Table of contents

	Page
Thai abstract	(1)
English abstract	(3)
Acknowledgement	(5)
Table of contents	(6)
List of tables	(9)
List of figures	(10)
Chapter	
1. Introduction	1
2. Review of literature	5
2.1 Atherosclerosis and modified oxidative hypothesis	5
2.2 Impact of oxidized LDL	8
2.3 The crucial role of LOX-1	13
2.4 Vascular reactive oxygen species (ROS) and reactive nitrogen species (RNS)	15
2.5 Impact of endothelial dysfunction	28
3. Methodology	30
3.1 An isolation of native LDL	32
3.2 Oxidation modification of native LDL	33
3.3 Characterization of oxidized LDL	33

3.4 Organ culture preparation	37
3.5 Determination of LOX-1 mRNA expression	38
3.6 Determination of eNOS mRNA expression	40
3.7 Determination of nitric oxide (NO) concentration	41
3.8 Determination of SOD activity	42
3.9 Immunohistochemistry of p38 MAPK	44
3.10 Morphological changes by light microscope	46
3.11 Statistic analysis	47
4. Finding and Results	48
4.1 Preparation of LDL in various degree of oxidation	48
and oxidative assessment	
4.2 Various degrees of oxLDL influence LOX-1 expression	53
in cultured human umbilical artery	
4.3 Influence of iron chelator and peroxyl radical scavenger	55
pretreatments on LOX-1 expression	
4.4 Effect of oxLDl in various doses and degrees activated LOX-1	65
expression mediated intracellular ROS and change in	
superoxide dismutase (SOD) activity	
4.5 eNOS expression activated by oxLDL in various doses and	71
degree of oxidation	
4.6 Nitric oxide production and endothelial dysfunction	80
mediated by intracellular ROS and RNS	
4.7 Influence of oxLDL-mediated LOX-1 expression	87
on p38 MAPK activity	
4.8 Morphological changes cultured human umbilical artery	95
5. Conclusion and Recommendations	105
References	106
Appendix A	119

Appendix B	127
Vitae	134