

Songklanakarin J. Sci. Technol. 38 (2), 199-206, Mar. - Apr. 2016



Original Article

# On (m, n)-ideals and (m, n)-regular ordered semigroups

## Limpapat Bussaban\* and Thawhat Changphas

Department of Mathematics, Faculty of Science, Khon Kaen University, Mueang, Khon Kaen, 40002 Thailand.

Received, 1 July 2015; Accepted, 13 October 2015

#### Abstract

Let *m*, *n* be non-negative integers. A subsemigroup *A* of an ordered semigroup  $(S, \cdot, \le is called an (m, n)$ -ideal of *S* if  $(i) A^m SA^n \subseteq A$ , and (ii) if  $x \in A$ ,  $y \in S$  such that  $y \le x$ , then  $y \in A$ . In this paper, necessary and sufficient conditions for every (m, n)-ideal (resp. (m, n)-quasi-ideal) of an (m, n)-ideal (resp. (m, n)-quasi-ideal) *A* of *S* is an (m, n)-ideal (resp. (m, n)-quasi-ideal) of *S* will be given. Moreover, (m, n)-regularity of *S* will be discussed. The results obtained extend the results on semigroups (without order) studied by Bogdanovic' (1979).

Keywords: semigroup, ordered semigroup, (m, n)-ideal, (m, n)-quasi-ideal, (m, n)-regular

## 1. Preliminaries

Let m, n be non-negative integers. A subsemigroup A of a semigroup S is called an (m, n)-ideal of S if

$$A^m S A^n \subseteq A.$$

Here,  $A^0S = SA^0 = S$ . This notion was first introduced and studied by Lajos (1961). Furthermore, the theory of (m, n)-ideals in other structures have also been studied by many authors (see also Akram et al., 2013; Amjad et al., 2014; Lajos, 1963; Yaqoob et al., 2012; Yaqoob et al., 2013; Yaqoob et al., 2014; Yousafzai et al., 2014). A semigroup S is said to be (m, n)-regular (Krgovic', 1975) if for any a in S, there exists x in S such that  $a = a^m x a^n$ . Bogdanovic' (1979) studied some properties of (m, n)-ideals and (m, n)-regularity of S. Indeed, the author characterized when every (m, n)-ideal of an (m, n)-ideal A of S is an (m, n)-ideal of S. Moreover, (m, n)regularity of S was discussed. In this paper, using the concepts of (m, n)-ideals and (m, n)-regularity of ordered semigroups introduced and studied by Sanboorisoot et al. (2012), we extend the results obtained by Bogdanovic' (1979) mentioned above to ordered semigroups.

\* Corresponding author.

A semigroup  $(S, \cdot)$  together with a partial order  $\leq$  that is *compatible* with the semigroup operation, meaning that, for any *a*, *b*, *c* in *S*,

$$a \le b \Longrightarrow ac \le bc, ca \le cb,$$

is said to be an *ordered semigroup* (Birkhoff, 1967; Fuchs, 1963). A non-empty subset A of an ordered semigroup  $(S, \cdot, \leq)$  is said to be a *subsemigroup* of S if  $ab \in A$  for all a, b in A (Kehayopulu, 2006).

If A and B are non-empty subsets of an ordered semigroup  $(S, \cdot, \leq)$ , the set product AB is defined to be the set of all elements  $ab \in S$  such that  $a \in A$  and  $b \in B$ , that is,  $AB = \{ab \mid a \in A, b \in B\}$ . And, we write

$$(A] = \{x \in S \mid x \le a \text{ for some } a \in A\}.$$

It is observed by Kehayopulu (2006) that the following conditions hold: (1)  $A \subseteq (A]$ ; (2)  $(A](B] \subseteq (AB]$ ; (3) If  $A \subseteq B$ , then  $(A] \subseteq (B]$ ; (4)  $(A \cup B] = (A] \cup (B]$ ; (5)  $(A \cap B] \subseteq (A] \cap (B]$ .

A non-empty subset A of an ordered semigroup  $(S, \cdot, \leq)$  is called a *left* (resp. *right*) *ideal* of S if it satisfies the following conditions: (i)  $SA \subseteq A$  (resp.  $AS \subseteq A$ ); (ii) (A] = A. And, A is called a *two-sided ideal* (or simply an *ideal*) of S if it is both a left and a right ideal of S (Kehayopulu, 2006). A subsemigroup B of S is called a *bi-ideal* of S if (i)  $BSB \subseteq B$ ; (ii) (B] = B (Kehayopulu, 1992). A non-

Email address: lim.bussaban@gmail.com, thacha@kku.ac.th

empty subset Q of S is called a *quasi-ideal* of S if (i)  $(QS] \cap (SQ] \subseteq Q$ ; (ii) (Q] = Q (Tsingelis, 1991; Kehayopulu, 1994). Note that if Q is a quasi-ideal of S, then it is a subsemigroup of S. In fact, if Q is a quasi-ideal of S, then  $QQ \subseteq (QS] \cap (SQ] \subseteq Q$ . Finally, a subsemigroup A of Sis called an (m, n)-ideal of S(m, n are non-negative integers)if (i)  $A^m SA^n \subseteq A$ ; (ii) (A] = A (Sanborisoot *et al.*, 2012).

We first prove the following theorem.

**Theorem 1.1.** Let *A* be a non-empty subset of an ordered semigroup  $(S, \cdot, \leq)$ . Then the intersection of all (m, n)-ideals containing *A* of *S*, denoted by  $[A]_{(m,n)}$ , is an (m, n)-ideal containing *A* of *S*, and it is of the form

$$[A]_{(m,n)} = \left(\bigcup_{i=1}^{m+n} A^i \cup A^m S A^n\right]$$
(1.1)

**Proof.** Let  $\{A_i \mid i \in I\}$  be the set of all (m, n)-ideals containing A of S. Then  $\bigcap_{i \in I} A_i$  is a subsemigroup containing A of S. For  $j \in I$ , we have

$$\left(\bigcap_{i\in I}A_i\right)^m S\left(\bigcap_{i\in I}A_i\right)^n \subseteq A_j^m SA_j^n \subseteq A_j.$$

Then  $\left(\bigcap_{i \in I} A_i\right)^m S\left(\bigcap_{i \in I} A_i\right)^n \subseteq \bigcap_{i \in I} A_i$ . Since

 $\left(\bigcap_{i\in I}A_i\right]\subseteq\bigcap_{i\in I}(A_i]=\bigcap_{i\in I}A_i\subseteq\left(\bigcap_{i\in I}A_i\right],$ 

it follows that  $\bigcap_{i \in I} A_i$  is an (m, n)-ideal of S.

We will show that (1.1) holds. It is easy to see that  $\left(\bigcup_{i=1}^{m+n} A^i \cup A^m S A^n\right)$  is a subsemigroup of *S*. We now consider:

$$\left(\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} S A^{n}\right]\right)^{m} S$$

$$= \left(\left(\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} S A^{n}\right]\right)^{m-1} \left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} S A^{n}\right] S$$

$$\subseteq \left(\left(\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} S A^{n}\right]\right)^{m-1} (AS)\right]$$

$$= \left(\left(\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} S A^{n}\right]\right)^{m-2} \left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} S A^{n}\right] (AS)\right]$$

$$\subseteq \left(\left(\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} S A^{n}\right]\right)^{m-2} (A^{2}S)\right]$$

$$\vdots$$

$$\subseteq (A^{m}S).$$

Similarly,

$$S\left(\left(\bigcup_{i=1}^{m+n} A^i \cup A^m S A^n\right)\right)^n \subseteq (S A^n].$$

Then,

$$\left(\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} S A^{n}\right)\right)^{m} S\left(\left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} S A^{n}\right)\right)^{n}$$
$$\subseteq \left(A^{m} S A^{n}\right]$$
$$\subseteq \left(\bigcup_{i=1}^{m+n} A^{i} \cup A^{m} S A^{n}\right].$$

Hence  $\left(\bigcup_{i=1}^{m+n} A^i \cup A^m S A^n\right]$  is an (m, n)-ideal containing A

of S, and

$$[A]_{(m,n)} \subseteq \left(\bigcup_{i=1}^{m+n} A^i \cup A^m S A^n\right].$$

Finally, by

$$\left(A^{m}SA^{n}\right] \subseteq \left(\left([A]_{(m,n)}\right)^{m}S\left([A]_{(m,n)}\right)^{n}\right] \subseteq [A]_{(m,n)},$$

П

it follows that

$$\left(\bigcup_{i=1}^{m+n} A^i \cup A^m S A^n\right] \subseteq \left[A\right]_{(m,n)}.$$

This completes the proof.

For an element *a* of an ordered semigroup  $(S, \cdot, \leq)$ , we write  $[\{a\}]_{(m,n)}$  (or simply  $[a]_{(m,n)}$ ) by:

$$[a]_{(m,n)} = \left(\bigcup_{i=1}^{m+n} \{a\}^i \cup a^m Sa^n\right].$$

To extend the notion of (m, n)-quasi-ideals of semigroups defined by Lajos (1961), we introduce the concept of (m, n)-quasi-ideals of an ordered semigroup  $(S, \cdot, \leq)$  as follows: let m, n be non-negative integers. A subsemigroup Q of S is called an (m, n)-quasi-ideal of S if it satisfies the following conditions:

- (i)  $(Q^m S] \cap (SQ^n] \subseteq Q$ ;
- (ii) (Q] = Q.

Here,  $Q^0 S = SQ^0 = S$ . Note that every (m, n)-quasi-ideal of S is an (m, n)-ideal of S.

It's easy to see that if Q is a quasi-ideal of S, then Q is an (m, n)-quasi-ideal of S. The following example shows that an (m, n)-quasi-ideal of S needs not to be a quasi-ideal of S.

**Example 1.1.** Let  $S = \{a, b, c, d\}$  be an ordered semigroup with the multiplication and the order relation defined by:

 $\leq = \{(a, a), (b, b), (c, c), (d, a), (d, b), (d, c), (d, d)\}.$ We give the covering relation and the figure of *S* by:

$$\prec = \{(d, a), (d, b), (d, c)\}$$

Let  $Q = \{a, d\}$ . For integers *m*, n > 1, we obtain that *Q* is an (*m*, *n*)-quasi-ideal of *S* but not a quasi-ideal of *S*.

As in Theorem 1.1, we have the following.

**Theorem 1.2.** Let  $(S, \cdot, \leq)$  be an ordered semigroup. Then the intersection of all (m, n)-quasi-ideals containing a nonempty subset A of S, denoted by  $[A]_{q,(m,n)}$ , is an (m, n)-quasiideal containing A of S, and it is of the form

$$[A]_{q,(m,n)} = \left(\bigcup_{i=1}^{\max\{m,n\}} A^i\right] \cup \left(\left(A^m S\right] \cap \left(SA^n\right]\right).$$
(1.2)

**Proof.** Let  $\{A_i \mid i \in I\}$  be the set of all (m, n)-quasi-ideals containing A of S. Then  $\bigcap_{i \in I} A_i$  is a subsemigroup containing A of S. For  $j \in I$ , we have

$$\left(\left(\bigcap_{i\in I}A_i\right)^m S\right] \cap \left(S\left(\bigcap_{i\in I}A_i\right)^n\right] \subseteq \left((A_j)^m S\right] \cap \left(S(A_j)^n\right] \subseteq A_j,$$

and then  $\left(\left(\bigcap_{i\in I} A_i\right)^m S\right] \cap \left(S\left(\bigcap_{i\in I} A_i\right)^n\right] \subseteq \bigcap_{i\in I} A_i$ . Moreover,

$$\left(\bigcap_{i\in I}A_i\right]\subseteq\bigcap_{i\in I}(A_i]=\bigcap_{i\in I}A_i\subseteq\left(\bigcap_{i\in I}A_i\right)$$

and hence  $\bigcap_{i \in I} A_i$  is an (m, n)-quasi-ideal of S.

Next, we will show that (1.2) holds. Clearly,  $(\bigcup_{i=1}^{\max\{m,n\}} A^{i}] \cup ((A^{m}S] \cap (SA^{n}]) \neq \emptyset. \text{ Let } x, y \in (\bigcup_{i=1}^{\max\{m,n\}} A^{i}]$   $\cup ((A^{m}S] \cap (SA^{n}]). \text{ If } x \in (A^{m}S] \cap (SA^{n}] \text{ or } y \in (A^{m}S]$   $\cap (SA^{n}], \text{ then}$   $xy \in (A^{m}S] \cap (SA^{n}] \subseteq (\bigcup_{i=1}^{\max\{m,n\}} A^{i}] \cup ((A^{m}S] \cap (SA^{n}]).$ Let  $x, y \in (\bigcup_{i=1}^{\max\{m,n\}} A^{i}];$  then there exist j, k in  $\{1, 2, ..., \max\{m,n\}\}$  such that  $x \in (A^{j}]$  and  $y \in (A^{k}].$  If 1 < j + k $\leq \max\{m,n\}$ , then

$$xy \in \left(\bigcup_{i=1}^{\max\{m,n\}} A^i\right] \subseteq \left(\bigcup_{i=1}^{\max\{m,n\}} A^i\right] \cup \left(\left(A^m S\right] \cap \left(SA^n\right]\right).$$

If  $\max\{m,n\} < j+k$ , then m, n < j+k, that is,  $(A^{j+k}] = (A^{m+(j+k-m)}] \subseteq (A^m S]$  and  $(A^{j+k}] = (A^{(j+k-n)+n}] \subseteq (SA^n]$ . Hence

$$xy \in (A^{j+k}] \subseteq (A^m S] \cap (SA^n] \subseteq \left(\bigcup_{i=1}^{\max\{m,n\}} A^i\right] \cup \left(\left(A^m S\right] \cap \left(SA^n\right]\right).$$

This shows that  $\left(\bigcup_{i=1}^{m+n} A^{i}\right] \cup \left(\left(A^{m}S\right] \cap \left(SA^{n}\right)\right)$  is a subsemigroup of *S*. We now consider:

$$\left(\left(\bigcup_{i=1}^{\max\{m,n\}} A^{i}\right] \cup \left(\left(A^{m}S\right] \cap \left(SA^{n}\right]\right)\right)^{m}S\right)$$

$$\subseteq \left(\left(\bigcup_{i=1}^{\max\{m,n\}} A^{i}\right] \cup \left(A^{m}S\right]\right)^{m-1} \left(\left(\bigcup_{i=1}^{\max\{m,n\}} A^{i}\right] \cup \left(A^{m}S\right]\right)S\right)$$

$$\subseteq \left(\left(\bigcup_{i=1}^{\max\{m,n\}} A^{i}\right] \cup \left(A^{m}S\right]\right)^{m-1} \left(AS\right]$$

$$= \left(\left(\bigcup_{i=1}^{\max\{m,n\}} A^{i}\right] \cup \left(A^{m}S\right]\right)^{m-2} \left(\left(\bigcup_{i=1}^{\max\{m,n\}} A^{i}\right] \cup \left(A^{m}S\right]\right)\left(AS\right]\right)$$

$$\subseteq \left(\left(\bigcup_{i=1}^{\max\{m,n\}} A^{i}\right] \cup \left(A^{m}S\right]\right)^{m-2} \left(A^{2}S\right]$$

$$\vdots$$

$$\subseteq \left(A^{m}S\right].$$

Similarly,

$$S\left(\left(\bigcup_{i=1}^{\max\{m,n\}}A^{i}\right]\cup\left(\left(A^{m}S\right]\cap\left(SA^{n}\right]\right)\right)^{n}\subseteq\left(SA^{n}\right].$$

Then,

$$\begin{aligned} \left(\mathcal{Q}^{m}S\right] &\cap \left(S\mathcal{Q}^{n}\right] \subseteq \left(A^{m}S\right] \cap \left(SA^{n}\right] \\ &\subseteq \left(\bigcup_{i=1}^{\max\{m,n\}}A^{i}\right] \cup \left(\left(A^{m}S\right] \cap \left(SA^{n}\right]\right), \end{aligned}$$
where  $\mathcal{Q} = \left(\bigcup_{i=1}^{\max\{m,n\}}A^{i}\right] \cup \left(\left(A^{m}S\right] \cap \left(SA^{n}\right]\right).$  Now,
$$\left(\left(\bigcup_{i=1}^{\max\{m,n\}}A^{i}\right] \cup \left(\left(A^{m}S\right] \cap \left(SA^{n}\right]\right)\right)\right]$$

$$= \left(\left(\bigcup_{i=1}^{\max\{m,n\}}A^{i}\right] \cup \left(\left(\left(A^{m}S\right] \cap \left(SA^{n}\right]\right)\right)\right]$$

$$\subseteq \left(\bigcup_{i=1}^{\max\{m,n\}} A^i\right] \cup \left(\left(A^m S\right] \cap \left(SA^n\right]\right).$$

Thus  $\left(\bigcup_{i=1}^{\max\{m+n\}} A^i\right] \cup \left(\left(A^m S\right] \cap \left(SA^n\right]\right)$  is an (m, n)-quasiideal containing A of S, and

 $[A]_{q,(m,n)} \subseteq \left(\bigcup_{i=1}^{\max\{m+n\}} A^i\right] \cup \left(\left(A^m S\right] \cap \left(SA^n\right]\right).$ 

By

$$\left(\bigcup_{i=1}^{\max\{m,n\}} A^{i}\right] \subseteq \left(\left[A\right]_{q,(m,n)} \cup \ldots \cup \left[A\right]_{q,(m,n)}^{\max\{m,n\}}\right]$$
$$\subseteq \left[A\right]_{q,(m,n)}$$

and

$$(A^{m}S] \cap (SA^{n}] \subseteq (([A]_{q,(m,n)})^{m}S]$$
$$\cap (S([A]_{q,(m,n)})^{n}] \subseteq [A]_{q,(m,n)},$$

it follows that

$$\left(\bigcup_{i=1}^{\max\{m,n\}} A^{i}\right] \cup \left(\left(A^{m}S\right] \cap \left(SA^{n}\right]\right) \subseteq [A]_{q,(m,n)}$$

This shows that (1.2) holds, and the proof is completed.  $\Box$ 

For an element *a* of an ordered semigroup  $(S, \cdot, \leq)$ , we write  $[\{a\}]_{q,(m,n)}$  (or simply  $[a]_{q,(m,n)}$ ) by

$$[a]_{q,(m,n)} = \left(\bigcup_{i=1}^{\max\{m,n\}} \{a\}^i\right] \cup \left(\left(a^m S\right] \cap \left(Sa^n\right]\right).$$

In closing this section we quote the following two results proved by Sanborisoot *et al.* (2012).

**Lemma 1.1.** The following conditions hold for an ordered semigroup  $(S, \cdot, \leq)$  and  $a \in S$ :

(1)  $([a]_{(m,0)})^m S \subseteq (a^m S]$  for any positive integer *m*.

(2)  $S([a]_{(0,n)})^n \subseteq (Sa^n]$  for any positive integer *n*.

(3)  $([a]_{(m,n)})^m S([a]_{(m,n)})^n \subseteq (a^m Sa^n]$  for any positive integers m, n.

**Theorem 1.3.** Let  $(S, \cdot, \leq)$  be an ordered semigroup. Let m, n be positive integers. Let  $\mathcal{R}_{(m,0)}$  be the set of all (m, 0) -ideals of S, and let  $\mathcal{L}_{(0,n)}$  be the set of all (0, n)-ideals of S. Then the following conditions hold:

(1) *S* is (m, 0)-regular if and only if for all  $R \in \mathcal{R}_{(m,0)}$ ,  $R = (R^m S]$ .

(2) *S* is (0, *n*)-regular if and only if for all  $L \in \mathcal{L}_{(0,n)}$ ,  $L = (SL^n]$ .

#### 2. Main Results

Let A be a subsemigroup of an ordered semigroup  $(S, \cdot, \leq)$ . For a non-empty subset B of A,

we let

$$(B]_A = \{ y \in A \mid y \le b \text{ for some } b \in B \}.$$

It is clear that  $(B]_A \subseteq (B]$ , and the equality holds in the following lemma.

**Lemma 2.1.** If A is an (m, n)-ideal of an ordered semigroup  $(S, \cdot, \leq)$ , then  $(B]_A = (B]$  for any non-empty subset B of A.

**Lemma 2.2.** Let A be an (m, n)-ideal of an ordered semigroup  $(S, \cdot, \leq)$ , and let  $\emptyset \neq B \subset A$ . Then

$$(([B_A]_{(m,n)})^m S([B_A]_{(m,n)})^n] = (B^m SB^n]$$

where  $[B_A]_{(m,n)} = \left(\bigcup_{i=1}^{m+n} B^i \cup B^m A B^n\right]_A$ .

Proof. We have

$$\left(\left(\bigcup_{i=1}^{m+n} B^{i} \cup B^{m} A B^{n}\right)_{A}^{m} S\left(\bigcup_{i=1}^{m+n} B^{i} \cup B^{m} A B^{n}\right)_{A}^{n}\right]$$
$$\subseteq \left(\left(\left(\bigcup_{i=1}^{m+n} B^{i} \cup B^{m} A B^{n}\right)^{m} S\left(\bigcup_{i=1}^{m+n} B^{i} \cup B^{m} A B^{n}\right)^{n}\right]_{A}\right]$$
$$\subseteq \left(\left(\left(\bigcup_{i=1}^{m+n} B^{i} \cup B^{m} A B^{n}\right)^{m} S\left(\bigcup_{i=1}^{m+n} B^{i} \cup B^{m} A B^{n}\right)^{n}\right]\right]$$
$$= \left(\left(\left(\bigcup_{i=1}^{m+n} B^{i} \cup B^{m} A B^{n}\right)^{m} S\left(\bigcup_{i=1}^{m+n} B^{i} \cup B^{m} A B^{n}\right)^{n}\right].$$

Let  $x \in (([B_A]_{(m,n)})^m S([B_A]_{(m,n)})^n]$ . Then  $x \leq y^m sz^n$  for some  $s \in S$  and  $y, z \in \bigcup_{i=1}^{m+n} B^i \cup B^m AB^n$ . If  $y, z \in \bigcup_{i=1}^{m+n} B^i$ , then  $y \in B^p$ ,  $z \in B^q$  for some  $p, q \in \{1, 2, ..., m+n\}$ ; hence  $x \in (B^{mp} SB^{nq}] \subseteq (B^m SB^n]$ . If  $y \in \bigcup_{i=1}^{m+n} B^i$ ,  $z \in B^m SB^n$ , then  $y \in B^p$  for some  $p \in \{1, 2, ..., m+n\}$ ; hence  $x \in (B^{mp} S$  $(B^m SB^n)^n] \subseteq (B^m SB^n]$ . If  $y \in B^m SB^n$ ,  $z \in \bigcup_{i=1}^{m+n} B^i$ , then  $z \in B^q$  for some  $q \in \{1, 2, ..., m+n\}$ ; hence  $x \in ((B^m SB^n)^m$  $SB^{nq}] \subseteq (B^m SB^n]$ . Finally, if  $y, z \in B^m SB^n$ , then  $x \in ((B^m SB^n)^m S(B^m SB^n)^n] \subseteq (B^m SB^n)^n] \subseteq (B^m SB^n)^n] \subseteq (B^m SB^n)^n$ .

$$\left(\left[B_{A}\right]_{(m,n)}\right)^{m}S\left(\left[B_{A}\right]_{(m,n)}\right)^{n}\subseteq\left(B^{m}SB^{n}\right].$$

By

$$(B^{m}SB^{n}] \subseteq (([B_{A}]_{(m,n)})^{m}S([B_{A}]_{(m,n)})^{n}],$$

it follows that

$$(([B_A]_{(m,n)})^m S([B_A]_{(m,n)})^n] = (B^m S B^n],$$

as required. This completes the proof.

**Theorem 2.1.** Let *A* be an (m, n)-ideal of an ordered semigroup  $(S, \cdot, \leq)$ . Then every (m, n)-ideal of *A* is an (m, n)ideal of *S* if and only if for each non-empty subset *B* of *A*,

$$B^m S B^n \subseteq [B_A]_{(m,n)} \tag{2.1}$$

where  $[B_A]_{(m,n)} = \left(\bigcup_{i=1}^{m+n} B^i \cup B^m A B^n\right]_A$ .

**Proof.** Assume first that every (m, n)-ideal of A is an (m, n)-ideal of S. Let  $\emptyset \neq B \subseteq A$ . Since  $[B_A]_{(m,n)}$  is an (m, n)-ideal of A, it follows by assumption that  $[B_A]_{(m,n)}$  is an (m, n)-ideal of S. By Lemma 2.2,

$$B^{m}SB^{n} \subseteq (B^{m}SB^{n}] = (([B_{A}]_{(m,n)})^{m}S([B_{A}]_{(m,n)})^{n}]$$
$$\subseteq ([B_{A}]_{(m,n)}] = [B_{A}]_{(m,n)}.$$

Conversely, we assume that the equation (2.1) holds for any non-empty subset of A. Let C be an (m, n)-ideal of A. Then  $C \subseteq A$  and

 $C^{m}SC^{n} \subseteq (C \cup C^{2} \cup \ldots \cup C^{m+n} \cup C^{m}AC^{n}]_{A} \subseteq (C]_{A} = C.$ 

By Lemma 2.1, (C] = C. Therefore, C is an (m, n)-ideal of S.

For m = 0, n = 1 (resp. m = 1, n = 0), we have the following corollary:

**Corollary 2.1.** Let *A* be a left (resp. right) ideal of an ordered semigroup  $(S, \cdot, \leq)$ . Then every left (resp. right) ideal of *A* is a left (resp. right) ideal of *S* if and only if for each non-empty subset *B* of *A*,

$$SB \subseteq (B \cup AB]_A (resp., BS \subseteq (B \cup BA]_A)$$

Moreover we have the following, taking m = 1, n = 1:

**Corollary 2.2.** Let A be a bi-ideal of an ordered semigroup  $(S, \cdot, \leq)$ . Then every bi-ideal of A is a bi-ideal of S if and only if for each non-empty subset B of A,

$$BSB \subseteq (B \cup B^2 \cup BAB]_A.$$

**Example 2.1.** Let  $S = \{a, b, c, d\}$  be an ordered semigroup with the multiplication and the order relation defined by:

| • | a | b | c | d |
|---|---|---|---|---|
| a | a | a | a | a |
| b | a | a | a | a |
| c | a | a | b | a |
| d | a | a | b | b |

 $\leq = \{(a, a), (a, b), (b, b), (c, c), (d, d)\}.$ We give the covering relation and the figure of *S* by:



Then  $A = \{a, d\}$  is a bi-ideal of *S*, and  $\{a\}$  is a bi-ideal of *A*. It is easy to verify that, for each non-empty subset *B* of *A*, we have  $BSB \subseteq (B \cup B^2 \cup BAB]_A$ . Thus, by Corollary 2.2,  $\{a\}$  is a bi-ideal of *S*.

**Theorem 2.2.** Let Q be an (m, n)-quasi-ideal of an ordered semigroup  $(S, \cdot, \leq)$ . Then every (m, n)-quasi-ideal of Q is an (m, n)-quasi-ideal of S if and only if for each non-empty subset D of Q,

$$(D^{m}S] \cap (SD^{n}] \subseteq [D_{\mathcal{Q}}]_{q,(m,n)}$$

$$(2.2)$$

where 
$$[D_{\mathcal{Q}}]_{q,(m,n)} = \left(\bigcup_{i=1}^{\max\{m,n\}} D^i\right]_{\mathcal{Q}} \cup \left(\left(D^m \mathcal{Q}\right]_{\mathcal{Q}} \cap \left(\mathcal{Q} D^n\right]_{\mathcal{Q}}\right).$$

**Proof.** Assume that every (m, n)-quasi-ideal of Q is an (m, n)-quasi-ideal of S. If  $D \subseteq Q$  is non-empty, then, by Theorem 1.2,  $[D_Q]_{q,(m,n)}$  is an (m, n)-quasi-ideal of Q. By assumption,

$$(D^{m}S] \cap (SD^{n}] \subseteq (([D_{\varrho}]_{q,(m,n)})^{m}S]$$
$$\cap (S([D_{\varrho}]_{q,(m,n)})^{n}] \subseteq [D_{\varrho}]_{q,(m,n)}.$$

Conversely, we assume that the equation (2.2) holds for any non-empty subset of Q. Let C be an (m, n)-quasiideal of Q. Then  $C \subseteq Q$  and

$$(C^{m}S] \cap (SC^{n}] \subseteq [C_{\mathcal{Q}}]_{q,(m,n)} = C.$$

By Lemma 2.1, (C] = C. Therefore, C is an (m, n)-quasiideal of S.

For m = 1, n = 1, we have the following corollary:

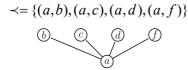
**Corollary 2.3.** Let Q be a quasi-ideal of an ordered semigroup  $(S, \cdot, \leq)$ . Then every quasi-ideal of Q is a quasi-ideal of S if and only if for each non-empty subset D of Q,

$$(DS] \cap (SD] \subseteq (D]_{\varrho} \cup ((DQ]_{\varrho} \cap (QD]_{\varrho}).$$

**Example 2.2.** Let  $S = \{a, b, c, d, f\}$  be an ordered semigroup with the multiplication and the order relation defined by:

| • | a | b      | c | d | f |
|---|---|--------|---|---|---|
| a | a | a      | a | a | a |
| b | a | a<br>b | a | d | a |
| c | a | f      | c | c | f |
| d | a | b      | d | d | b |
| f | a | f      | a | c | a |

 $\leq = \{(a,a), (a,b), (a,c), (a,d), (a,f), (b,b), (c,c), (d,d), (f,f)\}.$ We give the covering relation and the figure of *S* by:



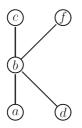
Then  $Q = \{a, c, f\}$  is a quasi-ideal of *S*, and the quasi-ideals of *Q* are  $D_1 = \{a\}$ ,  $D_2 = \{a, c\}$  and  $D_3 = \{a, f\}$ . For each non-empty subset *C* of *Q*, we have  $(CS] \cap (SC] \subseteq (C]_Q \cup$  $((CQ]_Q \cap (QC]_Q)$ . By Corollary 2.3,  $D_1, D_2, D_3$  are quasiideals of *S*.

**Example 2.3.** Let  $S = \{a, b, c, d, f\}$  be an ordered semigroup with the multiplication and the order relation defined by:

| • | a | b | c                     | d | f |
|---|---|---|-----------------------|---|---|
| a | d | b | b                     | d | f |
| b | b | b | b                     | b | f |
| c | b | b | c                     | b | f |
| d | d | b | b                     | d | f |
| f | b | b | b<br>b<br>c<br>b<br>f | b | f |

 $\leq = \{(a,a), (a,b), (a,c), (a,f), (b,b), (b,c), (b,f), (c,c), (d,d), (d,b), (d,c), (d,f), (f,f)\}.$ 

We give the covering relation and the figure of *S* by:  $\prec = \{(a,b), (b,c), (b,f), (d,b)\}$ 



It is easy to verify that  $Q = \{a, b, d\}$  is an (m, n)-quasi-ideal of S for any integers  $m, n \ge 2$ , and the (m, n)-quasi-ideal of Q is  $\{b, d\}$ . For each non-empty subset C of Q, we have  $(C^m S] \cap (SC^n] \subseteq [C_Q]_{q,(m,n)}$ . By Theorem 2.2,  $\{b, d\}$  is also a quasi-ideal of S.

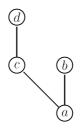
Let  $(S, \cdot, \leq)$  be an ordered semigroup, and let *m*, *n* be non-negative integers. Then *S* is said to be (m, n)-regular (Sanborisoot *et al.*, 2012), if for any *a* in *S* there exists *x* in *S* such that  $a \leq a^m x a^n$ , that is, if  $a \in (a^m S a^n]$ .

**Example 2.4.** Let  $S = \{a, b, c, d\}$  be an ordered semigroup with the multiplication and the order relation defined by:

| • | a | b | c | d |
|---|---|---|---|---|
| a | a | a | a | a |
|   |   | b |   |   |
| С | c | c | С | c |
| d | c | d | c | d |

 $\leq = \{(a,a), (a,b), (a,c), (a,d), (b,b), (c,c), (c,d), (d,d)\}.$ We give the covering relation and the figure of *S* by:

$$\prec = \{(a,b), (a,c), (c,d)\}$$



Then S is (m, n)-regular for any integer  $m, n \ge 1$ .

**Theorem 2.3.** Let  $(S, \cdot, \leq)$  be an ordered semigroup. Then S is (m, n)-regular if and only if

$$\forall R \in \mathcal{R}_{(m,0)}, \forall L \in \mathcal{L}_{(0,n)}, R \cap L = (R^m L^n]$$
(2.3)

where  $\mathcal{R}_{(m,0)}$  is the set of all (m, 0)-ideals of S and  $\mathcal{L}_{(0,n)}$  is the set of all (0, n)-ideals of S.

**Proof.** The assertion is obvious if m = 0, n = 0. If m = 0,  $n \neq 0$ , we have to show that *S* is (0, n)-regular if and only if  $\forall L \in \mathcal{L}_{(0,n)}, L = (SL^n]$ , and this follows by Theorem 1.3 (2). Similarly, for  $m \neq 0$ , n = 0. This is obtained by Theorem 1.3 (1).

Finally, we let  $m \neq 0$ ,  $n \neq 0$ . Assume that S is (m, n)-regular. Let  $R \in \mathcal{R}_{(m,0)}$  and  $L \in \mathcal{L}_{(0,n)}$ . We have  $(R^m L^n]$  $\subseteq R \cap L$ . Let  $a \in R \cap L$ . Since S is regular, there exists x

$$a \leq a^{m} xa^{n}$$

$$\leq a^{2m-1} xa^{n} xa^{n}$$

$$\leq a^{3m-2} xa^{n} xa^{n} xa^{n}$$

$$\vdots$$

$$\leq a^{nm-(n-1)} (xa^{n})^{n}$$

$$\in R^{nm-(n-1)} L^{n}$$

$$\subseteq R^{m} L^{n}$$

$$\subseteq (R^{m} L^{n}].$$

Thus  $R \cap L \subseteq (R^m L^n]$ .

Conversely, we assume that (2.3) holds. Let  $a \in S$ . Since  $[a]_{(m,0)} \in \mathcal{R}_{(m,0)}$  and  $S \in \mathcal{L}_{(0,n)}$ , we have

 $[a]_{(m,0)} = [a]_{(m,0)} \cap S = (([a]_{(m,0)})^m S^n] \subseteq (([a]_{(m,0)})^m S].$ By Lemma 1.1,  $[a]_{(m,0)} \subseteq (a^m S]$ . Similarly,  $[a]_{(0,n)} \subseteq (Sa^n]$ . From

$$c \in [a]_{(m,0)} \cap [a]_{(0,n)}$$

$$c = (a^m S] \cap (Sa^n]$$

$$c = ((a^m S])^m ((Sa^n])^n$$

$$c = (a^m S](Sa^n]$$

$$c = (a^m Sa^n].$$

we conclude that S is (m, n)-regular. We now complete the proof.

**Corollary 2.4.** Let  $(S, \cdot, \leq)$  be an ordered semigroup. Then S is (m, n)-regular if and only if

$$\forall a \in S, [a]_{(m,0)} \cap [a]_{(0,n)} = (([a]_{(m,0)})^m ([a]_{(0,n)})^n].$$

**Theorem 2.4.** Let  $(S, \cdot, \leq)$  be an ordered semigroup. Then S is (m, n)-regular if and only if

$$\forall a \in S, [a]_{(m,n)} = (a^m S a^n].$$

**Proof.** Assume that *S* is (m, n)-regular. Let  $a \in S$  and  $x \in [a]_{(m,n)}$ . Then, by Theorem 1.1,  $x \leq y$  for some *y* in  $\bigcup_{i=1}^{m+n} a^i \cup a^m Sa^n$ . If  $y \in a^m Sa^n$ , we are done. Suppose that  $y \in \bigcup_{i=1}^{m+n} a^i$ ; then  $y = a^p$  for some  $p \in \{1, 2, ..., m+n\}$ . We have

$$x \in (a^p] \subseteq ((a^m Sa^n]^p] \subseteq ((a^m Sa^n]] = (a^m Sa^n].$$

Since  $(a^m Sa^n] \subseteq [a]_{(m,n)}, [a]_{(m,n)} = (a^m Sa^n].$ 

Conversely, if  $a \in S$ , then  $a \in [a]_{(m,n)} = (a^m S a^n]$ , and hence S is (m, n)-regular.

**Example 2.5.** We consider the ordered semigroup which is defined in Example 2.2. We have  $[a]_{(1,1)} = (a], [b]_{(1,1)} = (\{a, b\}], [c]_{(1,1)} = (\{a, c\}], [d]_{(1,1)} = (\{a, d\}], \text{ and } [f]_{(1,1)} = (\{a, f\}]$ . Then, by Theorem 2.4, *S* is regular.

### References

- Akram, M., Yaqoob, N. and Khan, M. 2013. On (*m*, *n*)-ideals in *LA*-semigroups. Applied Mathematical Sciences. 7(44), 2187-2191.
- Amjad, A., Hila, K. and Yousafzai, F. 2014. Generalized hyperideals in locally associative left almost semihypergroups. New York Journal of Mathematics. 20, 1063-1076.
- Birkhoff, G. 1967. Lattice Theory. American Mathematical Society. Colloquium Publications Vol. XXV, Providence, U.S.A..
- Bogdanovic', S. 1979. (*m*, *n*)-ideaux et les demi-groupes (*m*, *n*)-reguliers. Review of Research. Faculty of Science. Mathematics Series. 9, 169-173.
- Fuchs, L. 1963. Partially Ordered Algebraic Systems. Pergamon Press, U.K..
- Kehayopulu, N. 1992. On completely regular poe-semigroups. Mathematica Japonica. 37, 123-130.
- Kehayopulu, N. 1994. Remark on ordered semigroups. Abstracts AMS. 15(4), \*94T-06-74.
- Kehayopulu, N. 2006. Ideal and Green's relations in ordered semigroups. International Journal of Mathematics and Mathematical Sciences. 1-8.
- Krgovic', N. 1975. On (*m*, *n*)-regular semigroups. Publications de l'Institut Mathematique. Nouvelle Serie. 18(32), 107-110.
- Lajos, S. 1961. Generalize ideals in semigroups. Acta Scientiarum Mathematicarum. 22, 217-222.
- Lajos, S. 1963. Notes on (*m*, *n*)-ideals I. Proceedings of the Japan Academy. 39, 419-421.
- Sanborisoot, J. and Changphas, T. 2012. On characterizations of (m, n)-regular ordered semigroup. Far East Journal of Mathematical Sciences. 65(1), 75-86.
- Tsingelis, M. 1991. Contribution to the structure theory of ordered semigroups. Doctoral Dissertation, University of Athens, Greece.
- Yaqoob, N. and Aslam, M. 2014. Prime (*m*, *n*) bi-Γ-hyperideals in Γ-semihypergroups. Applied Mathematicsand Information Sciences. 8(5), 2243-2249.
- Yaqoob, N., Aslam, M., Davvaz, B., and Saeid, A.B. 2013. On rough (*m*, *n*) bi-Γ-hyperideals in Γ-semihypergroups. UPB Scientific Bulletin. Series A: Applied Mathematics and Physics. 75(1), 119-128.

- Yaqoob, N. and Chinram, R. 2012. On prime (m, n) bi-ideals and rough prime (m, n) bi-ideals in semigroups. Far East Journal of Mathematical Sciences. 62(2), 145-159.
- Yousafzai, F., Khan, W., Guo, W. and Khan, M. 2014. On (*m*, *n*)-ideals of left almost semigroups. Journal of Semigroup Theory and Applications. 2014, Article ID.1