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Abstract 

 

 The traditional risk measurements are usually based on the classical assumption 

of normal distribution of risk factors, however many literature have shown that the 

marginal distribution of asset log-return has fatter tail than normal.  The Copula-EVT 

model which can handle the non-normality is suggested as an alternative.  The main 

objective of this paper is to compare the performance of the Copula-EVT model and 

the traditional model in estimating the Value-at-Risk (VaR). Monte-Carlo simulation is 

used to simulate scenarios for log-returns of portfolio generated from multivariate 

distribution with Gaussian Copula and marginal distributed as normal in the center and 

Extreme Value Theory (EVT) in the tails. In this paper, I apply this method to estimate 

VaR over a one-day horizon for a portfolio containing twenty-nine Thai equities. The 

empirical result indicates that Copula-EVT VaR outperforms multivariate normal 

model. For hedging purpose, the study shows that minimum-VaR hedging provides the 

higher percentage of reduction in VaR by taking smaller short position in futures than 

the minimum variance hedge strategy. 
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1. Introduction 

When the financial crisis in Asia Pacific was emerged in 1997, inefficient risk 

management of financial institutions was blamed as one of culprits. The capital 

reserves for risky assets invested by such financial institutions were insufficient to 

cover loss.  This was mainly due to the underestimation of portfolio’s risk, both the 

investment portfolio and the loan portfolio.  

After the crisis, risk management has become more and more attractive topic for 

regulators, fund managers, bankers, and investors. In the market risk management, 

Value at Risk (VaR) has been introduced as a standard measure to quantify market 

risk. VaR is defined as the maximum potential loss on a given portfolio with certain 

confidence level within a specified investment horizon. VaR measures can be applied 

for both risk management and regulatory purposes. In particular, the Basel Committee 

on Banking Supervision (1996) at the Bank of International Settlements (BIS) has 

announced the Basel II standards, which forces banks and financial institutions to 

maintain the adequacy of capital requirements based on VaR estimates. Therefore, 

providing accurate VaR estimates is a crucial importance. If the risk is not properly 

estimated, this may lead to sub-optimal capital allocation under risk constraint or the 

banks may have inadequate or excess capital reserves left unused to support underlying 

risks. 

The concept of conventional VaR is based on the classical assumption of normal 

distribution of the underlying risk factors. However, it is well known that most of 

securities’ returns follow fat tail distribution (McNeil and Frey 1999); their kurtosis 

and skewness of the distribution are significantly different from 3 and 0 as in normality 

case. Since the assumption of normal distribution is violated, the traditional method of 

normality is not appropriate to measure VaR. As a result, researches and studies in 

financial field have developed various methodologies to better compute VaR. 

The Extreme Value Theory (EVT) has been introduced as a branch of statistics dealing 

with the extreme deviations from the median of probability distributions. The EVT can 

be applied to risk management since the financial asset returns are usually fat-tailed, 

then assuming normality can lead to serious underestimates of VaR. Therefore the 

EVT methods which fit extreme quartiles can explain the risk for highly unusual 

events better than the other methodologies. Besides, there are numerous literatures that 

http://en.wikipedia.org/wiki/Deviation�
http://en.wikipedia.org/wiki/Median�
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support the superior performance of the EVT based VaR to the normality VaR 

estimation. 

In the past three years, EVT has become more popular.  It has been developed to deal 

with the multivariate distribution and dependence structure of the securities’ returns. 

Then the Gaussian Copula has been introduced to deal with such multivariate and joint 

distributions. Therefore, the Copula has been applied as a risk management tools for 

insurance companies, financial institutions, and the mutual funds to overcome the 

limits of traditional VaR model.  

However, in mutual fund management and financial institution, accurate VaR 

measurement is not enough to avoid the financial disaster, the more important question 

is “how to manage such a risk?” The hedging strategy is now well established and 

commonly used not only by fund managers and bankers but also the corporate 

practitioners to offset the position in spot market by taking position in derivatives 

market. In practice, to hedge risk exposure by long or short derivatives, the question is 

what the optimal amount of such derivatives to minimize risk.  In other words, the 

hedger need to know the Optimal Hedge Ratio. The traditional approach to estimate 

the hedge ratio is to find the amount of derivatives that minimize variance of the 

hedged portfolio, which called minimum-variance hedge ratio. This method presumes 

that the portfolio risk is measured by standard deviation or variance.  The method 

inherits the normal distribution assumption of the asset returns from traditional 

framework. However, most asset returns are indeed characterized as fat-tailed.  Adding 

up all assets’ risks into portfolio’s risk regardless of skewness and kurtosis of the 

hedged portfolio as suggested the minimum variance approach is prone to serious 

errors. Therefore, the minimum-VaR hedge ratio has been proposed as an alternative.  

This paper combines the two approaches in two steps.  First, I concentrate on the 

accuracy of estimated VaR, the proper one will lead to an optimal asset allocation and 

the appropriate hedge ratio. The next step is for hedging purpose; I will estimate the 

amount of index futures to hedge the risk of equity fund by using minimum VaR 

approach and compare its hedging performance with the minimum variance approach.  

The contributions of this research are twofold.  First, it demonstrates how to use the 

new method of Copula-EVT VaR estimation.  Second, it provides an application of 

Copula-EVT VaR minimization in hedging strategies. The test of accuracy of 
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estimated VaR and test of hedging performance will lead to the right decision on 

adequacy of capital reserve and better risk management. 

Research Questions 

1. Does the VaR estimated by Copula-EVT approach outperform the traditional VaR 

estimation? 

2. Does the minimum-VaR hedge ratio outperform the minimum-variance hedge 

approach? 

Objectives and Benefits of the Study 

Since the financial institution and asset management firms have to monitor risks based 

on the VaR framework. Traditional VaR estimates mentioned above are based on the 

classical assumption of normal distribution and ignore the extreme situations. 

However, many papers prove that most financial asset returns usually distribute in fat-

tails.  As a result, the traditional method of normality is not appropriate to measure 

VaR. In addition, there are some evidences that the security returns are not distributed 

independently. Then the Copula should be applied to deal with multivariate and joint 

distribution. 

This paper introduces Copula-EVT VaR, which is theoretically appropriate to deal 

with multivariate fat-tailed data. One of the main objectives is that to estimate VaR by 

using Copula-EVT approach and perfrom backtesting to test the performance of this 

approach comparing to the traditional one. Moreover, the study also provides the 

contribution of Copula-EVT VaR in hedging strategy. The purpose is to estimate the 

optimal hedge ratio of index futures by minimizing VaR, which is calculated from 

Copula-EVT estimation, to hedge the portfolio of stocks. Then the paper compare the 

hedging performance of the minimum-VaR hedge ratio and the minimum-variance 

hedge ratio. 

The main benefit of this study can be divided into two parts, first, it provides a better 

understanding and implication about the estimation of VaR in fat-tailed environment 

and joint distribution of the portfolio returns. Second, this paper proposes the concept 

and advantage of minimum-VaR hedging compared to minimum-variance hedging. 

Besides, if the fat-tailed distribution can be observed in Thai Stock returns, the 

Copula-EVT VaR can be applied as a more appropriate approach, at least theoretically, 
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to estimate the optimal capital requirement and to manage portfolio risk by minimum-

VaR hedge ratio. 

Scope of Study 

The study will focus on how to estimate VaR by applying EVT approach.  The 

Gaussian Copula will be applied to simulate the joint distributed multivariate risk 

factors. Moreover, the application of VaR in hedging strategies will be investigated in 

this study. Finally, the test of goodness of Copula-EVT VaR and hedging effectiveness 

of minimum-VaR hedge ratio are then proposed to compare with the traditional 

approaches.  

For the data, equity data is collected from SETSMART and/or BloomBerg using daily 

data from January 1998 to March 2007 of stocks listed in SET50 Index before 1998. 

Limitation 

Since the index futures market has just been emerged in April 2006, the data of SET50 

index futures are inefficient to analyze the result. Then, this study uses the settlement 

price of SET50 index futures calculated by Cost of Carry Model.  

This paper proceeds as follows. Section 1 provides some background by emphasizing 

the significance of the problem. Section 2 reviews previous researches related to this 

topic. Section 3 outlines the theoretical framework. Section 4 provides the setting of 

formulation of the problem to be studied. Section 5 presents the empirical study, and 

the paper is concluded in Section 6 
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2. Literature Reviews 

The Extreme Value Theory (EVT) has been introduced as a classical probability 

statistic focusing on the extreme event. This framework has firstly introduced in the 

hydrology, and then applied to the theory of insurance and finance, nowadays, there 

has been several number of EVT studies in the financial risk management field. 

Besides, the application of Copula in risk measurement has been proposed in many 

studies during the recent years. 

Due to the conceptual simplicity, Value at Risk (VaR) has become a standard tool to 

quantify risk. VaR measures can be used in many applications, such as in risk 

management and for regulatory requirement, in particular, the Basel II has been 

imposed to financial institution to meet the capital requirements calculated based on 

VaR framework. The recent development of VaR models in finance can be found in 

the study by Manganelli and Engle (1999), which reviews all VaR methodologies by 

classified them into three main categories that are parametric, nonparametric, and semi 

parametric. The paper focuses on the underlying assumptions and the logical 

drawbacks of available methodologies; however, their empirical application is not 

mentioned. The EVT for risk management has been applied by Mcneil (1999), which 

provides an overview of EVT in risk management as a tool to measure extreme risks. 

The study concentrates on how the Peaks-Over-Threshold (POT) model can be a 

useful model in VaR estimation and expected shortfall for market risks. Moreover, he 

combines the stochastic volatility models, which is fitted by the ARCH/GARCH 

family model, and dynamic risk management where interested in the conditional return 

distribution to dynamic measures VaR and expected shortfall over a 1-day horizon, 

then compare to traditional methods namely normality and historical simulation. The 

backtesting and empirical study conclude that model based on normality assumption 

are likely to underestimate extreme risk, and model of historical simulation can only 

provide imprecise extreme risk estimation. EVT is the most efficient instrument to 

predict the size of extreme event. 

Using EVT to solve the problems of normality VaR estimation, which is based on 

normal distribution and its result are likely underestimates the extreme risk, has 

become attractive in recent years. Mcneil and Frey (1999) use a Generalized Pareto 

Distribution (GPD) estimation based on extreme value theory to model the tail of the 
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distribution of risk factors. They provide steps to estimate the GPD parameters by 

maximum likelihood estimation (MLE) and the threshold choice by applying mean 

squared error (MSE) technique. The result concludes that GPD approximation 

suggested by EVT work quite well when the returns follow asymmetric in tail. 

Specifically, they use backtesting to compare EVT with expected shortfall and find 

that the risk factors should be modeled by fat-tail distribution, as a result EVT is 

preferable.  

Bensalah (2000) reviews some theoretical results of EVT concerning the estimation of 

the asymptotic distribution of the extreme observations. The paper also provides steps 

in applying EVT to financial risk management including data analysis, a tool to choose 

the high threshold, extreme VaR estimates, and the GPD approximation. The EVT 

techniques are applied to a series of exchange rates of Canadian/U.S. Dollars and the 

empirical result concludes that the EVT results apply well to the univariate case, 

however, the multivariate case and joint distribution of the marginal extreme 

distribution incorporating the market risk framework remains an open question in this 

study.  

Similar study is proposed by Habiboellah (2005), which provides systematic steps to 

apply EVT in banking. The paper describes how to apply EVT in bank risk 

management to meet regulatory requirement. EVT provides useful tools to define the 

distribution function of extreme events concerning a fall in prices of financial assets 

held or issued by bank. The study suggests that, in banking, EVT can be used to 

manage all three risks regulated by Basel II, which are credit risk, market risk, and 

operational risk. In market risk, EVT is efficient to determine VaR, in credit and 

operational risk, EVT is often utilized for determining the adequate level of capital.  

Wongchotiwat (2004) estimates VaR based on EVT model and apply for empirical 

study of risk factors in Thai market, which are SET index and Thai Baht/US Dollar 

exchange rate. The study uses backtesting to compare the performance of different 

VaR models including normality VaR and historical simulation approaches. The result 

indicates that, in the fat-tail environment, normal VaR fail to capture risk at high 

confidence level, EVT and historical simulation methods are more conservative than 

normal distribution. 
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The issue of multivariate risk management has been introduced in recent years. A 

Copula function is the powerful concept to manage multivariate risk factors of 

portfolio of asset. The first introduction of applying Copula in risk management can be 

found in the paper by Bouyé and Durrleman (2001), which clarifies the concept of 

Copula and empirical use in financial field. Khanthavit (2006) applies Copula VaR and 

Copula Expected Shortfall in portfolio of Thai debt instruments. The paper explains 

that the Thai Government Bond Yields are distributed as Logistic distribution, and 

estimates VaR by using Monte Carlo Simulation, in which the random numbers are 

generated from the Gaussian Copula function. Though the returns do not follow 

normal distribution, the backtesting result indicates that Normality VaR outperforms 

Copula VaR. However, Khanthavit suggests that the unexpected result may come from 

the error in parameters estimation. Applying Copula function in extreme VaR 

estimation is firstly presented by Clemente and Romano (2005), who describe steps to 

simulate the risk factors under multivariate GPD distribution and dependence structure 

by using Gaussian Copula and Student’s t-Copula. The simulated risk factors correlate 

as desired based on the correlation matrix forecasted through Exponentially Weighted 

Moving Averages (EWMA) approach. The empirical application to estimate 99% VaR 

over one-day horizon of a portfolio of twenty Italian equities concludes that the 

Copula-EVT outperforms the traditional VaR models. The similar result can be found 

in the paper by Mourany and Mukherji (2005). They estimate Copula-EVT VaR of a 

portfolio of thirteen UK equities, the backtesting over a time window of four years 

shows that Copula-EVT provides more accurate VaR.  

Hai He (2005) presents a Copula-EVT model to estimate portfolio VaR by simulating 

risk factor log-return from multivariate distribution with Gaussian and Student’s t-

Copula and the marginal distributions follow GPD. In this study, the correlation matrix 

is estimated based on both EWMA and MGARCH approach. The paper applies 

Copula-EVT model to estimate VaR of a portfolio containing sixty-four Chinese 

equities and performs the backtesting over a time window of six years and the results 

indicate that Copula-EVT approach outperforms the traditional VaR models. 

To apply VaR in the theory of hedging, which is now well established and commonly 

used by the practitioners to offset the risk of spot market by taking position in 

derivatives market, Harris and Jian Shen (2004) propose the minimum-VaR hedge 

ratio instead of minimum-variance hedge ratio. The study shows that although the 
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minimum-variance hedging can reduce the standard deviation of portfolio returns, it 

tends to increase the portfolio skewness and kurtosis, and consequently the utility of 

investors will be affected. Then the standard deviation is no longer an appropriate 

measure of risks since it fail to capture all of characteristics of portfolio returns that 

investors consider to be important. The paper introduces hedging with minimizing 

VaR, which consider not only standard deviation of portfolio returns but also their 

skewness and kurtosis. The results present that minimum-VaR hedge ratio is 

significantly smaller than minimum-variance hedge ratio and the minimum-VaR 

hedging offer a lower risk of portfolio than the risk of minimum-variance hedge 

portfolio.  

From the literature reviews stated above, most of the studies in this area focus on either 

VaR estimation or optimal hedge ratio. However, this paper combines such two things 

by studying on how to estimate VaR accurately and contribute it to the hedging 

strategy. In addition, this study will provide the empirical study of the portfolio 

containing Thai stocks listed in SET50 index.  
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3. Theoretical Framework 

This section outlines the theoretical frameworks of the key concepts used in this paper. 

There are, namely, four main topics, namely, Value at Risk, Extreme Value Theory, 

Copula, and minimum-VaR hedging.  

3.1 Value-at-Risk 

Value at Risk (VaR) has become the standard measure that financial analysts use to 

quantify the risk. It is defined as the maximum potential loss of a portfolio of financial 

instruments with a given confidential level over a certain horizon. Since VaR is 

intuitive and very simple to understand, its measurement is widely developed in many 

methodologies. The existing models for calculating VaR follow a common general 

structure, which are to estimate the distribution of portfolio returns and to compute the 

VaR of the portfolio. The main differences among VaR methods are related to the 

estimation of the returns distribution that is the way most of studies address the 

problem of how to estimate the possible changes in the value of the portfolio. The 

existing VaR models can be classified into three main categories, which are 

Parametric, Nonparametric, and Semi Parametric model. 

Parametric VaR generally assumes that risk factors follow normal distribution. The 

assumption of independent identical distribution of standardized residual terms is a 

necessary device to estimate the unknown parameters of the distribution function. The 

drawback of this approach is that it tends to underestimate VaR, since the normality 

assumption seems to be inconsistent with the behavior of financial returns. However, 

this method is still widely used in practice because it is easy to implement and fast to 

calculate.  

One of the most common methods for VaR estimation is the Historical Simulation, 

which is classified as a nonparametric model. This approach simplifies the procedure 

to estimate VaR, since there is no any assumption about the distribution of the 

portfolio returns. However, the hidden assumption behind this method is that the 

portfolio returns are assumed unchanged within the analytical period. The forecasted 

VaR under this approach are meaningful only if the historical data used in the 

estimation have the identical distribution. The historical simulation based VaR will be 

biased subject to the volatility of the historical data observed within a given period.  
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Many alternative methods have been introduced to estimate VaR during the recent 

years, such as Monte Carlo simulation, the application of Extreme Value Theory, etc. 

These approaches simulate normally distributes future scenarios using the distribution 

function of risk factor returns and uses them to reevaluate the portfolio. It estimates 

VaR by randomly creating many scenarios for future rates, using nonlinear pricing 

model to estimate the change in value for each scenario and then calculating VaR 

according to the worse case scenario. The biggest advantage of this method is that it is 

captures non-linearity and can generate an infinite number of scenarios. 

Since many pioneering works proposed that most of financial data are fat-tailed, this 

paper will focus on the Extreme Value Theory, which has been developed to explain 

the characteristic of the tails. 

3.2 Extreme Value Theory 

Extreme Value Theory (EVT) has been originally introduced as the probabilistic 

theory for studying extreme events. EVT is a useful tool for estimating the tail of asset 

log-return distribution. In theory of EVT, the distinction can be made between two 

approached, namely, the Block Maxima approach and Peak-Over-Threshold (POT) 

approach. The main difference between both approaches is how the extreme data are 

identified. The first one is the oldest approach in EVT, which considers the maximum 

data in the successive period, such as ten days or three months. These selected 

maximum data are classified as extreme event. This study concentrates on the second 

approach, POT, which only considers the observations that exceed a given threshold. 

This model exploits data more efficiently than Block Maxima model and becomes 

more preferable in recent applications.  

Suppose that X = (X1, …, Xn) is a sequence of independent identically distributed 

observations with distribution function F(x) = Pr(Xi < x). The excess over a given 

threshold u occurs when Xi > u for any i = 1, 2, ..., n and the excess over u is defined 

by y. The distribution of the excess losses over the threshold u is given by; 

 )  Pr(    )( uXyuXyFu >≤−=  (1) 

The distribution Fu represents the probability that the value of X exceeds the threshold 

u by at most an amount of y = x - u given that x exceeds the threshold u.  

From equation (1); 
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 )  Pr    )  Pr(11 uXyu(XuXyuX (y)  Fu >>−=>≤−−=−  (2) 

Given 

 )Pr    )Pr(11 yu(XyuX y)  F(u +>=+≤−=+−  (3) 

From Bayes’s Theorem, this conditional probability can be written as; 

 ( )
)Pr(

)Pr(      Pr
uX

u Xy uXUXyuX
>

>+>
=>+>

∩  (4) 

 ( ) )Pr(  Pr    )Pr( uXuXyuXu Xy uX >⋅>+>=>+> ∩  (5) 

Since X – u = y and X > u then y > 0; 

 )Pr(    )Pr( yuXu Xy uX +>=>+> ∩  (6) 

From equation (3), (5), and (6):  

 ( )   )Pr(  Pr    )Pr( uXuXyuXyuX >⋅>+>=+>  (7) 

 ( )   )Pr(  Pr  uXuXyuX >⋅>>−=  

 [ ] [ ])(1)(1)(1 uFyFyuF u −⋅−=+−  (8) 

 
)(1

)()(    )(
uF

uFyuFyFu −
−+

=  (9) 

Since for x > u, y = x – u, then x = u + y , I have; 

 )()(    ),Pr(    )Pr( xFyuFthenxXyuX =+<=+≤  (10) 

Therefore, from (9) and (10); 

 
)(1

)()(    )(
uF

uFxFyFu −
−

=  

 [ ] )(    )()(1    )( uFyFuFxF u +−=  (11) 

Pickands (1975), Balkema and de Haan (1974) show that for sufficiently high 

threshold u, the distribution function of the excess Fu(y) can be approximated by the 

Generalized Pareto Distribution (GPD), which has the analytical form as follow; 
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Where y = X – u, which is the excess of X over a threshold u. The scale parameter β 

and the shape parameter ξ are estimated from real data of excess returns. 

From equation (11), for sufficiently high threshold u, Fu(y) converges to the GPD in 

equation (12), and then I have; 

 [ ] )(    )( )(1    )(  , , uFyGuFxF u +−= βξ  (13) 

For a high threshold u, the last term on the right hand side can be determined by the 

empirical estimator NNN u /)( −  where N is the total number of observation and Nu is 

the number of observation exceed the threshold u. The result, therefore, is given by: 

 
N
NN

yG
N

N
xF u
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u  
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−

+⎟⎟
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⎝

⎛
= βξ  (14) 

Substitute equation (12) into the equation (14), simplified F(x) is; 
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xF u  (15) 

For a given confidence level p, and y = xp – u, VaR is defined as 

 ⎥
⎦

⎤
⎢
⎣

⎡
−−+== − 1)1(      VaR  (p)extremeGPD

ξ
ξ
β p

N
NuX

u
p  (16) 

3.3 Copula Functions 

Copulas are functions that describe dependencies among variables, and provide a way 

to create distributions to model correlated multivariate data. Using a copula, one can 

construct a multivariate distribution by specifying marginal distributions, and then 

choose a particular copula to provide a correlation structure between random variables. 

The distributions in higher dimensions are possible. 
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Definition1: An n-dimensional copula is a multivariate cumulative distribution 

function (c.d.f.) with uniform distributed margins in [0,1] (U(0,1)) and the following 

properties:  

1. C: [0,1]n → [0,1];  

2. C is grounded and n-increasing;  

3. C has margins Ci which satisfy Ci(u) = C(1, ..., 1, u, 1, ..., 1) = u for all u ∈ 

[0,1].  

It is obvious, from the above definition, that if F1, ..., Fn are univariate distribution 

functions, then C(F1(x1), ..., Fn(xn)) is a multivariate c.d.f. with marginal distribution 

F1, ..., Fn because ui = Fi(xi), i = 1, ..., n, is a uniform random variable. Copula 

functions are a useful tool to construct and simulate multivariate distributions.  

The following theorem is known as Sklar’s Theorem. It is the most important 

theorem about copula functions because it is used in many practical applications.  

Theorem2: Let F be an n-dimensional c.d.f. with continuous marginal distribution F1, 

..., Fn. Then it has the following unique copula representation:  

 ))(..., ),((    )..., ,( 111 nnn xFxFCxxF =  (17) 

Sklar’s Theorem shows that, for continuous multivariate distribution functions, the 

univariate marginal distribution and the multivariate dependence structure can be 

separated. The dependence structure can be represented by a proper copula function. 

Moreover, the following corollary is attained from (17).  

Corollary: Let F be an n-dimensional c.d.f. with continuous marginal distribution F1, 

..., Fn and copula C (satisfying (17)). Then, for any u = (u1,…,un) in [0,1]n:  

 ))(..., ),((    )..., ,( 1
1

1
11 nnn xFuFFuuC −−=  (18) 

where 1−
iF  is the generalized inverse of Fi. 

 

                                                 
1  The original definition is given by Sklar (1959). 
2  For the proof see, Sklar (1996). 
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Normal copula: The Gaussian (or normal) copula is the copula of the multivariate 

normal distribution. In fact, the random vector X = (X1, …,Xn) is multivariate normal 

if and only if:  

1. the univariate marginal distribution F1, …, Fn are Gaussians;  

2. the dependence structure among the marginal distribution is described by a 

unique copula function C (the normal copula) such that:  

 ))(..., ),((    )..., ,( 1
1

1
R1 nn

Ga
R xuuuC −−Φ= φφ  (19) 

where ΦR is the standard multivariate normal c.d.f. with linear correlation 

matrix R and φ -1 is the inverse of the standard univariate Gaussian c.d.f.  

Multivariate normal is commonly applied in risk management to simulate the 

distribution of the n risk factors affecting the value of the trading portfolio (market 

risk). 

3.4 Minimum-Value at Risk Hedging 

Suppose that hedging portfolio is the combination of long position in spot market and 

taking short position in derivatives market, which is used to offset the risk exposure of 

an unhedging portfolio. Consequently, the return of hedging portfolio is composed of 

the return of unhedging portfolio and the return of derivatives, which can be written as; 

 FUH hR  R  R −=  (20) 

where  RH  = return of hedging portfolio 

 RU = return of unhedging portfolio (portfolio of securities traded in spot 

market) 

 RF = return of derivatives 

 h = hedge ratio, the optimal amount of derivatives that minimize risk of 

hedging portfolio.  

When the VaR of hedging portfolio is known, to minimize VaR of the hedging 

portfolio by finding the optimal hedge ratio, the objective function is: 

 { }FU
h

hRRVaR −   min  (21) 

In this study, the numerical solution will be shown in section five.  

The methodologies for estimating VaR and hedging with minimizing VaR are 

thoroughly described in the following section. 
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4. Methodology 

This section shows the methodology in estimating GPD parameters and simulating 

multivariate risk factors by applying Gaussian copula. The forecasted correlation 

matrix of the assets contained in the portfolio is presented in this chapter. The chapter 

begins with the preliminary data analysis, then the method of estimating GPD 

parameters and threshold selection are provided. Finally, estimating correlation matrix 

and generating random variables from the n-dimensional Gaussian copula are 

described systematically. 

4.1 Return calculation 

The first step is to calculate the log-returns of stock and futures by using daily close 

prices, which can be presented mathematically as; 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

−1,

,
, ln

ti

ti
ti P

P
x   (22) 

4.2 Preliminary data analysis 

The preliminary statistics are proceeded to test whether the log-returns follow normal 

distribution as assumed by traditional VaR method and if fat-tailness of log-return 

distribution is observed then it is satisfied to estimate VaR using Generalized Pareto 

Distribution. 

Jarque-Bera test 

Initially, I test whether the distribution of log-returns follows normal distribution by 

using the Jarque-bera test (JB test). JB test is a goodness-of-fit measure of departure 

from normality, based on the sample kurtosis and skewness. The test statistic JB is 

defined as 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
+=

4
)3(

6
    

2
2 KSNJB  (23) 

where S is the skewness, K is the kurtosis, and N is the number of observations. The 

statistic has an asymptotic chi-squared distribution with two degrees of freedom and 

can be used to test the null hypothesis that the data are from a normal distribution; 

since normal distribution have an expected skewness of 0 and an expected kurtosis of 
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3. If the probability value of the computed Chi-square statistic is sufficiently low and 

the JB statistic is higher than the Chi-square critical value, the null hypothesis that the 

series is normally distributed can be rejected. 

QQ Plots 

Quantile-Quantile (QQ) plot is used to testify whether the tail of the empirical 

distribution of the portfolio’s log-returns follow the normal distribution. QQ plots 

display the sample quantiles of empirical data versus theoretical quantiles from a 

normal distribution. When the distributions of log-returns are normal, the plot will be 

close to linear. If the empirical data are fat-tailed, the graph will show a curve to the 

top at the left end or the bottom at the right end. 

Let X1, ..., Xn be the succession of random variables i.i.d., and Xn,n < ... < X1,n be the 

sequence of random variable namely the order statistics. Fn(x) be the empirical 

distribution function. Note that a particular quantile of the empirical distribution is 

defined by Fn(Xk,n) = (n-k+1)/n and F is the estimated parametric distribution or 

normal distribution of the data.  

The graph of QQ plots can be defined by the following set of the points, 

 
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠

⎞
⎜
⎝

⎛ +−
= −

n
kn, FX  QQ Plots  k. n

11  (24) 

If the normal distribution model fits the data well, this graph will have a linear form. 

Thus, the graph makes it possible to compare various estimated models and choose the 

best. The more linear the QQ plot, the more appropriate the model in terms of 

goodness of fit. In this paper, fat-tail distribution is considered, the QQ plots, which 

QQ Plots of upward quantile are higher than the normal or the QQ Plots of downward 

quantile are lower than the normal distribution. 

4.3 Forecasted variance-covariance matrix 

To standardize historical return series and simulate log-returns X of the n risk factors 

during the time [t, t+1], the mean return vector μt+1 is usually assumed to be equal to 

zero. The elements of the nxn variance-covariance matrix Σt+1 are the forecasted 

variances and covariances among the n risk factor log-returns in time step [t, t+1].  

Analytically:  ][ 11 ++ =∑ i, j, tt σ , i, j = 1,…,n, where  2
11 ++ = i, i, ti, i, t σσ .  



 

17 

In the traditional risk management applications the variance-covariance matrix is 

forecasted by using the Exponentially Weighted Moving Averages (EWMA). 

Following this technique, the variance of risk factor i in time step (t,t+1) is: 

 2
1 ,

1

12
1 , )1( +−

=

−
+ ∑−= kti

N

k

k
ti x    λλσ , i = 1, ..., n (25) 

The covariance between risk factors i and j is the following: 

 11
1

1
1  1 ++

=

−
+ ∑−= j, t-ki, t-k

N

k

k
i, j , t xx)  (  σ λλ , i, j = 1, ..., n (26) 

where  λ = decay factor (in RiskMetrics, it is assumed λ = 0.94) 

 xi, t-k+1 = ln(Pi,t-k+1/Pi, t-k), k = 1, ..., n, log-return of asset i 

 N = total number of historical log-returns used in the estimation.  

Using the EWMA method the earlier data have a higher weight in the estimation of 

variances and covariance depending on the decay factor. The smaller the decay factor, 

the greater the weight given to recent events. If the decay factor is equal to one, the 

model reduces to an equally weighted. 

4.4 Estimating parameters 

To find the appropriate Generalized Pareto Distribution (GPD) of the log-returns 

distribution, the tail parameters (ξ), as well as the scaling parameter (β) have to be 

determined by fitting the GPD to the actual data. The Maximum Likelihood Estimation 

(MLE) can be applied with the following log-likelihood function; 
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βξ  (26) 

where Nu is the number of exceeding log-returns over threshold u, and xi is the log-

returns, which is exceed the threshold u. the parameters, ξ and β, can be estimated by 

using MATLAB 7.3.0 R2006b software3.  

                                                 
3  MATLAB software is developed and patented by MathWorks. (www.mathworks.com) 
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From the c.d.f. of GPD mentioned in section 3, the following marginal distributions 

used to simulate the risk factor standardized log-returns. 
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,   i = 1, ..., N (27) 

where Φ is the standardized normal c.d.f. L
uN  is the number of negative log-returns 

exceeding threshold -uL and R
uN  is the number of log-returns exceeding uR. 

In order to apply EVT correctly, the historical data have to be independent 

determinations sampled from a common c.d.f.. So, the variances estimated with 

EWMA are used for filtering data. Analytically: 

 
1 ,

1 ,
1 ,

+−

+−
+− =

jti

jti
jti

x
    z
σ

 , i = 1, ..., n; j = 1, 2, ..., N-74 (28) 

The number of standardized log-returns is N-74 since the 74 older observations are lost 

in the variance and covariance estimation4.  

Choice of threshold 

The EVT approach considers extreme observations exceeding a threshold that is high 

enough. The threshold selection is subject to the trade-off between variance and bias. 

When using a big amount of data (low threshold), the estimated tail index is more 

precise with less variance but biased because some observations from the center of the 

distribution, which is irrelevant to the tail analysis, are taken into account. On the other 

hand, using less data (high threshold), the volatility of the estimator is higher but is 

less biased.  

In order to estimate the threshold u, Clemente and Romano (2005) suggest the 

following steps; 

                                                 
4  In RiskMetrics, it is assumed N = 74, that means 74 historical data are used in the EWMA estimation 

procedure. 
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 Calculate the standardized normal c.d.f. of historical standardized log-returns. 

 Select the upper threshold R
iu  as the highest x that the standardized normal 

c.d.f. 
N

N
x

R
x−<Φ 1)(     , where R

xN  is the number of historical standardized log-

returns exceeding x. 

 The lower threshold L
iu  has been selected as the lowest x that the standardized 

normal c.d.f. 
N

N
x

L
x    >Φ )( , where L

xN  is the number of historical standardized 

negative log-returns exceeding -x. 

4.5 Simulation 

From the equation (19); 

 ))(..., ),((    )..., ,( 1
1

1
R1 nn

Ga
R xuuuC −−Φ= φφ  (19) 

where ΦR is the standard multivariate normal c.d.f. with linear correlation matrix R, its 

elements jjiiijijR ∑∑∑= , and φ -1 is the inverse of the standard univariate Gaussian 

c.d.f.  

To estimate the correlation matrix R of the Gaussian copula, this paper applies the 

following steps provided by Clemente and Romano (2005); 

 Transforming dataset of the standardized log-returns log-return of asset i, i = 

1,…,n, from equation (28) ) ..., ,( 1
t
n

t zz  t = 1,…,N into the univariate on [0,1], 

)ˆ,...,ˆ( 1
t
n

t xx , by using the marginal distribution in equation (27). 

 Use the inverse of c.d.f. for the standardized normal distribution to obtain the 

)}ˆ(),...,ˆ({    1
1

1 t
n

t
t xx −− ΦΦ=ς , t = 1,…,N. 

 Calculate R̂  based on the transformed dataset }{ tς , t = 1, 2, ..., N-74 using 

EWMA mentioned in (25) and (26). 

If the matrix R is positive definite, then there are some nxn matrix A such that R = 

AAT assuming that the random variables Z1, ..., Zn are independent standard normal. 

The random vector μ + AZ (where Z = (Z1, ..., Zn)T and the vector μ ∈ Rn) is 

multivariate normally distributed with mean vector μ and correlation matrix R. 
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The matrix A can be determined by the Cholesky decomposition of R. Then, random 

variable with with mean vector μ and correlation matrix R can be generated from n-

dimensional Gaussian copula by using the following algorithm: 

 Find the Cholesky matrix decomposition A of the matrix R, where R = AAT. 

 Simulate k independent standard normal random variables v = (v1,…,vk)T, v is 

a vector kx1. 

 Generate the random numbers w, that have the correlation related to estimated 

correlation matrix R, by setting w = Av. 

 Calculate the c.d.f. for the standardized normal distribution of wi, )( ii wp Φ= , i 

= 1,…,n. 

 For Monte-Carlo scenario, transform (p1,…,pn)T ~ Ga
RC  to daily log-return of n 

assets X, by using the inverse of the GPD distribution function.  

 Then, obtain ( )Tn
-

n
-T

n )(p),...,F(pF  ),z, (zz 1
1

1
11 =…= ; 
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 where i =1, ..., N 

 Then, rescale the standardized log-returns using square roots of the EWMA 

variances estimated by equation (25), x = (x1,…,xn)T = T
tnnt zz ),...,( 1 ,1 ,11 ++ σσ . 

 Then, the log-returns follow Gaussian Copula are already obtained.  

4.6 VaR calculation 

To describe the procedure of estimating portfolio 99% VaR over one-day horizon, 

assume the portfolio contains one position for each of the n assets. The portfolio at 

time t is; 

 ∑
=

=
n

i
tit PP

1
 ,     , where Pi,t = market price of asset i, i = 1,…,n, at time t. (30) 
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From simulated Gaussian Copula log-returns, I simulate s = 10,000 Monte-Carlo 

scenario for each asset log-returns, Rij, i = 1,…,n; j = 1,…,10,000, over the time 

horizon [t,t+1]. On time t+1, the portfolio will be revalued as; 

 { }ji
n

i
titj RPP  ,

1
 ,1 , exp∑

=
+ = , j = 1,…,10,000 (31) 

The portfolio losses in each scenario j can be explained as; 

 { }[ ] { }( )ji
n

i
ti

n

i
jitititjtj RPRPPPPL  ,

1
 ,

1
 , , ,1 , exp1    exp        −=−=−= ∑∑

==
+   , j = 1,…,10,000 (32) 

Therefore, to determine the 99% VaR from this distribution, ordering the 10,000 value 

of Lj in increasing order, the 99% VaR is the 9,900th ordered scenario. 

Finally, use Loss Function to compare Copula-EVT based VaR with the traditional 

approaches.  

4.7 Evaluating VaR performance 

To compare the predictability among VaR models and select the most accurate one, 

Lopez (1998) proposed a measure of relative performance that can be used to monitor 

the performance of VaR estimates. The general form of a loss function is  
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where 1 , +tmC  represents the numerical scores generated for individual VaR model m. 

The score for the complete regulatory sample is  

 ∑
=

+=
T

t
tmm C

T
C

1
1 ,

1   (34) 

The scores are constructed with a negative orientation, which low values of loss 

functions are preferred because it indicates the lower loss in risk management. The 

best VaR model is selected by comparing the expected score of complete regulatory. A 

model, which minimizes the expected loss, is preferred over the other models. 

In this paper, I apply following three criteria of loss function to evaluate the relative 

performance of various VaR forecasts. 
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(1) Binary Loss Function 

The loss function implied by the binomial method is 
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If a loss exceeding the VaR is observed, it is called “exception”. This approach is 

frequency known as “Backtesting”. The model simply considers with the number of 

exceptions rather than the magnitude of these exceptions. If a VaR model provides an 

accurate estimate, the summation of Cm, t+1 will equal to 0.01 multiply by no. of time 

windows (T) for the 99th percentile VaR. 

(2) Regulatory loss function (RLF) 

The regulatory loss function or magnitude loss function takes account of the magnitude 

of the exceptions when the failures of model occur. The loss function is defined by: 
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This model reflects the penalty due to the failure of a model. The score increases with 

the magnitude of exception and can provide the information on how the underlying 

VaR model underestimates the risk. However, it is impossible to perform the 

hypothesis testing because the distribution of loss function is unknown. 

(3) Firm’s loss function (FLF) 

For the firm, there is a conflict between the loss protection and the profit 

maximization. A VaR estimate, which produces “too high” values of VaR will lead to 

“too much” reserve capital, imposing the high opportunity cost to the firm. The FLF is 

defined as follows: 
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Where α represents the opportunity cost of capital. 
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Hypothesis Testing 

For significance testing, P. Kupiec (1995) proposes the analysis of exceptions (N) 

based on the observation (T). This approach presents the method to do the hypothesis 

testing, whether the no. of exceptions (N) is “too small” or “too large” under the null 

hypothesis: 

01.0    :0 =pH  

The log-likelihood ratio test statistic is given by: 

 ( )[ ] ( )[ ] ( ){ }NNTNNT
uc TNTNppLR / /1 ln2    1 ln2 −− −+−−=  (38) 

which is asymptotically distributed chi-square with one degree of freedom under the 

null hypothesis that p is true probability. Therefore, the null hypothesis can be rejected 

at the 95% confidence level if LR > 3.8415. In short, the VaR model would be accept, 

if LR < 3.8415. 

4.8 Hedging 

At this step, the VaR of portfolio of stocks traded in spot market or called unhedging 

portfolio is already known. The next step is to estimate VaR of hedged portfolio, 

which minimize risk exposure of unhedging portfolio by taking short position in 

futures, the return of hedge portfolio can be written by; FUH hR  R  R −=  as described 

in section 3. 

To estimate VaR of hedging portfolio, I repeat the steps to find the Copula-EVT based 

VaR as described above. Moreover, the futures are considered as the securities added 

in portfolio. 

Then use the numerical method to minimize the VaR of hedging portfolio by 

estimating the optimal amount of hedged futures or called optimal hedge ratio; 

 
{ }FU

h
hRRVaR −   min

 

Finally, compute the amount of risk reduction and return of hedging portfolio, and then 

compare with the minimum-variance hedge ratio. 
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5. Empirical Results 

In this section, the models described in section 4 are applied to estimate the 99% VaR 

over one-day investment horizon for a portfolio of stocks. The paper also compares the 

accuracy of Copula-EVT model and the Monte-Carlo Simulation based on multivariate 

normal distribution. The effectiveness of models is evaluated by performing loss 

functions and Kupiec’s testing. Moreover, the paper evaluates the effectiveness in risk 

reduction and return of portfolio hedged by Minimum-VaR Hedge Ratio comparing to 

the Minimum-Variance Hedge Ratio.    

The data set consists of daily closing prices of 29 stocks, which are listed in SET50 

before 1998, from January 1, 1998 to March 15, 2007 obtaining approximately 2,256 

observations for each series. The observed historical data is divided into 2 parts; time 

series of 1,521 observations from January 1, 2001 to March 15, 2007 are used to 

estimate relevant parameters and predicting VaR, and the remaining of 735 

observations from January 1, 1998 to December 31, 2000 are preserved for back-

testing procedure.    

For futures prices, since the futures market has been introduced in Thailand for only 11 

months from April 28, 2006, the observed historical prices are insufficient to satisfy 

the basic assumption of asymptotic properties of extreme value theory. Therefore, this 

paper applies the method of Cost of Carry model to estimate futures prices by using 

the closing prices of SET50 index from January 1, 2001 to March 15, 2007.   

5.1 Preliminary data analysis 

The preliminary statistics are proceeded to test the normality of log-returns as assumed 

by traditional VaR method and if fat-tailness of log-return distribution is observed then 

it is satisfied to estimate VaR using Generalized Pareto Distribution.  

Initially, the Jarque-bera (JB) test is applied to test the normality of log-return series. If 

the probability value of the computed chi-square statistic is sufficiently low and the JB 

statistic is higher than the chi-square critical value, one can reject the null hypothesis 

that the return series is normally distributed. The following table presents the summary 

of Jarque-Bera (JB) test of stocks’ log-return series; 
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Table 1:  Summary of Jarque-Bera (JB) test of normality 

 JB-stat P-Value   JB-stat P-Value   JB-stat P-Value
ADVANC 4,949.89 0.0000  HANA 1,075.61 0.0000  SCCC 1,785.65 0.0000 
ATC 2,089.82 0.0000 IRPC 5,139.75 0.0000 SCB 4,480.87 0.0000 
BBL 1,647.35 0.0000 ITD 4,666.70 0.0000 THAI 5,211.80 0.0000 
BECL 7,142.85 0.0000 KBANK 2,100.52 0.0000 TUF 626.36 0.0000 
BAY 2,931.40 0.0000 KTB 4,562.70 0.0000 TCAP 4,457.76 0.0000 
BANPU 2,967.67 0.0000 LH 397.33 0.0000 TISCO 1,252.44 0.0000 
BEC 5,956.38 0.0000 PTTEP 3,269.65 0.0000 TMB 7,591.46 0.0000 
CPF 4,932.65 0.0000 RCL 1,607.33 0.0000 TPIPL 3,549.47 0.0000 
DELTA 1,680.28 0.0000 SSI 2,274.88 0.0000 TRUE 3,704.55 0.0000 
EGCOMP 2,313.93 0.0000  SCC 912.42 0.0000       

 

According to the Table 1, it can be seen that the values of JB statistics are sufficiently 

high and the probability value are sufficiently low to reject the null hypothesis of 

normal distribution for all data series. As a result, the paper can conclude that the 

historical price of each asset deviate from the normal distribution.   

To estimate the tail distribution, Quantile-Quantile (QQ) plot is applied to test the 

normality of tail distribution. When the distributions of log-returns are normal, the plot 

will be close to linear. If the empirical data are fat-tailed, the QQ Plots of upward 

quantile are higher than the normal or the QQ Plots of downward quantile are lower 

than the normal distribution. Figure 1 presents the QQ Plot of each asset; 

Figure 1: QQ Plot of each asset vs. Standard Normal 
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The Figure 1 shows the deviation from the linear line, which indicates the non-

normality of all data series. The outward curve in the tails indicates the increased 

deviation from normality. At both upper tail and lower tail, the QQ Plots show the 

greater density in the sample data relative to the normal. This indicates that the 

quantiles of return series or the cumulative probabilities are concentrated at the tails of 

the distribution or called “fat-tail”. Therefore, it is justified to use these return series 

for estimating VaR by using Generalized Pareto Distribution. 

5.2 Estimating Parameters 

As described in section 4.4, in order to estimate the GPD parameters, the parameters of 

the marginal distribution in equation (27) are calibrated from the 1,446 standardized 

filtered data5 in equation (28), which are filtered by using the volatility estimated by 

EWMA approach. The tail parameters ξ and the scale parameters β have been 

estimated using only tail data by maximum likelihood method. In Table 2 and Table 3, 

the estimated parameters for the tails of the marginal distributions are shown.  

                                                 
5  1,446 = 1,520 – 74, where 74 historical data are used in the EWMA estimation procedure. 
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Table 2: Estimated GPD parameters and threshold return for the left tail of the 

marginal distribution 

 Threshold Tail Scale   Threshold Tail Scale 
 u ξ β 

NL/N 
   u ξ β 

NL/N 
 

ADVANC -2.006 0.368 0.579 0.022  LH -1.774 0.016 0.816 0.038
ATC -1.830 0.244 0.759 0.033  PTTEP -2.135 0.478 0.623 0.015
BBL -1.948 0.287 0.538 0.025  RCL -1.891 0.241 0.774 0.028
BECL -1.763 0.099 0.927 0.035  SSI -1.943 0.396 0.652 0.024
BAY -1.827 0.217 0.692 0.030  SCC -1.886 0.241 0.592 0.029
BANPU -1.901 0.189 0.767 0.026  SCCC -1.807 0.342 0.572 0.035
BEC -1.575 0.298 0.520 0.057  SCB -2.046 0.388 0.548 0.019
CPF -1.894 0.382 0.703 0.028  THAI -1.761 0.112 0.870 0.037
DELTA -1.796 0.226 0.885 0.035  TUF -1.731 0.031 0.768 0.042
EGCOMP -2.142 0.163 0.899 0.016  TCAP -1.919 0.277 0.708 0.026
HANA -1.835 0.233 0.708 0.033  TISCO -1.975 0.301 0.760 0.023
IRPC -2.090 0.614 0.545 0.018  TMB -1.983 0.416 0.641 0.023
ITD -2.054 0.253 0.955 0.019  TPIPL -2.198 0.000 1.293 0.014
KBANK -1.779 0.283 0.479 0.037  TRUE -1.733 0.300 0.582 0.042
KTB -2.187 0.309 1.053 0.014     

 

Table 3: Estimated GPD parameters and threshold return for the right tail of the 

marginal distribution 

 Threshold Tail Scale   Threshold Tail Scale 
 u ξ β 

Nu/N 
   u ξ β 

Nu/N 
 

ADVANC 1.400 -0.075 0.796 0.080  LH 1.307 -0.072 0.692 0.095
ATC 1.531 0.073 0.763 0.063  PTTEP 1.262 0.045 0.735 0.103
BBL 1.240 -0.064 0.722 0.107  RCL 1.163 -0.015 0.750 0.120
BECL 1.375 0.033 0.698 0.084  SSI 1.609 0.060 0.945 0.053
BAY 1.209 -0.134 0.797 0.113  SCC 1.099 0.017 0.712 0.132
BANPU 1.201 0.091 0.670 0.114  SCCC 1.402 -0.064 0.809 0.080
BEC 1.558 -0.208 0.999 0.060  SCB 1.094 -0.022 0.706 0.136
CPF 1.570 0.059 0.903 0.056  THAI 1.633 0.417 0.583 0.051
DELTA 1.717 0.109 0.770 0.041  TUF 1.193 -0.012 0.690 0.115
EGCOMP 1.384 -0.177 1.041 0.083  TCAP 1.448 -0.066 0.832 0.073
HANA 1.638 -0.124 1.099 0.051  TISCO 1.474 -0.216 1.011 0.069
IRPC 1.448 0.123 0.870 0.073  TMB 1.520 0.219 0.713 0.062
ITD 1.380 0.118 0.728 0.083  TPIPL 1.421 0.131 0.843 0.075
KBANK 1.361 -0.072 0.859 0.085  TRUE 1.666 0.089 0.885 0.046
KTB 1.364 0.144 0.668 0.086     

 

In Figure 2, the tail distributions of the standardized filtered negative log-returns of 29 

equities are plotted. These graphs show how the GPD fits the empirical distribution 

better than the standardized normal distribution. 
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Figure 2: The tail distributions of the standardized filtered negative log-returns of 29 

equities 
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5.3 VaR calculation 

To estimate 99% VaR over a one-day horizon, this paper assumes the portfolio, which 

contains one position for each of 29 equities. The portfolio value as of time t is: 

     ∑
=

=
29

1
 ,

i
tit PP  = 1,515.25 Baht 

where Pi,t is the market price of stock i at time t . 

Assume standing on March 15, 2007, I have simulated 10,000 Monte-Carlo scenarios 

for each asset log-returns over one-day time horizon based on the following 

distribution; 

1) multivariate normal distribution 

2) multivariate distribution with Gaussian Copula and EVT marginal distribution 

Then compute the portfolio value at time t+1 and express the 10,000 portfolio losses 

scenarios. Finally, I order the 10,000 values of portfolio losses from lowest to highest 

(the possible profits are considered as negative losses). The 99% VaR is the 9,900th 

ordered scenario. The portfolio 99% VaR estimated from two different log-return 

distributions is shown in Table 4. 

Table 4: Portfolio 99% VaR estimated assuming two different log-return distributions 

in value and percentage of maximum loss 

 Copula-EVT Multivariate Normal Confidence level  Baht % Baht % 
99%  -31.3868 -2.09 -33.701 -2.25 

VaR estimate for March 16, 2007  

Figure 3 : Portfolio profit and loss distribution based on GPD and normal distribution 
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Table 4 summarizes the VaR estimates from Copula-EVT and normal distribution 

approaches. The Copula-EVT estimation has produced the lower VaR forecast 

comparing to the normal distribution model. This result differs from other literatures 

which indicate that the Copula-EVT usually provides the higher absolute VaR 

estimates than the normality approach. However, this result can be explained by 

backtesting process. 

5.4 Evaluating VaR performance 

Table 4 shows that the Copula-EVT model has computed the lower VaR than the 

normal distribution model. However, the study performs backtesting over 735-days 

time window and the result shows that the Copula-EVT VaR (in absolute value) is 

usually higher than the multivariate normal VaR.  

Figure 4: 99% VaR estimation and effective portfolio return over the time window of 

735 days 
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Table 5:  Evaluating VaR performance  

Methods Copula-EVT Multivariate Normal
Binary loss function (Backtesting)   

- No. of exceptions  11 14 
- % of exceptions* 1.497% 1.905% 

Regulatory loss function (RLF) 64.878 68.253 
Firm's loss function (FLF)** 66.366 69.598 
Kupiec's LR 1.589*** 4.803 

Note: * For 99% confidence level, the good estimation should provide the percentage of exception close to 1%. 

 ** To estimate FLF, assume α = 3.49% per annum, which is an average of 1-year government bond yield over 

the time window of 735 days. 

 ***Accept null hypothesis that p = 0.01 at 95% confidence level (LR < 3.8415). 

Table 5 summarizes the value of three loss functions and Kupiec’s LR that estimated 

for 99% VaR. The backtesting result shows that the percentage of loss over the VaR 

based on Copula-EVT models are closer to the expected confidence level (1%) than 

the multivariate normal model. The Copula-EVT method provides the lower value for 

both RLF and FLF than the multivariate normal method. These lower values indicate 

that Copula-EVT produces lower economic losses, both for a regulator and for a risk 

manager. Moreover, the Copula-EVT provides a sufficient low value of Kupiec’s LR 

to accept the null hypothesis that p = 0.01. As a result, the Copula-EVT model is 

acceptable to estimate 99% while the multivariate normal method underestimates the 

probability of large losses. 

The interesting point is that after the “Black Tuesday”, December 19, 2006, the normal 

approach provides the higher VaR estimates than the Copula-EVT approach. However, 

due to the insufficient no. of observations, the study cannot conclude whether normal 

distribution provides overestimated VaR, or the Copula-EVT provides underestimated 

VaR after the extreme situation. 

5.5 Hedging Effectiveness 

The study provides the testing of hedging effectiveness comparing between Minimum 

Variance Hedge Ratio (MVHR) and Minimum VaR Hedge Ratio (minVaR) by 

applying the Copula-EVT VaR estimation. 

For SET50 index futures, since the SET50 index futures have been traded in the 

market for only 11 months, then the no. of observations are not sufficient to apply the 

EVT approach. Therefore, this paper uses the theoretical price of futures calculated by 
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Cost of Carry Model as the proxy of futures prices. The Table 6 shows the GPD 

parameters of tail distribution of SET50 index futures. 

Table 6: Estimated GPD parameters and threshold returns for the tails of the marginal 

distribution 
Left-tail Parameters Right-tail Parameters 

Threshold Tail Scale Threshold Tail Scale 
u ξ β 

NL/N 
u ξ β 

NU/N 

-2.0060 0.3677 0.5790 0.0221 -1.7737 0.0157 0.8163 0.0380 
 
Figure 5: QQ Plots of SET50 index futures vs. Standard Normal (left figure) and the 

tail distribution of negative log-returns of SET50 index futures (right figure) 

 

 

 

 

 

 

 

Applying the numerical technique described in section 4.6, I simulated 50 portfolios of 

29 stocks by randomize the weight of each assets in the portfolio (assume the total 

investment of Baht 1 million) to test the hedging effectiveness of two approaches.  

Figure 6: The effect of hedging with Minimum-Variance and Minimum-VaR hedging  
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Figure 6 shows the effect of hedging with minimize VaR of portfolio 11th, which has 

the highest reduction in VaR. Without hedging, the 99% portfolio VaR is Baht 

24,794.31. If portfolio risk manager decides to minimize VaR by taking short position 

in SET50 index futures, after hedging, the VaR is reduced by 65.07% to Baht 

8,661.47. As shown in the figure, both minimum-VaR and minimum-variance hedging 

narrow the distribution of portfolio returns and hedging does not change the mean of 

the distribution. However, the figure also shows that assessing the amount of the 

futures hedging strategy in terms of standard deviation is misleading, since the 

standard deviation does not fully describe the risk in the case of asymmetric return 

distributions and its kurtosis and skewness deviate from normal distribution. In short, 

when the returns are not normally distributed, to minimize variance will lead to a 

suboptimal risk of hedging portfolio.   



 

40 

Table 7:  Hedging effectiveness of Minimum-VaR hedge ratio vs. Minimum-Variance hedge ratio 

Hedge ratio   Standard deviation   VaR   Reduction in SD   Reduction in VaR Portfolio 
minVaR MVHR   Unhedged minVaR MVHR   Unhedged minVaR MVHR   minVaR MVHR   minVaR MVHR 

1    0.9860     1.0929   1.75% 0.55% 0.53%  30,170.62 11,796.67 12,632.84  68.57% 69.71%  60.90% 58.13% 
2    0.9826     1.0888   1.77% 0.62% 0.60%  30,278.18 12,054.76 12,495.63  64.97% 66.10%  60.19% 58.73% 
3    0.9285     1.0463   1.71% 0.61% 0.59%  29,500.70 12,936.59 13,333.52  64.33% 65.50%  56.15% 54.80% 
4    0.9050     1.0516   1.71% 0.62% 0.58%  28,774.87 11,766.15 12,164.71  63.74% 66.08%  59.11% 57.72% 
5    0.8463     0.9824   1.58% 0.52% 0.48%  26,558.08 10,558.52 11,693.65  67.09% 69.62%  60.24% 55.97% 
6    0.9038     1.0558   1.73% 0.66% 0.61%  29,898.35 13,616.88 13,881.87  61.85% 64.74%  54.46% 53.57% 
7    0.7858     0.9477   1.54% 0.58% 0.53%  25,237.71 10,609.04 11,792.93  62.34% 65.58%  57.96% 53.27% 
8    0.8539     0.9567   1.55% 0.53% 0.50%  24,281.50 9,415.76 10,793.30  65.81% 67.74%  61.22% 55.55% 
9    0.8488     0.9666   1.56% 0.54% 0.51%  26,477.05 12,215.47 13,065.03  65.38% 67.31%  53.86% 50.66% 

10    0.8269     0.9458   1.54% 0.55% 0.52%  25,510.66 11,346.10 12,436.86  64.29% 66.23%  55.52% 51.25% 
11    0.8410     0.9760   1.56% 0.49% 0.45%  24,794.31 8,661.47 10,228.76  68.59% 71.15%  65.07% 58.75% 
12    0.8786     1.0339   1.69% 0.63% 0.58%  28,170.50 12,078.45 12,810.49  62.72% 65.68%  57.12% 54.53% 
13    0.8650     1.0102   1.63% 0.55% 0.51%  26,474.96 10,033.79 11,115.66  66.26% 68.71%  62.10% 58.01% 
14    0.7772     0.9968   1.62% 0.65% 0.56%  24,381.08 10,521.72 12,613.73  59.88% 65.43%  56.84% 48.26% 
15    0.8315     0.9646   1.55% 0.51% 0.47%  25,259.16 10,427.17 11,787.23  67.10% 69.68%  58.72% 53.33% 
16    0.8830     1.0261   1.66% 0.59% 0.54%  27,768.26 12,278.77 13,102.74  64.46% 67.47%  55.78% 52.81% 
17    0.8907     1.0129   1.63% 0.55% 0.51%  27,293.04 10,832.50 11,397.56  66.26% 68.71%  60.31% 58.24% 
18    0.8528     1.0207   1.65% 0.58% 0.52%  27,971.40 11,956.00 12,827.34  64.85% 68.48%  57.26% 54.14% 
19    0.8576     0.9998   1.61% 0.55% 0.50%  26,866.94 10,172.38 10,979.07  65.84% 68.94%  62.14% 59.14% 
20    0.8572     0.9823   1.59% 0.55% 0.51%  28,457.06 12,616.32 12,990.08  65.41% 67.92%  55.67% 54.35% 
21    0.8148     0.9444   1.55% 0.60% 0.57%  24,928.15 10,286.89 11,258.60  61.29% 63.23%  58.73% 54.84% 
22    0.8298     0.9607   1.53% 0.46% 0.41%  24,459.63 8,966.39 10,482.98  69.93% 73.20%  63.34% 57.14% 
23    0.8602     0.9590   1.55% 0.53% 0.51%  25,868.53 10,939.11 11,604.67  65.81% 67.10%  57.71% 55.14% 
24    0.8244     0.9458   1.52% 0.49% 0.46%  26,735.98 11,138.70 11,903.02  67.76% 69.74%  58.34% 55.48% 
25    0.8913     1.0090   1.62% 0.54% 0.50%  27,826.43 11,410.39 11,885.78  66.67% 69.14%  58.99% 57.29% 
26    0.8559     1.0130   1.64% 0.58% 0.53%  25,507.45 9,819.12 11,450.00  64.63% 67.68%  61.50% 55.11% 
27    0.8780     1.0081   1.63% 0.56% 0.52%  27,689.47 12,264.85 13,175.91  65.64% 68.10%  55.71% 52.42% 
28    0.7643     0.9660   1.57% 0.62% 0.54%  23,433.44 8,906.03 10,857.03  60.51% 65.61%  61.99% 53.67% 
29    0.8169     0.9392   1.51% 0.48% 0.45%  24,502.67 8,587.58 9,707.96  68.21% 70.20%  64.95% 60.38% 
30    0.8060     0.9930   1.62% 0.63% 0.56%  27,358.98 11,700.10 12,813.70  61.11% 65.43%  57.23% 53.16% 
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Hedge ratio   Standard deviation   VaR   Reduction in SD   Reduction in VaR Portfolio 
minVaR MVHR   Unhedged minVaR MVHR   Unhedged minVaR MVHR   minVaR MVHR   minVaR MVHR 

31    0.8327     0.9876   1.58% 0.51% 0.45%  26,444.99 9,863.22 10,799.84  67.72% 71.52%  62.70% 59.16% 
32    0.8835     1.0378   1.67% 0.58% 0.53%  28,625.43 11,492.08 12,210.87  65.27% 68.26%  59.85% 57.34% 
33    0.8568     0.9973   1.59% 0.51% 0.46%  28,010.53 10,875.57 11,615.72  67.92% 71.07%  61.17% 58.53% 
34    0.9150     1.0124   1.64% 0.56% 0.54%  28,210.91 11,957.71 12,576.64  65.85% 67.07%  57.61% 55.42% 
35    0.8752     0.9742   1.57% 0.53% 0.51%  28,243.95 10,527.89 10,759.23  66.24% 67.52%  62.73% 61.91% 
36    0.8913     1.0367   1.68% 0.58% 0.54%  27,159.37 10,530.13 11,496.98  65.48% 67.86%  61.23% 57.67% 
37    0.9489     1.0128   1.62% 0.48% 0.47%  28,049.22 9,929.71 10,518.35  70.37% 70.99%  64.60% 62.50% 
38    0.8988     1.0054   1.62% 0.53% 0.51%  27,211.13 9,559.12 10,450.00  67.28% 68.52%  64.87% 61.60% 
39    0.8544     1.0395   1.68% 0.60% 0.53%  27,811.49 11,287.88 12,271.85  64.29% 68.45%  59.41% 55.87% 
40    0.8698     0.9825   1.58% 0.51% 0.48%  26,811.24 10,772.32 11,906.71  67.72% 69.62%  59.82% 55.59% 
41    0.8431     1.0082   1.65% 0.63% 0.58%  26,645.67 11,618.71 12,562.69  61.82% 64.85%  56.40% 52.85% 
42    0.7928     0.9642   1.57% 0.59% 0.53%  25,424.18 10,445.98 11,419.57  62.42% 66.24%  58.91% 55.08% 
43    0.7983     0.9664   1.57% 0.57% 0.51%  25,383.57 10,814.90 12,053.40  63.69% 67.52%  57.39% 52.51% 
44    0.8138     0.9562   1.54% 0.53% 0.48%  24,508.34 9,485.47 10,712.68  65.58% 68.83%  61.30% 56.29% 
45    0.8024     0.9563   1.55% 0.57% 0.52%  24,907.87 10,656.25 11,948.92  63.23% 66.45%  57.22% 52.03% 
46    0.8979     0.9579   1.56% 0.53% 0.52%  27,432.44 11,985.69 12,071.16  66.03% 66.67%  56.31% 56.00% 
47    0.9743     1.0259   1.66% 0.54% 0.53%  28,814.89 10,976.25 11,401.47  67.47% 68.07%  61.91% 60.43% 
48    0.9411     1.0403   1.67% 0.52% 0.50%  30,311.27 12,587.57 13,094.41  68.86% 70.06%  58.47% 56.80% 
49    0.8223     0.9504   1.54% 0.54% 0.51%  26,317.90 9,845.78 10,676.02  64.94% 66.88%  62.59% 59.43% 
50    0.8545     0.9834   1.57% 0.50% 0.46%  26,821.70 10,492.13 11,208.33  68.15% 70.70%  60.88% 58.21% 

                 
Average    0.8622     0.9958   1.61% 0.56% 0.52%     26,911.63    10,912.36    11,820.75  65.43% 67.95%  59.49% 56.02% 

                                  
 

Table 7 shows that the minVaR hedge ratios are considerably smaller than MVHR, suggesting that the smaller short positions in futures are 

required to minimize VaR than to minimize variance of portfolio. Although the minVaR portfolios have the standard deviation that is a bit higher 

than the MVHR portfolios, the minVaR hedging provides the larger reduction in VaR compared with MVHR hedging. However, since the returns 

of assets do not follow the normal distribution, the standard deviation is theoretically not sufficient to explain the risks of the assets. 
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Table 8: Actual return of hedging portfolios by Minimum-VaR hedge strategy and 

Minimum-Variance hedge strategy 

Note:  Actual returns for 1-day, 15-day, 30-day, 45-day, and 60-day are calculated from that actual price of assets 
on March 16, March 30, April 17, April 30, and May 15, 2007 respectively. 

 1-day  15-day 30-day 45-day  60-dayNo.  MinVaR MVHR  MinVaR MVHR MinVaR MVHR MinVaR MVHR  MinVaR MVHR
1  0.79%  0.87%   0.23%  0.25% 0.90% 0.54% 0.32% (0.10%)  1.74%  1.08% 
2  0.44%  0.51%   0.34%  0.35% 1.30% 0.95% 0.81% 0.40%   0.79%  0.13% 
3  0.65%  0.73%   0.15%  0.16% 0.49% 0.10% (0.39%) (0.85%)  1.61%  0.89% 
4  0.41%  0.51%   0.89%  0.91% 1.87% 1.39% 1.19% 0.62%   1.64%  0.74% 
5  0.27%  0.36%   1.18%  1.19% 1.46% 1.01% 0.99% 0.46%   1.52%  0.68% 
6  0.54%  0.64%   0.28%  0.30% 0.82% 0.32% 0.29% (0.31%)  0.96%  0.02% 
7  0.65%  0.76%   1.13%  1.15% 1.44% 0.90% 1.20% 0.57%   2.38%  1.38% 
8  0.27%  0.34%   0.46%  0.48% 0.87% 0.53% 0.45% 0.04%   0.42%  (0.21%)
9  0.36%  0.44%   0.84%  0.86% 1.18% 0.79% (0.60%) (1.06%)  (0.91%) (1.64%)

10  0.09%  0.17%   0.85%  0.87% 1.04% 0.65% (0.07%) (0.54%)  (1.00%) (1.73%)
11  0.28%  0.38%   0.59%  0.61% 1.23% 0.78% 0.26% (0.26%)  (0.08%) (0.91%)
12  0.42%  0.53%   1.28%  1.30% 1.82% 1.31% 0.45% (0.15%)  0.49%  (0.47%)
13  0.06%  0.16%   (0.20%) (0.18%) 0.78% 0.30% 0.63% 0.07%   1.26%  0.36% 
14  0.32%  0.47%   1.00%  1.03% 1.68% 0.95% 1.39% 0.53%   1.05%  (0.30%)
15  0.10%  0.19%   1.13%  1.15% 1.95% 1.51% 1.40% 0.88%   0.90%  0.08% 
16  0.57%  0.66%   0.19%  0.21% 1.18% 0.71% 0.43% (0.13%)  1.00%  0.12% 
17  0.25%  0.34%   0.16%  0.18% 0.92% 0.51% 1.12% 0.65%   2.45%  1.70% 
18  0.54%  0.65%   0.54%  0.56% 1.39% 0.84% (0.04%) (0.70%)  0.66%  (0.38%)
19  0.27%  0.37%   0.53%  0.55% 1.36% 0.89% 0.96% 0.40%   1.91%  1.03% 
20  0.12%  0.21%   1.01%  1.02% 1.18% 0.77% 0.40% (0.09%)  0.45%  (0.32%)
21  0.63%  0.72%   (0.06%) (0.04%) 0.86% 0.43% 0.69% 0.18%   2.36%  1.56% 
22  0.38%  0.47%   0.92%  0.93% 1.41% 0.98% 0.50% (0.01%)  (0.66%) (1.46%)
23  0.32%  0.38%   (0.05%) (0.04%) 0.68% 0.35% 0.40% 0.02%   1.16%  0.56% 
24  0.23%  0.31%   0.98%  0.99% 1.11% 0.70% (0.25%) (0.72%)  (0.55%) (1.30%)
25  0.23%  0.31%   1.40%  1.42% 2.21% 1.82% 1.29% 0.84%   1.73%  1.00% 
26  0.22%  0.33%   (0.37%) (0.35%) 0.33% (0.19%) 0.40% (0.21%)  0.67%  (0.30%)
27  0.28%  0.37%   0.10%  0.12% 1.18% 0.74% (0.01%) (0.52%)  0.33%  (0.47%)
28  0.25%  0.39%   (0.31%) (0.28%) 1.09% 0.43% 0.98% 0.19%   1.58%  0.34% 
29  0.00%  0.08%   0.45%  0.47% 1.01% 0.60% 0.42% (0.05%)  0.43%  (0.32%)
30  (0.03%) 0.10%   1.17%  1.19% 2.22% 1.60% 1.15% 0.42%   0.17%  (0.98%)
31  0.49%  0.59%   0.25%  0.27% 0.44% (0.08%) 0.33% (0.28%)  2.06%  1.10% 
32  0.40%  0.51%   0.76%  0.78% 1.56% 1.05% 1.53% 0.93%   2.62%  1.67% 
33  0.39%  0.48%   1.20%  1.22% 1.62% 1.15% 1.10% 0.56%   1.92%  1.05% 
34  0.23%  0.30%   0.63%  0.64% 1.07% 0.75% 0.56% 0.18%   1.65%  1.05% 
35  0.43%  0.49%   1.25%  1.26% 1.32% 0.99% 1.07% 0.68%   2.56%  1.95% 
36  0.57%  0.67%   0.49%  0.50% 1.19% 0.70% 0.06% (0.50%)  0.10%  (0.79%)
37  0.34%  0.38%   0.30%  0.31% 0.75% 0.54% (0.32%) (0.57%)  0.37%  (0.03%)
38  0.32%  0.39%   1.38%  1.39% 1.94% 1.59% 1.46% 1.04%   1.52%  0.86% 
39  0.12%  0.24%   0.86%  0.88% 1.73% 1.12% 1.27% 0.55%   1.19%  0.05% 
40  0.17%  0.24%   0.84%  0.86% 1.08% 0.71% 0.71% 0.27%   0.72%  0.02% 
41  0.05%  0.16%   0.44%  0.46% 0.70% 0.15% 0.79% 0.15%   0.66%  (0.35%)
42  0.38%  0.49%   0.60%  0.63% 1.11% 0.54% 0.71% 0.05%   1.12%  0.06% 
43  0.08%  0.19%   1.43%  1.45% 1.78% 1.22% 1.75% 1.09%   0.86%  (0.18%)
44  0.09%  0.18%   0.33%  0.35% 0.59% 0.11% 0.19% (0.36%)  (0.44%) (1.32%)
45  (0.01%) 0.10%   1.49%  1.51% 2.00% 1.49% 0.98% 0.38%   0.65%  (0.30%)
46  0.36%  0.40%   0.60%  0.61% 0.99% 0.79% 0.15% (0.08%)  1.51%  1.14% 
47  0.21%  0.25%   0.98%  0.98% 1.16% 0.98% 1.12% 0.92%   1.62%  1.30% 
48  0.35%  0.42%   0.94%  0.95% 1.33% 1.00% 0.16% (0.22%)  0.57%  (0.04%)
49  0.35%  0.44%   1.28%  1.29% 1.53% 1.10% 1.91% 1.41%   2.38%  1.59% 
50  0.21%  0.29%   1.21%  1.23% 1.54% 1.11% 0.79% 0.29%   1.08%  0.28% 

Avg.  0.31%  0.40%  0.68%  0.70% 1.25% 0.80% 0.66% 0.14%   1.02%  0.20% 
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Table 8 presents the actual returns of hedging portfolio for 1-day, 15-day, 30-day, 45-

day, and 60-day investment horizons comparing between minimum-VaR and 

minimum-variance hedge ratio. For 1-day and 15-day holding period, returns of 

minimum-variance hedging portfolio are a bit higher than the minimum-VaR hedging 

portfolio, however, the risk of portfolios are also higher. For longer investment 

horizons, which are 30-day, 45-day, and 60-day, at lower level of risk, minimum-VaR 

hedging portfolios provide the higher return than the minimum-variance hedging 

portfolios. As a result, by applying the minimum-VaR hedging strategy, the hedging 

performance can be improved both for risk reduction and return maximization 

purposes. 
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6. Conclusion 

The empirical evidence shows that the log-returns of stocks do not follow multivariate 

normal distribution as assumed in the traditional risk measurement models. The log-

returns of stocks has ticker tail than normal or called “fat-tail”. This paper applies the 

Copula-EVT to simulate 10,000 scenarios of portfolio log-returns based on 

multivariate distribution with Gaussian Copula and Extreme Value Theory marginal 

distribution. Moreover, the paper proposes the method of Minimum-VaR hedging 

strategy to estimate no. of short position in derivatives required to minimize risk of 

portfolio. 

The study has estimated 99% VaR for a portfolio of 29 Thai equities by assuming asset 

log-returns follow EVT distribution with Gaussian Copula and multivariate normal 

distribution. I estimates 99% portfolio VaR over one-day horizon by using daily data 

of stock price series over 6 years time window. To test the accuracy of VaR estimates, 

the paper performs backtest over 735 days time window, and performs various forms 

of loss functions including binary loss function, regulatory loss function (RLF), and 

firm’s loss function (FLF) to compare the performance of VaR estimations. In 

addition, I do the Kupiec’s hypothesis testing, whether the no. of exceptions are 

acceptable under desired probability. The empirical study shows that the Copula-EVT 

outperforms the multivariate normal model. The backtesting result indicates the 

percentage of exceptions of Copula-EVT is closer to the confidence level 1% than the 

one of traditional model. The Copula-EVT model provides lower values of loss 

function for both RLF and FLF, which indicate that this model produces lower 

economic losses comparing to the normal one. The Kupiec’s test shows that the 

Copula-EVT model is acceptable to estimate 99% while the multivariate normal 

method underestimates the probability of large losses. 

For hedging purpose, I construct random 50 portfolios of 29 Thai equities, and then 

estimate hedge ratio from both minimum variance hedge and minimum VaR hedge 

strategies. To compare hedging effectiveness, I compute the percentage of reduction in 

standard deviation and 99% VaR of hedging portfolio. The result shows that the 

minimum-VaR hedging provides the higher percentage of reduction in VaR by taking 

smaller short position in futures than the minimum variance hedge strategy. 
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Appendix A1: Sample Equities 
 

Ticker Name 

ADVANC Advanced Info Service Public Company Limited 

ATC Aromatics Thailand Public Company Limited 

BBL Bangkok Bank Public Company Limited 

BECL Bangkok Expressway Public Company Limited 

BAY Bank of Ayudhya Public Company Limited 

BANPU Banpu Public Company Limited 

BEC BEC World Public Company Limited 

CPF Charoen Pokphand Foods Public Company Limited 

DELTA Delta Electronics Thai Public Company Limited 

EGCOMP Electricity Generating Public Company Limited 

HANA Hana Microelectronics Public Company Limited  

IRPC IRPC Public Company Limited 

ITD Italian-Thai Development Public Company Limited 

KBANK Kasikornbank Public Company Limited 

KTB Krung Thai Bank Public Company Limited 

LH Land and Houses Public Company Limited 

PTTEP PTT Exploration & Production Public Company Limited 

RCL Regional Container Lines Public Company Limited 

SSI Sahaviriya Steel Industries Public Company Limited 

SCC Siam Cement Public Company Limited 

SCCC Siam City Cement Public Company Limited 

SCB Siam Commercial Bank Public Company Limited 

THAI Thai Airways International Public Company Limited 

TUF Thai Union Frozen Products Public Company Limited 

TCAP Thanachart Capital Public Company Limited 

TISCO Tisco Bank Public Company Limited 

TMB TMB Bank Public Company Limited 

TPIPL TPI Polene Public Company Limited 

TRUE True Corp Public Company Limited 
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