
Chapter 3

Main results

This chapter is the main goal of this thesis which contains the following sections:

3.1 Deterministic coincidence and common fixed points.

3.1.1 Coincidence and common fixed points for generalized I-contraction

mappings.

3.1.2 Coincidence and common fixed points for generalized I-nonexpansive

mappings.

3.1.2 Invariant Approximations.

3.2 Random coincidence and common random fixed points.

3.2.1 Random coincidence points.

3.2.2 Common random fixed points.

In section 3.1.1 we will introduce property (W.P.) and property (W.P.)∗

which generalizes many conditions of existence of fixed point, coincidence point, and

common fixed point in several works and theorems (see [1], [2], [22], [23], [24], [29],

[30], [32], [40], [41], [47], [59], [60], [61], [63], [64]).
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Also we establish some coincidence and common fixed points theorems for

generalized I-contraction multivalued mappings without assumption that I is T -

weakly commuting. Afterward we give some examples with support above para-

graph.

In section 3.1.2 we will use property (W.P.) and property (W.P.)∗ es-

tablish some coincidence point and common fixed point for generalized I-nonexpansive

multivalued mappings without assumption that I is T -weakly commuting.

In section 3.1.3 we will derive invariant approximations on generalized I-

nonexpansive multivalued mapping by apply our theorems in before section.

In section 3.2 we will finish this chapter by extending theorems in section 3.1

to random version. The existence of coincidence point and common fixed point on

generalized I-nonexpansive multivalued mapping extended to random coincidence

point and common random fixed point on random operator mapping.

3.1 Deterministic coincidence and common fixed

points

3.1.1 Coincidence and common fixed points for generalized

I-contraction mappings

In 2007 Al-Thagafi and Shahzad [1] establish coincidence point and com-

mon fixed points theorems under generalized I-contraction mapping (see Theorem

2.3.42). In this section we introduce new property and establish new coincidence

points and common fix points theorem which generalizes Theorem 2.3.42 and many

theorems (see [2], [22], [23], [24], [29], [30], [32], [40], [41], [47], [59], [60], [61], [63],

[64]). Now we begin with the following definition.
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Definition 3.1.1. Let D be a nonempty set and let I : D → D, T : D → CL(D).

The mappings I and T are said to satisfy the property (W.P.) on D if there

exists a sequence {xn} in D, some u ∈ D and A ∈ CL(D) such that

lim
n→∞

Ixn = Iu ∈ A = lim
n→∞

Txn.

Definition 3.1.2. Let D be a nonempty set and T : D → CL(D).

The mapping T is said to satisfy the property (W.P.)∗ on D if there exists a

sequence {xn} in D, some u ∈ D and A ∈ CL(D) such that

lim
n→∞

xn = u ∈ A = lim
n→∞

Txn.

Lemma 3.1.3. Let D be a metric space and T : D → CL(D). If I : D → D is

an identity mapping and T satisfy the property (W.P.)∗ on D, then I and T satisfy

the property (W.P.) on D.

Proof. Let I : D → D be an identity mapping and T satisfy the property (W.P.)∗.

Then there exists a sequence {xn} in D, some u ∈ D and A ∈ CL(D) such that

lim
n→∞

xn = u ∈ A = lim
n→∞

Txn.

Since Iu = u,

lim
n→∞

Ixn = u = Iu ∈ A = lim
n→∞

Txn.

Thus I and T satisfy the property (W.P.).

Example 3.1.4. Let D = [0,∞). Define I : D → D and T : D → CL(D) by

Ix = x
4

and Tx = {3x
4
} for all x ∈ D.

Consider the sequence {xn} = { 1
n
}.

Since lim
n→∞

Ixn = 0 = I0 and lim
n→∞

Txn = {0}, lim
n→∞

Ixn = I0 ∈ {0} = lim
n→∞

Txn.

Therefore I and T satisfy the property (W.P.).
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Example 3.1.5. Let D = [0,∞). Define I : D → D and T : D → CL(D) by

Ix = x+ 1 and Tx = [0, x+ 2] for all x ∈ D.

Consider the sequence {xn} = { 1
n
}.

Since lim
n→∞

Ixn = 1 = I0 and lim
n→∞

Txn = [0, 2], lim
n→∞

Ixn = I0 ∈ [0, 2] = lim
n→∞

Txn.

Therefore I and T satisfy the property (W.P.).

Example 3.1.6. Let D = [−1, 1]. Define I : D → D and T : D → CL(D) by

Ix = x2 and Tx = [(x
4
)2, 1] for all x ∈ D.

Consider the sequence {xn} = {1− 1
n
}.

Since lim
n→∞

Ixn = 1 = I1 and lim
n→∞

Txn = {1}, lim
n→∞

Ixn = I1 ∈ {1} = lim
n→∞

Txn.

Therefore I and T satisfy the property (W.P.).

Let D be a nonempty subset of a metric space (X, d) and let I : D → D,

T : D → CL(D). Throughout this section we let ϕI,T (x, y) stand for

max
{
d(Ix, Iy), d(Ix, Tx), d(Iy, Ty), 1

2
[d(Ix, Ty) + d(Iy, Tx)]

}
, for every x, y ∈ D.

If I is the identity mapping of D, ϕI,T (x, y) will be denoted by ϕT (x, y). Next we

again give definition of generalized I-contraction and generalized contraction.

Definition 3.1.7. Let D be a nonempty set and I : D → D, T : D → CL(D).

1. T is a generalized I-contraction on D if

H(Tx, Ty) ≤ kϕI,T (x, y) for all x, y ∈ D and for some k ∈ [0, 1).

2. T is a generalized contraction on D if

H(Tx, Ty) ≤ kϕT (x, y) for all x, y ∈ D and for some k ∈ [0, 1).

Lemma 3.1.8. Let D be a nonempty subset of a metric space (X, d) and let I :

D → D, T : D → CL(D). If T is a generalized I-contraction, T (D) ⊆ I(D), and

T (D) is complete, then I and T satisfy the property (W.P.).
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Proof. Let x0 ∈ D. As T (D) ⊆ T (D) ⊆ I(D), we construct a sequence {xn} in

D such that Ixn ∈ Txn−1 ⊆ T (D) for all n ≥ 1. We conclude, as in Theorem 2.1

[1], that {Ixn} is a Cauchy sequence in T (D). It follows from the completeness of

T (D) that Ixn → z ∈ T (D) ⊆ I(D) where z = Iu for some u ∈ D. So there exists

a sequence {xn} in D, such that

z = lim
n→∞

Ixn = Iu ∈ lim
n→∞

Txn ∈ CL(D).

Thus I and T satisfy the property (W.P.).

Now we obtain our first theorem in this section.

Theorem 3.1.9. Let D be a nonempty subset of a metric space (X, d) and let

I : D → D, T : D → CL(D), and I and T satisfy the property (W.P.) on D. If T

is a generalized I-contraction on D, then C(I, T ) 6= ∅. Moreover, if IIv = Iv for

some v ∈ C(I, T ), then F (I, T ) 6= ∅.

Proof. Since I and T satisfy the property (W.P.), there exists a sequence {xn} in

D, some u ∈ D and A ∈ CL(D) such that

lim
n→∞

Ixn = Iu ∈ A = lim
n→∞

Txn.

Note that, for every n ≥ 1, we have

H(Txn, Tu) ≤ k ϕI,T (xn, u)

= k max{d(Ixn, Iu), d(Ixn, Txn), d(Iu, Tu),

1

2
[d(Ixn, Tu) + d(Iu, Txn)]}.

By letting n→∞, we have H(A, Tu) ≤ k d(Iu, Tu).

It follows from d(Iu, Tu) ≤ H(A, Tu) ≤ k d(Iu, Tu) that Iu ∈ Tu. Hence C(I, T )

is nonempty.
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Since there exists v ∈ C(I, T ) such that IIv = Iv.

We let t := Iv. Thus t = Iv = IIv = It ∈ Tv. It follows that

d(t, T t) ≤ H(Tv, T t)

≤ k ϕI,T (v, t)

= k max{d(Iv, It), d(Iv, Tv), d(It, T t), 1
2
[d(Iv, T t) + d(It, Tv)]}

= k max{d(t, t), d(t, Tv), d(t, T t), 1
2
[d(t, T t) + d(t, Tv)]}

= k d(t, T t).

Then t ∈ Tt and so t = It ∈ Tt. Hence F (I, T ) 6= ∅.

Remark 3.1.10. Theorem 3.1.9 generalizes and extends the Banach Contraction

Principle, Nadler’s Contraction Principle [47], Theorem 2.4 of Daffer and Kaneko

[22], and Theorem 2.1 of Al-Thagafi and Shahzad [1].

The following example is example of the mappings which satisfy Theorem

3.1.9.

Example 3.1.11. Let D = [0, 1) be the usual metric space. Define I : D → D and

T : D → CL(D) by Ix = x
2

and Tx = [0, x
4
] for all x ∈ D.

(1) Consider the sequence {xn} = { 1
n
} inD. Since lim

n→∞
Ixn = 0, I0 = 0, lim

n→∞
Txn =

{0}, and 0 ∈ {0}. Therefore I and T satisfy the property (W.P.) for the

sequence {xn} = { 1
n
}.
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(2) For each x, y ∈ D,

H(Tx, Ty) = H([0,
x

4
], [0,

y

4
])

= d(
x

4
,
y

4
)

=
1

2
d(
x

2
,
y

2
)

=
1

2
d(Ix, Iy)

=
1

2
max{d(Ix, Iy), d(Ix, Tx), d(Iy, Ty),

1

2
[d(Ix, Ty) + d(Iy, Tx)]}

≤ 1

2
ϕI,T (x, y).

Thus T is a generalized I-contraction.

(3) It follow from II0 = I0 and C(I, T ) = {0} that IIv = Iv for some v ∈ C(I, T ).

Since (1), (2), and (3) are true, all hypotheses of Theorem 3.1.9 are satisfied. Thus

T and I have a common fixed point which is 0 because 0 = I0 ∈ T0.

The next example is example which support that Theorem 3.1.9 generalized

Theorem 2.1 of Al-Thagafi and Shahzad [1].

Example 3.1.12. Let D = (−1, 1] be the usual metric space. Define I : D → D

and T : D → CL(D) by Ix = x2 and Tx = [x2

2
− 1

2
, 1] for all x ∈ D.

(1) Since T (D) = [−0.5, 1] and I(D) = [0, 1], T (D) * I(D).

(2) Consider the sequence {xn} = {1 − 1
n
} in D. Since lim

n→∞
Ixn = 1, I1 = 1,

lim
n→∞

Txn = [0, 1], and 1 ∈ [0, 1]. Therefore I and T satisfy the property

(W.P.) for the sequence {xn} = {1− 1
n
}.
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(3) For each x, y ∈ D,

H(Tx, Ty) = H([
x2

2
− 1

2
, 1], [

y2

2
− 1

2
, 1])

= d(
x2

2
− 1

2
,
y2

2
− 1

2
)

= d(
x2

2
,
y2

2
)

=
1

2
d(x2, y2)

=
1

2
d(Ix, Iy)

≤ 1

2
max{d(Ix, Iy), d(Ix, Tx), d(Iy, Ty),

1

2
[d(Ix, Ty) + d(Iy, Tx)]}

≤ 1

2
ϕI,T (x, y).

Thus T is a generalized I-contraction.

(4) It follows from II0 = I0 and C(I, T ) = {0} that IIv = Iv for some v ∈ C(I, T ).

Since (1) is true, Theorem 2.1 of M.A. Al-Thagafi and Shahzad [1] cannot be used.

But (2), (3), and (4) are true, so all hypotheses of Theorem 3.1.9 are satisfied. Thus

T and I have a common fixed point which is 0 because 0 = I0 ∈ T0.

Corollary 3.1.13. Let D be a nonempty subset of a metric space (X, d) and let T :

D → CL(D), T satisfies the property (W.P.)∗ on D. If T is generalized contraction

on D, then F (T ) 6= ∅.

Proof. Let I : D → D be the identity mapping. Since I is the identity mapping

and T satisfies the property (W.P.)∗. By Lemma 3.1.3 I and T satisfy the property

(W.P.), IIv = Iv for all v ∈ D. Thus IIv = Iv for some v ∈ C(I, T ). It follows

from Theorem 3.1.9 that F (I, T ) 6= ∅. Hence F (T ) 6= ∅.

Corollary 3.1.14. Let D be a nonempty subset of a metric space (X,d). I : D → D,

T : D → CL(D), T (D) ⊆ I(D), and T (D) complete. Suppose that T is generalized
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I-contraction on D. Then C(I, T ) 6= ∅. Moreover, if IIv=Iv for some v ∈ C(I, T ),

then F (I, T ) 6= ∅.

Proof. Since Lemma 3.1.8, I and T satisfy property (W.P.) on D. As in the prove

of theorem 3.1.

Remark 3.1.15. Corollary 3.1.14 generalizes Banach Contraction Principle, Nadler’s

Contraction Principle [47], Theorem 2.4 of Daffer and Kaneko [22], and Corollary

2.2 of Al-Thagafi and Shahzad [1].

3.1.2 Coincidence and common fixed points for generalized

I-nonexpansive mappings

In 2006 Shahzad and Hussain [61] established coincidence point and common

fixed points theorems under I-nonexpansive mappings (see [61]). In this section we

define generalized I-nonexpansive and generalized nonexpansive mappings. Also

we use property (W.P.) and (W.P.)∗ establish new coincidence points and common

fixed points theorems which generalizes Theorems of Shahzad and Hussain [61] and

Jungck [29]. Now we begin with the following definition.

Definition 3.1.16. Let D be a nonempty subset of a normed space X and let

I : D → D, T : D → CL(D). For every x, y ∈ D, we define

ψI,T (x, y) := max{‖Ix− Iy‖ , 1
2
[d(Ix, Tx) + d(Iy, Ty)], 1

2
[d(Ix, Ty) + d(Iy, Tx)]}.

If I is the identity mapping of D, ψI,T (x, y) will be denoted by ψT (x, y) respectively.

Then

1. T is generalized I-nonexpansive on D if

H(Tx, Ty) ≤ ψI,T (x, y) for all x, y ∈ D.
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2. T is generalized nonexpansive on D if

H(Tx, Ty) ≤ ψT (x, y) for all x, y ∈ D.

Definition 3.1.17 ([1]). Let D be a nonempty subset of a normed space X, I :

D → D, and T : D → CL(D).

1. The pair (I, T ) satisfies the coincidence point condition (in short, CPC )

on A ∈ CL(D) if whenever {xn} is a sequence in A such that d(Ixn, Txn) → 0,

we have Iz ∈ Tz for some z ∈ A.

2. The map T satisfies the fixed point condition (for short, FPC ) on A ∈

CL(D) if whenever {xn} is a sequence in A such that d(xn, Txn) → 0, we

have z ∈ Tz for some z ∈ A.

Theorem 3.1.18. Let D be a nonempty subset of a normed space X. Let I : D → D,

T : D → CL(D), I and T satisfy the property (W.P.) on D, and the pair (I,T)

satisfies the CPC on D. If T is a generalized I-nonexpansive on D, then C(I, T ) 6= ∅.

Moreover, if IIv=Iv for some v ∈ C(I, T ), then F (I, T ) 6= ∅.

Proof. Since I and T satisfy the property (W.P.), there exists a sequence {xn} in

D, some u ∈ D and A ∈ CL(D) such that

lim
n→∞

Ixn = Iu ∈ A = lim
n→∞

Txn.

Thus d(Ixn, Txn) → 0. As the pair (I, T ) satisfies the CPC on D, there exists

w ∈ D such that Iw ∈ Tw. Therefore, C(I, T ) 6= ∅.

Since there exists v ∈ C(I, T ) such that IIv = Iv.
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Let t := Iv. Thus t = Iv = IIv = It ∈ Tv. It follows that

d(t, T t) ≤ H(Tv, T t)

≤ ψI,T (v, t)

= max{d(Iv, It), 1
2
[d(Iv, Tv) + d(It, T t)],

1

2
[d(Iv, T t) + d(It, Tv)]}

= max{d(t, t), 1
2
[d(t, Tv) + d(t, T t)],

1

2
[d(t, T t) + d(t, Tv)]}

=
1

2
d(t, T t).

Then t ∈ Tt and so t = It ∈ Tt. Hence F (I, T ) 6= ∅.

Remark 3.1.19. Theorem 3.1.18 generalizes and extends Theorems 2.1, 2.2, 2.4,

2.6, 2.7, 2.8, 2.9, 2.11 of Shahzad and Hussain [61], Corollaries 3.2, 3.4 of Jungck

[29].

Corollary 3.1.20. Let D be a nonempty subset of a normed space X. Let T : D →

CL(D), T satisfies the property (W.P.)∗ on D, and T satisfies the FPC on D. If T

is a generalized nonexpansive on D, then F (T ) 6= ∅.

Proof. Let I : D → D be the identity mapping. Since I is the identity the mapping

and T satisfies property (W.P.)∗, by Lemma 3.1.3, I and T satisfy the property

(W.P.). Since T is satisfies the FPC on D, so The pair (I, T ) satisfies CPC on D.

For some v ∈ C(I, T ) IIv = Iv. It follows from Theorem 3.1.18 that F (I, T ) 6= ∅.

Thus F (T ) 6= ∅.

Remark 3.1.21. Corollary 3.1.20 extends and improves Corollary 2.5 of Al-Thagafi,

Shahzad [1], Theorems 1,2 of Doston [23], Theorem 3.2 of Dozo [24].

Theorem 3.1.22. Let D be a nonempty subset of a normed space X. Let I : D → D,

T : D → CL(D), I and T satisfy the property (W.P.) on D, and (I-T)(D) be closed.

If T is a generalized I-nonexpansive on D, then C(I, T ) 6= ∅. Moreover, if IIv=Iv

for some v ∈ C(I, T ), then F (I, T ) 6= ∅.
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Proof. Since I and T satisfy the property (W.P.), there exists a sequence {xn} in

D, some u ∈ D and A ∈ CL(D) such that

lim
n→∞

Ixn = Iu ∈ A = lim
n→∞

Txn.

Thus ‖Ixn − Iu‖ → 0. Because (I−T )(D) is closed. So 0 ∈ (I−T )(D). Therefore

there exists v ∈ D such that Iv ∈ Tv. Hence C(I, T ) 6= ∅. Now for F (I, T ) 6= ∅

follows as in the proof of theorem 3.1.18.

Remark 3.1.23. Theorem 3.1.22 extends and improves Theorem 2.1 of Shahzad

and Hussain [61].

Theorem 3.1.24. Let D be a q-starshaped subset of a normed space X. Let I : D →

D, T : D → CL(D), I and T satisfy the property (W.P.) on D, I(D)=D, D weakly

compact, and I-T is demiclosed at 0. If T is generalized I-nonexpansive on D, then

C(I, T ) 6= ∅. Moreover, if IIv=Iv for some v ∈ C(I, T ), then F (I, T ) 6= ∅.

Proof. It is evident, by the Eberlein-Smulian theorem and the definition of ”demi-

closed” (see Theorem 2 in [23]), that the pair (I,T) satisfies the CPC on D. Now

the result follows from Theorem 3.1.18.

Remark 3.1.25. Theorem 3.1.24 extends and improves Theorems 2.2, 2.7 of Shahzad

and Hussain [61].

3.1.3 Invariant approximations

Definition 3.1.26. Let M be a subset of a normed space X and p ∈ X. We define

1. The set BM(p) := {x ∈M : ‖x− p‖ = d(p,M)} is called the set of best

approximations to p ∈ X out of M .

2. Mp := {x ∈M : ‖x‖ ≤ 2 ‖p‖}.
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3. C0 denote the class of closed convex subsets M of X containing 0.

Remark 3.1.27. BM(p) is closed, convex and contained in Mp ∈ C0.

The problem of obtaining invariant approximations for non-commuting map-

ping was considered first time by Shahzad [55, 56]. In 2003 Shahzad [58] introduce

the class of R-subweakly commuting multivalued mapping. It is worth mentioning

that the concept of R-subweak commutativity is a useful tool for obtaining the exis-

tence of invariant approximations for a hybrid pair of mapping. Afterward Kamran

[32] introduce property (E.A.) for single-valued and multivalued mapping which

generalized and cover than the condition in [58]. Recently Shahzad and Hussain

[61] extends and improves Theorem 3.14 of Kamran [32]. They further note that

Kamran’s result remains true if dropped some the condition.

Now we establish theorems which generalize many theorems of Shahzad and

Hussain in [61]. Our theorems apply the results of before section.

Theorem 3.1.28. Let X be a normed space, I : X → X, T : X → CL(X), M ⊆ X,

I(BM(p)) = BM(p), I and T satisfy the property (W.P.) on BM(p), the pair (I,T)

satisfies the CPC on BM(p), and

sup
y∈Tx

‖y − p‖ ≤ ‖Ix− p‖

for all x ∈ BM(p).

If T is a a generalized I-nonexpansive on BM(p), then C(I, T ) ∩BM(p) 6= ∅.

Moreover, if IIv=Iv for some v ∈ C(I, T ) ∩BM(p), then F (I, T ) ∩BM(p) 6= ∅.

Proof. Let x ∈ BM(p) and z ∈ Tx. Since I(BM(p)) = BM(p), Ix ∈ BM(p) for all

x ∈ BM(p). It follows from the definition of BM(p) that ‖Ix− p‖ = d(p,M). Since

‖z − p‖ ≤ sup
y∈Tx

‖y − p‖ ≤ ‖Ix− p‖ = d(p,M),
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z ∈ BM(p). Thus Tx ⊆ BM(p) for all x ∈ BM(p). Since Tx is closed for all

x ∈ X, Tx is closed for all x ∈ BM(p). Therefore I|BM (p) : BM(p) → BM(p),

T |BM (p) : BM(p) → CL(BM(p)). Since C(I|BM (p), T |BM (p)) = C(I, T ) ∩ BM(p) and

F (I|BM (p), T |BM (p)) = F (I, T )∩BM(p). Now the result follows from Theorem 3.1.18

with D = BM(p).

Remark 3.1.29. Theorem 3.1.28 extends and improves Theorems 2.9, 2.11, 2.12,

2.13 of Shahzad and Hussain [61], and contains, as a special case, Theorem 3 of

Latif and Bano [40], and Theorem 7 of Jungck and Sessa [30].

Corollary 3.1.30. Let X be a normed space, T : X → CL(X), M ⊆ X, T satisfy

the property (W.P.)∗ on BM(p), the mapping T satisfies the FPC on BM(p), and

sup
y∈Tx

‖y − p‖ ≤ ‖x− p‖

for all x ∈ BM(p).

If T is a generalized nonexpansive on BM(p), then F (T ) ∩BM(p) 6= ∅.

Proof. Let I : X → X be the identity mapping. Then I(BM(p)) = BM(p). Since T

is satisfies the FPC on BM(p), the pair (I, T ) satisfies the CPC on BM(p). For some

v ∈ C(I, T ) IIv = Iv. It follows from Theorem 3.1.28 that F (I, T ) ∩ BM(p) 6= ∅.

Thus F (T ) ∩BM(p) 6= ∅.

Theorem 3.1.31. Let X be a normed space, I : X → X, T : X → CL(X), M ⊆ X,

I(BM(p)) = BM(p), I and T satisfy the property (W.P.) on BM(p), (I−T )(BM(p))

be closed, and

sup
y∈Tx

‖y − p‖ ≤ ‖Ix− p‖

for all x ∈ BM(p).

If T is a generalized I-nonexpansive on BM(p), then C(I, T ) ∩BM(p) 6= ∅.

Moreover, if IIv=Iv for some v ∈ C(I, T ) ∩BM(p), then F (I, T ) ∩BM(p) 6= ∅.
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Proof. Let x ∈ BM(p) and z ∈ Tx. Since I(BM(p)) = BM(p), Ix ∈ BM(p) for all

x ∈ BM(p). It follows from the definition of BM(p) that ‖Ix− p‖ = d(p,M). Since

‖z − p‖ ≤ sup
y∈Tx

‖y − p‖ ≤ ‖Ix− p‖ = d(p,M),

z ∈ BM(p). Thus Tx ⊆ BM(p) for all x ∈ BM(p). Since Tx is closed for all

x ∈ X, Tx is closed for all x ∈ BM(p). Therefore I|BM (p) : BM(p) → BM(p),

T |BM (p) : BM(p) → CL(BM(p)). Since C(I|BM (p), T |BM (p)) = C(I, T ) ∩ BM(p) and

F (I|BM (p), T |BM (p)) = F (I, T )∩BM(p). Now the result follows from Theorem 3.1.22

with D = BM(p).

Theorem 3.1.32. Let X be a normed space, I : X → X, T : X → CL(X),

M ⊆ X, I(BM(p)) = BM(p), BM(p) be weakly compact and q-starshaped, I and T

satisfy property (W.P.) on BM(p), I-T be demiclosed at 0, and

sup
y∈Tx

‖y − p‖ ≤ ‖Ix− p‖

for all x ∈ BM(p).

If T is a generalized I-nonexpansive on BM(p), then C(I, T ) ∩BM(p) 6= ∅.

Moreover, if IIv=Iv for some v ∈ C(I, T ), then F (I, T ) ∩BM(p) 6= ∅.

Proof. Let x ∈ BM(p) and z ∈ Tx. Since I(BM(p)) = BM(p), Ix ∈ BM(p) for all

x ∈ BM(p). It follows from the definition of BM(p) that ‖Ix− p‖ = d(p,M). Since

‖z − p‖ ≤ sup
y∈Tx

‖y − p‖ ≤ ‖Ix− p‖ = d(p,M),

z ∈ BM(p). Thus Tx ⊆ BM(p) for all x ∈ BM(p). Since Tx is closed for all

x ∈ X, Tx is closed for all x ∈ BM(p). Therefore I|BM (p) : BM(p) → BM(p),

T |BM (p) : BM(p) → CL(BM(p)). Since C(I|BM (p), T |BM (p)) = C(I, T ) ∩ BM(p) and

F (I|BM (p), T |BM (p)) = F (I, T )∩BM(p). Now the result follows from Theorem 3.1.24

with D = BM(p).
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3.2 Random coincidence and common random fixed

points

The study of random fixed point theorems was initiated by the Prague school

of probabilities in the 1950s. Random nonlinear analysis is an important mathe-

matical discipline which is mainly concerned with the study of random nonlinear

operators and its development is required for the study of various classes of random

operator equations. Random techniques have been crucial in diverse areas from pure

mathematics to applied sciences. In recent years, fixed point theorems in connec-

tion with the existence of random solutions of nonlinear random operator equations

have been extensively studied. For a survey of random fixed point theory and its

applications and related results, we refer the reader to [4, 5, 6, 9, 57, 60, 59, 61].

In [61] Shahzad and Hussain establish some random coincidence and common

random fixed points Theorems which generalize several Theorems (see [59], [63],

[64]). In this section we extend and generalize Theorems of Shahzad and Hussain

in [61]. Our Theorems derive results in section 3.1.

3.2.1 Random coincidence points

Theorem 3.2.1. Let (Ω,Σ) be a measurable space and D be a separable, closed, and

q-starshaped subset of a normed space X. Let I : Ω×D → D and T : Ω×D → CL(D)

be continuous random operators such that I(ω, ·) and T (ω, ·) satisfy the property

(W.P.) on D, I(ω, ·)(D) = D, T (ω, ·)(D) is bounded, and the pair (I(ω, ·), T (ω, ·))

satisfies the CPC on A ∈ CL(D) for every ω ∈ Ω. If T (ω, ·) a is generalized

I-nonexpansive on D for every ω ∈ Ω, then RC(I, T ) 6= ∅.

Proof. By Theorem 3.1.18, I and T have a deterministic coincidence point. It
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follows from Theorem 4.1 in [1] that I and T have a random coincidence point.

Thus RC(I, T ) 6= ∅.

Remark 3.2.2. Theorem 3.2.1 generalizes and extends Theorem 3.4 of Shahzad

and Hussain [61].

Corollary 3.2.3. Let (Ω,Σ) be a measurable space and D be a separable, closed,

and q-starshaped subset of a normed space X. Let T : Ω×D → CL(D) be continuous

random operators such that T (ω, ·) satisfies the property (W.P.)∗ on D, T (ω, ·)(D) is

bounded, and the mapping T (ω, ·) satisfies the FPC on A ∈ CL(D) for every ω ∈ Ω.

If T (ω, ·) is a generalized nonexpansive on D for every ω ∈ Ω, then RF (T ) 6= ∅.

Proof. By Theorem 3.1.20, T has a deterministic fixed point. It follows from The-

orem 4.1 in [1] that T has a random fixed point. Thus RF (T ) 6= ∅.

Remark 3.2.4. Corollary 3.2.3 generalizes and extends Corollary 3.6 of Shahzad

and Hussain [61].

3.2.2 Common random fixed points

Lemma 3.2.5. Let (Ω,Σ) be a measurable space and D be a subset of a normed

space X. Let I : Ω × D → D and T : Ω × D → CL(D) be continuous random

operators such that T (ω, ·) is a generalized I-nonexpansive on D for every ω ∈ Ω.

If RC(I, T ) 6= ∅ and if for every ω ∈ Ω, I(ω, I(ω, µ(ω))) = I(ω, µ(ω)) for some

µ ∈ RC(I, T ), then RF (I, T ) 6= ∅.

Proof. Since µ : Ω → D is a random coincidence point of I and T such that

I(ω, I(ω, µ(ω)) = I(ω, µ(ω)) for all ω ∈ Ω. Let ξ : Ω → D be such that

ξ(ω) := I(ω, µ(ω)). Since I(ω, µ(ω)) ∈ T (ω, µ(ω)), we have ξ(ω) ∈ T (ω, µ(ω)) for

all ω ∈ Ω. Hence ξ is a measurable map such that
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ξ(ω) = I(ω, µ(ω)) = I(ω, I(ω, µ(ω))) = I(ω, ξ(ω)) ∈ T (ω, µ(ω)).

We have

d(ξ(ω), T (ω, ξ(ω))) ≤ H(T (ω, µ(ω)), T (ω, ξ(ω)))

≤ max{‖I(ω, µ(ω))− I(ω, ξ(ω))‖),

1
2
[d(I(ω, µ(ω)), T (ω, µ(ω))) + d(I(ω, ξ(ω)), T (ω, ξ(ω)))],

1
2
[d(I(ω, µ(ω)), T (ω, ξ(ω))) + d(I(ω, ξ(ω)), T (ω, µ(ω)))]}

≤ max{‖ξ(ω)− ξ(ω)‖),

1
2
[d(ξ(ω), T (ω, µ(ω))) + d(ξ(ω), T (ω, ξ(ω)))],

1
2
[d(ξ(ω), T (ω, ξ(ω))) + d(ξ(ω), T (ω, µ(ω)))]}

for all ω ∈ Ω. Then d(ξ(ω), T (ω, ξ(ω))) ≤ 1
2
d(ξ(ω), T (ω, ξ(ω))).

So d(ξ(ω), T (ω, ξ(ω))) = 0. Thus ξ(ω) = I(ω, ξ(ω)) ∈ T (ω, ξ(ω)). Hence ξ is a

common random fixed point of I and T . Thus RF (I, T ) 6= ∅.

Theorem 3.2.6. Let (Ω,Σ) be a measurable space and D be a separable, closed, and

q-starshaped subset of a normed space X. Let I : Ω×D → D and T : Ω×D → CL(D)

be continuous random operators such that I(ω, ·) and T (ω, ·) satisfy the property

(W.P.) on D, I(ω, ·)(D) = D, T (ω, ·)(D) is bounded, and the pair (I(ω, ·), T (ω, ·))

satisfies the CPC on A ∈ CL(D) for every ω ∈ Ω. If T (ω, ·) is a generalized I-

nonexpansive on D for every ω ∈ Ω, then RC(I, T ) 6= ∅. Moreover, if for every

ω ∈ Ω, I(ω, I(ω, µ(ω))) = I(ω, µ(ω)) for some µ ∈ RC(I, T ), then RF (I, T ) 6= ∅.

Proof. By Theorem 3.2.1, RC(I, T ) 6= ∅. Because for every ω ∈ Ω,

I(ω, I(ω, µ(ω))) = I(ω, µ(ω)) for some µ ∈ RC(I, T ). It follows from Lemma 3.2.5

that RF (I, T ) 6= ∅.

Remark 3.2.7. Theorem 3.2.6 generalizes and extends Theorem 3.2 of Shahzad

and Latif [60], Theorem 3.4 of Tan and Yaun [63], Theorem 1 of Xu [64], Theorems

3.17, 3.18 of Shahzad [59], and Theorem 3.7 of Shahzad and Hussain [61].
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