid,		
			viscosity, and ansidine values.		

Author /	Title	Materials	Objectives / Results	Methods / Analysis	References
Year					
3.9	The effect of biodiesel	The neat	- To evaluate the impact of oxidized biodiesel on engine	- Engine performance	Biomass and
Monyem, A,	oxidation on engine	biodiesels (from	performance and emissions.	Testing such as brake	Bioenergy Vol.
<i>et al</i> (2001)	performance and	soybean oil-	- The results showed that	specific fuel consumption	20
	emissions	based), 20%	1. The engine performance of the neat biodiesels & their	(BSFC), thermal	
		blends, and the	blends was similar to that of No.2 diesel fuel with the same	efficiency, etc.	
		base fuel (No. 2	thermal efficiency, but higher fuel consumption.	- Emissions data were	
		diesel)	2. When compared with unoxidized biodiesel, oxidized neat	collected using the	
			biodiesel produced 15 and 16% lower exhaust carbon	Labview program.	
			monoxide and hydrocarbons, respectively. No statistically		
			significant difference was found between the oxides of		
			nitrogen and smoke emissions from oxidized and unoxidized		
			biodiesel.		
3.10	The influence of	Biodiesel	- To investigate the influence of different synthetic and natural	A Rancimat instrument	JAOCS Vol. 80
Mittelbach,	antioxidants on the	produced from	antioxidants on the oxidation stability, using the Rancimat		
M., et al	oxidation stability of	rapeseed oil,	instrument.		
(2003)	biodiesel	sunflower oil,	- The results showed that		
		used frying oil,	1. The four synthetic antioxidants PY, PC, TBHQ, and BHA		
		beef tallow, both	produced the greatest enhancement of the induction period.		
		undistilled &	2. A good correlation was found between the improvement of		
		distilled.	the oxidation stability and the FA composition.		

Author /	Title	Materials	Objectives / Results	Methods / Analysis	References
Year					
3.11	Two-year storage study	Rapeseed	- To determine the extent of deterioration of RME & REE in	Measurement of Peroxide	Transactions
Thompson,	with methyl and ethyl	Methyl ester	storage conditions between stored in glass & steel containers	Value, Acid Value,	of the
J. C., et al	esters of rapeseed	(RME) &	at room temperature (inside) & at the local ambient outdoor	Density, Viscosity, and	American
(1998)		Rapeseed Ethyl	temperatures (outside).	Heat of Combustion.	Society of
		ester (REE)	- The results showed that		Agricultural
			1. On the average, the esters increased over time in all of the		Engineers
			testing properties with the exception of heat of combustion,		Vol. 41
			which decreased.		
			2. Regression models are presented to predict the		
			deterioration with time.		
			3. Engine power varied less than 2% for both Biodiesel fuels		
			compared to the stored counterparts while smoke density		
			decreased 3.2% for the stored RME and increased 17.5% for		
			stored REE.		