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Abstract

In this article we have studied on the class of p-absolutely summable sequence of interval numbers. We have
discussed some important properties like linearity, completeness, solidity, symmetry and inclusion relation.
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1. Introduction

Most of the scientific and numerical computations are
based on a mathematical model in which the variables range
over the real numbers. Interval arithmetic serves as a metho-
dology to analyze and control numerical errors in computers
and  is  widely  used  in  real-valued  numerical  calculations,
particularly  those  related  to  rounded  and  truncated  errors
appear in machine computations. The idea of interval arith-
metic  was  used  by  Dwyer  (1951;  1953)  at  the  initial  stage.
Ramon  E.  Moore  has  applied  interval  arithmetic  as  an
approach  to  round  errors  in  mathematical  computation.
Further  development  on  interval  arithmetic  was  done  by
Moore (1966; 1959), Moore and Yang (1958, 1962), Fischer
(1958). The useful fact of interval analysis is that, rather than
a  machine-rounded  approximation,  the  solutions  obtained
here are intervals that guarantee the enclosure of the desired
solution. Today interval algorithms are being used to solve
numerical  analysis,  global  optimization,  and  several  engi-
neering and CAD problems.

2. Preliminaries

An  interval x  = [a, b] is  the  set  of  real  numbers
between a and b, i.e. x  = [a, b] = {x: a  x  b}. Let R denote
the set of all real valued closed intervals. An interval number
is  an  element  of  R  and  a  closed  subset  of  real  numbers,
represented by x  = [ x , xr], where x  and xr are the left and
right points of x  respectively. Geometrically x  represents a
line segment on the real line. In particular if x = xr = x, then
x  is reduced to a real number x = [x, x], called point interval
or singleton. Thus we can say that an interval number is the
generalization of the point interval.

For  1 2,x x R  we  have  the  following  fundamental
arithmetical operations.

(i) 1 2 1 2,x x x x    and x1r = x2r.
(ii) 1x + 2x  = [ 1x  + 2x  , x1r + x2r].
(iii) Let  > 0, then  x  = [ x , xr] and if  < 0, then

 x  = [axr,  x ].
(iv) 1x . 2x  =  [min{ 1x . 2x  , 1x  .x2r, x1r. 2x  , x1r.x2r},

max{ 1x . 2x  , 1x .x2r,  x1r. 2x  , x1r.x2r}].

(v) 1

2

x
x

 = [ 1x , x1r]  
2 2

1
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= [min{ 1x   2x , 1x   x2r, x1r  2x , x1r  x2r},

   max{ 1x   2x  , 1x  x2r, x1r  2x  , x1r x2r}], 20 .x

(vi) If 1 2x x i.e. [ 1x , x1r]   [ 2x  , x2r]  2x   < 1x  < x1r

< x2r.
Remark: The above property can be generalized for more
than two intervals and is often called as nesting property of
intervals.

(vii) Let x  = [ x , xr], then - x  = - [ x , xr] = [-xr, - x ].
(viii) Let 1x , 2x , 3 ,x R then 3x ( 1x + 2x ) 3x 1x + 3x 2x .

Remark: The equality 3x ( 1x + 2x ) = 3x 1x + 3x 2x  holds with
the condition that if a [ 1x , x1r] = 1x  and b [ 2x , x2r] = 2x
then ab  0. It holds well with the point interval a = [a, a], i.e.
a( 1x + 2x ) = a 1x  + a 2x .

(ix) For 1x , 2x , 3x , 4x R  if 1 2x x and 3 4x x  then

(a) 1x + 3x  2x + 4x

(b) 1x  - 3x  2x - 4x

(c) 1x  . 3x  2x . 4x

(d) 1x / 3x  2x / 4x , if 0 3x , 4x .

The absolute value of x = [ x , xr] is defined by

 
 
min{| || |},   max{| || |} ,   . 0,
0, max{| || |} ,                          . 0.

r r r

r r

x x x x if x x
x

x x if x x
   

  

 

It is known that R is a complete metric space. It is easy to see
that the set of all interval numbers is a complete metric space
defined by

d( 1x , 2x ) = max{| 1x  - 2x  |, | x1r - x2r |}.
In the special case of 1x  = [a, a] and 2x  = [b, b], we obtain
usual metric on R, d( 1x , 2x ) = |a - b|.

Consider the transformation f from N to R defined
by k  f(k) = x , then ( nx ) is called the sequence of interval
numbers, where nx  is the nth term of the sequence ( nx ). WeWe
denote the set of all sequences of interval number by wi.

For sequences of interval numbers ( nx ), ( ) i
ny w the

linear structure of wi includes the addition of   ( nx ) + ( ny ) and
scalar multiplication ( nx ) defined by

                   ( nx ) + ( ny ) = [ nx

+ ny


,

rnx +
rny ].

If  0 then ( nx ) = [ nx

, 

rnx ] and if  < 0 then ( nx ) =
[ nx


, 

rnx ].

Definition 2.1. An interval sequence x  = ( nx ) is said to be
convergent to the interval number 0x  if for each  > 0 there
exists a positive integer n0 such that d( nx , 0x ) <  for all
n  n0, and we write it as 0lim nn

x x  which imply 0lim
lnn

x x


and 0lim
r rnn

x x .

Definition 2.2. An interval sequence x  = ( nx ) is said to be
interval Cauchy sequence if for every  > 0 there exists k0N
such that d( nx , kx ) < , for n, k > k0.

We produce the following concepts for the classes of
sequences of interval numbers.

Definition 2.3. An interval sequence x  = ( nx ) is said to be
bounded if sup ( , )n

n
d x    , equivalently, if there exist R

such that  | nx |   for all nN.

Definition 2.4. An interval sequence space E i is said to be
solid if ( nx )E i whenever ( ny )E i and ( nx )  ( ny ), for all
nN.

Definition 2.5. An interval sequence space E i is said to be
symmetric if ( ( )nx )E i, whenever ( nx )E i, where  is a
permutation on N.

Definition 2.6. An interval sequence space E i is said to be
convergence free if ( ny )E i whenever ( nx )E i and nx  = 0
implies that ny = 0 .

Definition 2.7. An interval sequence space E i is said to be
sequence algebra if for ( nx ), ( ny )E i ( nx  ny )E i when-
ever ( nx ), ( ny )E i.

Chiao (2002) introduced sequence of interval numbers
and studied the usual convergence. Recently Esi (2011; 2011)
has made several investigations on different classes of se-
quence of interval numbers.  (2010)
introduced  the  following  sequence  spaces  of  interval
numbers and proved their completeness.

 0 ( ) : lim ,   where [0,  0] .i i
n nn

c x x w x      

 0 0( ) : lim ,   .i i
n nn

c x x w x x x R    

 ( ) : sup{| |,| |  } .
r

i i
n n n

n
x x w x x    




The  class  of  p-absolutely  summable  sequence ( )i p  of
interval numbers is defined by

 
1

( ) ( ) : ( , ) ,npi i
n n

n
p x x w d x 





 
     
 



where x  = [ x , xr], and p = (pn) is a bounded sequence of +ve
numbers so that 0 < pn sup pn< .

Consider the metric d on ( )i p  is defined by

 r r

1

n n n n( , ) max{|  - |, |  - |} ,n Mp

n n
k

d x y x y x y 
   
 
  

where 0 < pn sup pn<  and M = max(1, sup pn).
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3. Main Results

Theorem 3.1. The class of sequence ( )i p  is a linear space
with the co-ordinate wise addition and scalar multiplication.

Proof. Let ( nx ), ( ny ) ( )i p  and ,  be scalars.
Then

 
1

( , ) np
n

n

d x 




   and  
1

( , ) .np
n

n

d y 




 
We have

 
1

[( ), ] np
n n

n
d x y  





    
1

( , ) np
n

n
d x 




  +

 
1

( , ) np
n

n

d y 



 =  

1
| | ( , ) nn

pp
n

n
d x 




  +

 
1

| | ( , ) nn pp
n

n
d y 





  .

This completes the proof.

Theorem 3.2. The class of sequence ( )i p  is a complete met-
ric space with respect to the metric defined by

1

( , ) [ ( , )] n
M

p
n n

n
d x y d x y 

  
 


Proof. It is easy to verify that d  is a metric on ( )i p . Let 
_

jx
= (

_
j

nx ) = (
_

1
jx , 

_

2
jx , 

_

3
jx , . . . . .) be a Cauchy sequence in ( )i p  for

each  j. Then for every  > 0 there exist a n0N such that

d (
_

j
nx ,

_
k
nx ) = 

1
_ _

[ ( , )] n
M

pj k
n n

n
d x y

 
 
 
 < , for j, k  n0.

 
_ _

( , )j k
n nd x y  < , for j, k  n0.

 
r r

1

{max|  - |, |  - | n
M

pj k j k
n n n n

k
x y x y    

 
  

< .

This implies |  - |j k
n nx y
 

< and 
r r

|  - |j k
n nx y <. This shows that

(
_

j
nx ) is a Cauchy sequence in R. Since R is complete, (

_
j

nx ) is
convergent. Let 

_ _

lim j
n nj

x x


  for each nN. Thus for each
 > 0, there exists n0 such that d (

_
j

nx ,
_

nx ) < , for j  n0. The
proof will be complete once we show that 

_

nx  ( )i p . WeWe
have

d (
_

nx , )  d (
_

nx , 
_

j
nx ) + d (

_
j

nx , )

<   + K < .
This completes the proof.

Theorem 3.3. The class of sequence ( )i p  is solid and hence
monotone.

Proof.  Let  ( nx )  and  ( ny )  be  two  sequences  of  interval
numbers such that | nx |  | ny |, for all kN. Let ( nx ) ( )i p

then 
_

1
( , )

np

n
n

d x 




 
 
 

 = max{| | ,| |} n

r

p

n n
n

x x     
. Now we

have

_

1

( , )
np

n
n

d y 




 
 
 

  
_

1
( , ) .

np

n
n

d x 




    
 


This implies ( ny ) ( )i p .

Theorem 3.4.  The  class  of  sequence ( )i p  is  a  sequence
algebra.

Proof.  Let  ( nx )  and  ( ny )  be  two  sequences  of  interval
numbers taken from ( )i p . Then we have

_

1
( , )

np

n
n

d x 




    
 

  and 
_

1
( , )

np

n
n

d y 




    
 

 , for all nN.

We have

_ _

1
( , )

np

n n
n

d x y 




  
 

   
_ _

1
( , ). ( , )

np

n n
n

d x d y 




 
 
 




_ _

1 1

( , ) ( , )
n np p

n n
n n

d x d y 
 

 

                   
   .

Thus 
_ _

( )n nx y  ( )i p .
This completes the proof.

Theorem 3.5.  The  class  of  sequence ( )i p   is  not  conver-
gence free.

Proof. We provide the following example in support of the
proof.

Example 1. Consider the interval sequence ( nx ) defined by

nx =
1 1

,  
1n n

 
  

, for n  and take pn  1, for all k N. Then

we have

 _

1

( , )
np

n
n

d x 



 =

1

1 1
max ,  .

1

np

n n n





 


  
    



Now consider the interval sequence ( ny ) defined by
ny  =  ,  1n n  , for n N and take pn  1, for all k N. Then

we have

 _

1

( , )
np

n
n

d y 




 =   
1

max ,  1 .np

n

n n




  
Thus we conclude that  is not convergence free.
This completes the proof.

Theorem 3.6. The class of sequence ( )i p  is not symmetric.
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Proof. The proof follows from the following example.

Example 2. Consider the interval sequence ( nx ) defined by

nx  =  
2 2

1 1
, , for  odd,

( 1)

1 1
, ,       for  even.

1

n
n n

n
n n





 
   


 
  

Consider pn = 1, for all n odd and pn = 2, for all n even.
Then we have

 _

1

( , )
np

n
n

d x 




 = 2 2
1

1 1
max ,  .

( 1)n n n





 


  
    



Now consider the rearrangement ( ny ) of ( nx ) defined by
( ny ) = (

_

2x ,
_

1x ,
_

4x ,
_

3x ,
_

6x , . . . . . . . . .)
Then we have

 _

1

( , )
np

n
n

d y 




 >
 odd

1 1
max ,  .

( 1)n n n
 



  
    


Thus ( ny ) ( )i p .
This completes the proof.

Theorem 3.7. For 0 < p < q, ( )i p  ( )i q .

Proof. The proof is easy, so omitted.

4. Conclusions

In this article we have discussed some properties of an
important class of sequences of interval numbers with some
easy  and  suitable  examples.  The  results  so  obtained  may
link  to  some  new  ideas  and  help  in  studying  some  other
properties of the class of sequences and some other classes
of sequences.
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