Lists of figures

Figure		Page
2.1	Oxidative modification hypothesis model	7
2.2	Purposed new concept of oxidized LDL	8
2.3	Basic reaction sequence of lipid peroxidation	10
2.4	Typical absorption profile at 234 nm of conjugated diene	11
	formation produced during oxidation of isolated LDL by	
	Cu ₂ SO ₄ in vitro	
2.5	Depicted concept of oxLDL-mediated LOX-1 in	15
	atherosclerosis	
2.6	Regulatory events and their dysregulation depend on the	17
	duration of the change in ROS or RNS concentration. ROS and	
	RNS normally occur in living tissues at relatively low steady-	
	state levels	
2.7	ROS generated by heavy metal and clearance by endogenous	19
	antioxidant enzymes	
2.8	The subcellular localization of three SOD isoforms: CuZn-SOD	23
	located primary in cytosol, Mn-SOD localized in mitochondria,	
	and extracellular CuZn-SOD (Ec-SOD) located at cell	
	membrane	
2.9	Hypothetical scheme illustrating the possibility of divergent	26
	roles of eNOS in atherosclerosis	
2.1	0 ROS impair vascular function	28
2.1	1 Hypothetical scheme illustrating the possibility of divergent	29
	roles of eNOS in atherosclerosis	
3.1	Relative Electrophoresis Migration distance (REM) on agarose	34
	gel electrophoresis	
3.2	Kinetics of conjugated diene formation by continuous	37
	monitoring of absorbance at 234 nm.	
3.3	Measurment of standard curve of NO	42
3.4	The reaction of determined xanthine oxidase given SOD	43

Lists of figures (Continue)

Figure	
3.5 Standard of superoxide dismutase (SOD) concentration	43
4.1 Showing the lag phase (min) of mildly degree oxLD group	49
4.2 Showing the lag phase (min) of moderately degree oxLDL group	50
4.3 Showing the lag phase (min) of fully degree oxLDL group	50
4.4 Relative electrophoretic mobility (REM) of both moderately	51
and fully oxLDL was shown REM was calculated from the	
distance of oxLDL band and BSA band (s/a)	
4.5 SDS-PAGE of apo B fragmentation.	52
4.6 LOX-1 expression activated by 40 and 80 μg/ml oxLDL in	54
various doses and degree oxidation: mildly, moderately and	
fully oxidation on 1.5 % gel electrophoresis	
4.7 Quantitation of LOX-1 expression in percentage of expression	55
was presented with significant difference when compared with	
control (*) and among groups (#)	
4.8 Showing LOX-1 expression induced by 10 μM DFO	57
pretreatment and various degree oxidation. Doses of oxLDL as	
indicated in each lane	
4.9 (a) Percentage of LOX-1 expression of 40 $\mu g/ml$ oxLDL (b) and	58
$80 \ \mu g/ml \ oxLDL$ in $10 \ \mu M$ DFO pretreatment when compared	
with control (*) and among groups (#)	
4.10 Inducible expression of LOX-1 pretreatmented with 0.3 mM	60
EDTA and oxLDL in various doses and degrees	
4.11 (a) Quantitation of LOX-1 expression of 0.3 mM EDTA	61
pretreatment group compared with 40 μ g/ml oxLDL group. (b)	
LOX-1 expression activated by 80 µg/ml oxLDL compared	
with those of 0.3 mM EDTA pretreatment group	

Lists of Figures (Continue)

Figure	
4.12 Inducible expression of LOX-1 pretreatmented with 100 μg/m	nl 63
BHT and oxLDL in various doses and degree	
4.13 (a) LOX-1 expression activated by 40 μg/ml oxLDL and 100	64
$\mu g/ml$ BHT pretreatment. (b) LOX-1 expression activated by	
80 μg/ml oxLDL and 100 μg/ml BHT pretreatment	
4.14 Showing the standard curve of SOD activity (U/ml)	65
4.15 SOD activity in various doses of moderately oxLDL (U/ml/mg	g 66
protein)	
4.16 Showing the SOD activity in 10 μM DFO pretreatment group	67
and doses of 40 and 80 μg/ml moderately oxLDL	
4.17 Showing the SOD activity in 0.3 mM EDTA pretreatment	68
group and doses of 40 and 80 μ g/ml moderately oxLDL	
4.18 SOD activity in pretreatment group with 100 μg BHT	69
and doses of 40 and 80 μg/ml moderately oxLDL	
4.19 Showing the expression of eNOS induced by oxLDL in various	ıs 72
doses and degree oxidation on 1.5 % agarose gel electrophores	sis:
mildly and fully oxLDL (a); moderately oxLDL (b)	
4.20 Significant difference of eNOS expression induced by oxLDL	73
in various degree oxidation and doses are shown	
4.21 Showing the inducible eNOS expression of each 10 μM DFO	74
treatment group	
4.22 Significant difference of eNOS expression induced by oxLDI	75
in 10 μM DFO pretreatment group is shown	
4.23 Inducible eNOS expression of each treatment group	76
4.24 Significant difference of eNOS expression in 0.3 mM EDTA.	77
4.25 Inducible eNOS expression of each treatment group in 100	78
ug/ml BHT	

Lists of figures (Continue)

Fi	Figure	
	4.26 Significant difference of eNOS expression in 100 μg BHT	79
	4.27 Showing the standard curve of NO at 25, 50, 100, 150	80
	and 200 nM when 24.928 pA = 1nM	
	4.28 NO production induced by various doses of moderately oxLDL	81
	(b, c) is correspondent with eNOS expression (a)	
	4.29 Real-time measurement of NO released and recorded as current	83
	in pA of 40 μ g/ml in moderately and fully oxidation of LDL	
	with 10 µM DFO pretreatment (a). Statistically significant	
	difference of each pretreatment group (b)	
	4.30 Real-time measurement of NO release and was recorded as	84
	current in pA of various doses and degree oxLDL with 10 μM	
	DFO pretreatment (a). Significant difference of each	
	pretreatment group (b)	
	4.31 NO release was detected in BHT pretreatment and various	86
	doses and degree oxidation of oxLDL by biosensor probe (a)	
	Data are presented as mean \pm SEM (b)	
	4.32 (a) Immunohistochemistry of anti-p38 MAPK activity and	87
	measured mean density by using image Proplus analysis	
	program, (b) negative control; 3,3'- Diaminobenzidine (DAB),	
	(c) negative control; Hematoxylin	
	4.33 Immunohistochemistry of p38 MAPK which demonstrated in	88
	control group (upper) and $80 \ \mu g/ml$ fully oxidized LDL group	
	(lower)	
	4.34 Mean density of p38 MAPK activity activated by various doses	89
	of oxLDL moderately and fully oxidation	

Lists of figures (Continue)

Figure	
4.35 Immunohistochemistry of p38 MAPK of 0.3 mM EDTA	90
pretreatment group with 40 $\mu g/ml$ moderately oxidized LDL	
group (upper) and those with 40 µg/ml fully oxidized LDL	
group (lower)	
4.36 Mean density of p38 MAPK activity of 0.3 mM EDTA	91
pretreatment group with various doses of oxLDL in moderately	
and fully degree oxidation	
4.37 Immunohistochemistry of p38 MAPK in 80 μg/ml fully oxLDL	92
group (upper) and 10 μM DFO with 80 μg/ml fully oxidized	
LDL group (lower)	
4.38 Mean density of p38 MAPK activity of 10 μM DFO with	93
moderately and fully oxLDL in various doses	
4.39 Immunohistochemistry of p38 MAPK activity of 80 μg/ml	94
fully oxidized LDL group (upper) and 100 µg BHT with 20	
μg/ml fully oxidized LDL group(lower)	
4.40 Mean density of p38 MAPK activity of 100 μg/ml BHT	95
pretreatment with oxidized LDL in various doses and degrees	
4.41 Intacted endothelium and normal vasculature of day 6 in	96
control group	
4.42 Damaged endothelium, loose ground substance, scantly	97
fibroblast and invaded vascular smooth muscle cell (VSMC)	
were represented in various doses and degree of oxLDL on day	
6	
4.43 Morphology of 80 μ g/ml moderately oxLDL with 10 μ M DFO	98
compared with 10 μM DFO and 80 μg/ml	

Lists of figure (Continue)

Figure	
4.44 Morphology changes of 0.3 mM EDTA with $40~\mu\text{g/ml}$ and 80	99
μg/ml in moderately and fully oxidation of oxLDL compared	
with positive control 0.3 mM EDTA on day 6 of culture	
4.45 Morphology changes of 80 $\mu g/ml$ moderately ox LDL with and	100
without 100 μg BHT compared with positive control 100 μg	
BHT on day 6 of culture	
4.46 Depicted mechanisms of LOX-1 upregulation by oxLDL	104
through intracellular ROS/RNS and redox signaling	