Chapter 2

Preliminaries

In this chapter, we give some definitions, notations, and some useful results
that will be used in the later chapters. Although details are included in some case,
many of the fundamental principle analysis are merely stated without proof.

Throughout this thesis, we let R stand for the set of all real number and N
the set of all natural number. Let T" be function (mapping) from a set X into itself.

If x € X, then Tz is the image of = under function 7.

2.1 Metric spaces

Definition 2.1.1. Let X be a nonempty set. A metric on X (or distance

function on X ) is a function d : X x X — R with the properties, for all z,y,z € X
1. d(z,y) > 0.
2. d(z,y) =0iffx =y
3. d(z,y) = d(y,x). (Symmetry).

4. d(z,y) < d(x,z)+d(z,vy) (The triangle inequality).
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d(x,y) is called the distance between x and y.
Example 2.1.2. Let X be a set of real numbers R and define d: R x R — R by
d(z,y) = |z —y| Vz,y € R.
Then d is a metric on R and d is called a usual metric.

Example 2.1.3. Let X = R? and define d : R? x R? — R by

d((x1,91), (T2, 92)) = v/ (21 — 22)% + (Y1 — 2)? V(z1, x2), (Y1, y2) € R2.

Then d is a metric on R2.

Example 2.1.4. Let X be an arbitrary set and defined : X x X — R by d(z,y) =0
if x =y and d(z,y) =1if x # y Vo,y € X. Then d is a metric on X and we called

that discrete metric.

Example 2.1.5. Let X = {f : [a,b] — R : f is continuous on [a,b]} and define

d: X xX —Rby

d(f,9) = max|f(z) — g(z)| VfgeX.

z€la,b]

Then d is a metric on X.

Definition 2.1.6. A set X equipped with a metric d, denoted by (X, d), is called

a metric space.

Definition 2.1.7. A function of positive integer variable, designated by f(n) or
Tn, where n = 1,2,3,... , is called a sequence. The sequence zi, s, ... is also

designated briefly by {z,}.

Definition 2.1.8. A sequence {z,} in a metric space (X,d) is said to converge

to r € X iff, for every € > 0, there exist N € N such that d(x,,z) < e for n > N.
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In such case we write x,, — x or lim z,, = x and x is called the limit of a sequence
n—oo

{z,}. If limz, = x for some = € X, the sequence {z,} is called convergent ;

otherwise it is called divergent.

Definition 2.1.9. Let (M, d) and (NN, p) be metric spaces. A map T': M — N is
called an isometry if p(Tz, Ty) = d(x,y) for all z,y € M.
If T is surjective (onto), then we say that M and N are isometric. A surjective

isometric T : M — N is called a motion of M.

Definition 2.1.10. A sequence {z,} in a metric space (X,d) is called a Cauchy
sequence if, for every ¢ > 0, there exist N € N such that d(z,,x,) < e for

n,m> N.

Proposition 2.1.11. Every convergent sequence in a metric space is a Cauchy

sequence.

Definition 2.1.12. A metric space (X, d) is complete if every Cauchy sequence

in X converges.

Definition 2.1.13. A subset M of metric space (X, d) is closed if every sequence

{z,} in M such that x,, — = implies x € M.

Definition 2.1.14. Let (X, d) be a metric space, z € X and let r be a positive real

number. The d-open ball of center © and radius r is the set
Bi(z,r) ={y € X : d(x,y) <r}.

Definition 2.1.15. Let M be a subset of a metric space (X,d). The closure of

M, denoted by M, is the set

M = {r € X : By(x,r) N M # @ for allr € R}.
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2.2 Vector spaces

Definition 2.2.1. Let V' be a nonempty set and K be a field. Let +: X x X — X
and - : K x X — X. A vector space (V,+,-) over a field K is one that satisfies

these eight properties, for all x,y,z € V and for all £, € K,
L. (z4y)+z=a+ (y+2).
2. There exists 0 € V such that x + 0 =2 =0+ x.
3. For all x € V, there exist—z € V such that z + (—z) = —z + 2 = 0.
4. r+y=y+ .
5. k(lx) = (kl)x.
6. (k+ 1)z =kx+lx.
7. k(x +y) = kx + ky.
8. lz =ux.

Definition 2.2.2. Let (V,+,-) be a vector space over a field K. A norm on V

isamap || || : V — K with the properties: for all z,y € V and k € K
L. ||lz]| > 0.
2. ||z =0iff z = 0.
3. |kl = [k |-
4l +yll < llzll + yll-

Definition 2.2.3. A vector space V together with a norm is called a normed
space, and is denoted by (V.|| ||).

The real number ||z|| is called the norm of the vector x.
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Proposition 2.2.4. If (V)| ||) is a normed space and d : V x V — R such that

d(z,y) = ||z — y||, then (V,d) is a metric space.
Proof. For each z,y,z € V we have
L d(z,y) = llv —yll = 0;
2. d(x,y) =z =yl = = Ully —z| = lly — =l = d(y, z);
3. d(z,y) =0iff |z —y|| =0iff v —y = 0 iff v = y;
dodzy) =z —z+z -yl <z -2l + 2 =yl = dz, 2) + d(z,y).
Thus d is metric on V. Therefore V' equipped with a metric d is a metric space [
Definition 2.2.5. A complete normed space is called a Banach space.

Definition 2.2.6. Let (V]| ||) be a normed space. A sequence {z,} in X is said to

converge to x € X iff, for every € > 0, there exist N € N such that ||z, — z|| <€

for n > N. In such case we write x,, — = or lim x,, = z and z is called the limit
n—oo

of a sequence {z,}. If limx, = x for some z € X, the sequence {z,} is called

convergent ; otherwise it is called divergent.

Definition 2.2.7. Let (V, 4+, -) be a vector space over a field K. A mapping f : V —
K is called a linear functional on V if f(x +y) = fo + fy and f(kx) = kf(z),

for all z,y € V, and for all k € K.

Definition 2.2.8. Let (V.|| ||) be a normed space. A sequence {z,} in X is said
to converge weakly to x € X iff, lim f(z,) = f(x) holds for every continuous

linear functional f. In such case we write x,, — .
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2.3 Contraction mappings

A complete survey of all that has been written about contraction mappings
would appear to be nearly impossible, and perhaps not really useful. In particular
the wealth of applications of Banach’s contraction mapping principle is astonishingly
diverse. We only attempt to touch on some of the high points of this profound and
seminal development in metric fixed point theory.

The origins of metric contraction principles and, ergo, metric fixed point
theory itself, rest in the method of successive approximations for proving existence
and uniqueness of solutions of differential equations. This method is associated with
the names of such celebrated nineteenth century mathematicians such as Cauchy,
Liouville, Lipschitz, Peano, and, especially, Picard. In fact the precursors of the
fixed point theoretic approach are explicit in the work of Picard. However it is
the Polish mathematician Stefan Banach who is credited with placing the ideas
underlying the method into an abstract framework suitable for broad applications
well beyond the scope of elementary differential and integral equation. Accordingly
we take Banach’s formulation as our point of departure in Section 2.3.2. It is
remarkable in its simplicity, yet it is perhaps the most widely applied fixed point
theorem in all of analysis. This is because the contraction condition on the mapping
is easy to test and it requires only the structure of a complete metric space for its
setting.

The key ingredients of the Contraction Mapping Principle as it first appeared
in Banach’s 1922 thesis [3] are these. (X, d) is a complete metric space and T': X —

X is a contraction mapping. Thus there exists a constant k£ < 1 such that
d(T'z,Ty) < kd(z,y)

for each x,y € X. From this one draws three conclusions:
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(i) T has a unique fixed point, say x.
(ii) For each x € X the Picard sequence {T™(x)} converges to .
(iii) The convergence is uniform if X is bounded

In fact condition (iii) can be put in much more explicit form in terms of error

estimates.

(iil); d(T"z,x0) < £.d(x, Tx) for each z € X and n > 1.

(iil)s d(T"z,20) < £7d(T" 2, T z) for each z € X and n > 1.
In particular, there is an explicit rate of convergence:

(iv) d(T"'z, x0) < kd(T"x, z0).

A primary early example of an extension of Banach’s principle is a theorem
of Caccioppoli [19] which asserts that the Picard iterates of a mapping 7" converge
in a complete metric space X provided for each n > 1, there exists a constant ¢,

such that
d(Tmz, T™y) < c,pd(z,y)

for all z,y € X, where Y~ ¢, < oo.

The Contraction Mapping Principle has seen many other extensions particu-
larly to mappings for which conclusions (i) and (ii) hold. In many of these instances
(especially ones which reduce to Banach’s principle under an appropriate renorm-
ing) it is possible to obtain (iii) as well. We give an overview of these facts below.
We begin with an explicit proof of Banach’s theorem (one of many) along with
one of its canonical applications. We then take up many of the extensions. We

conclude with a brief discussion of converses of Banach’s theorem. Many other part
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are devoted to the limiting case k = 1, where in general it is possible to conclude
at most that 7" has a (not necessarily unique) fixed point.
Before proceeding we turn to a simple example to illustrate the usefulness of

the contraction mapping principle. Consider Volterra integral equation

u(e) = f(2) + / " Fle, y)uly)dy, (2.3.1)

where f and the kernel F' are defined and continuous on, respectively, [0, a] and
[0,a] x [0,a]. By employing the standard method of successive approximations it
is possible to show that has a unique continuous solution for any F'. On the

other hand, if the operator T": C|[0,a] — C]0, a] is defined by setting
T(u(x)) = f(x) + [y F(x,y)uly)dy
then it is easy to see that for u,v € C|0, a]
1T =Tol| < aKlju— v

where K = O<sup< |F'(z,y)| and || - || is the usual supremum norm on C0,a]. Ba-
<zy<a

nach’s contraction principle thus immediately yields a unique solution on any inter-
val for which a/K' < 1. The problem is that in order to obtain a solution one must
either restrict the size of the interval [0, a] or the magnitude of the kernel F'. This
is not serious since in the first instance standard continuation arguments can then
be applied to extend the solution.

On the other hand, A. Bielecki [I4] discovered another way to remedy this

problem. By assigning a new norm || - [, A > 0, to C[0, a] as follows:

[ullx = sup [exp(=Az)[u(z)]],

0<z<a

it is possible to show that for all u,v € C0, al,

ITw —Tollx < $llu— vl
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where K is defined as above. (For details, see e.g., [26].) It is then clear that
for A sufficiently large T' is indeed a contraction mapping on the Banach space
(C[0,al, || - |ln)- A direct application of the contraction mapping principle now

yields the desired solution.

2.3.1 The contraction mapping principle

Definition 2.3.1. Let (X, d) be a metric space. A mapping T': X — X is said to

be lipschitzian if there is a constant £ > 0 such that
d(Tz,Ty) < kd(z,y)

for all x,y € X.

The smallest number £ is called the Lipschitz constant of T

Definition 2.3.2. Let (X, d) be a metric space. A mapping 7' : X — X is said to

be contraction if there is a constant k € (0,1) such that
d(Tz,Ty) < kd(x,y)
for all z,y € X.

Definition 2.3.3. Let T': X — X be a map of a set X into itself. A point z € X

is called a fixed point of single mapping T if Tx = x.

Example 2.3.4. Let T': R — R be such that Tx = 22 — 2 for all x € R.

Since T2 =2-2—2 =22 is a fixed point of T

Example 2.3.5. Let T : R — R be such that T2 = 22 +x — 1 for all z € R.
Since T1=124+1—-1=1and T(-1) = (-1)>—=1—1= —1, 1,-1 are fixed points

of T.



18

Example 2.3.6. Let T : R — R be such that Tz = x for all x € R.

Since Tx = x for all x € R, z is a fixed point of T" for all x € R.

Example 2.3.7. The map 7' : R — R given by Tz = = + 1 for all x € R has no

fixed point.

Definition 2.3.8. Let T': X — X be a map of a set X into itself. The set of all

fixed points of T' is denoted by F(T):
FT)={reX :Tx=2z}.
Example 2.3.9.
1. From Example 2.3.4 F(T) = {2}.
2. From Example 2.3.5] F(T) = {-1,1}.
3. From Example 2.3.6 F(T) = R.

4. From Example 2.3.7, F(T) = @.

Theorem 2.3.10 (Banach’s Contraction Mapping Principle). Let (X,d) be
a complete metric space and let T : X — X be a contraction mapping. Then T has

a unique fixed point z. Moreover, for each x € X,

lim Tz = 2

n—oo

and in fact for each v € X,

d(T"z, z) < %d(z,Tz), n=1,2,3,...

Proof. See section 2 of chapter 1 in [3§]. O
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Observes that in theorem [2.3.10] the existance of fixed point of T needs the
assumption that 7" : X — X is a contraction mapping. The following theorem
shows that if 7" is not a contraction mapping but T is a contraction mapping for

some positive integer N, then T still has a unique fixed point.

Theorem 2.3.11 (Theorem 2.4 in Chapter 1[38]). Let (X,d) be a complete

metric space and let T : X — X be a mapping for which TV is a contraction

mapping for some positive integer N. Then T has a unique fized point.

Proof. By Banach’s Theorem T has a unique fixed point z. So TV z = z. However,
TNTz =TNtle =TTNz =Tz,

so Tz is also a fixed point of TV. Since the fixed point of T is unique, it follows

that Tz = z. Also, if Ty = y then TNy = y proving (again by uniqueness) that

y = z. Thus T has a unique fixed point. O

2.3.2 Set-valued (Multivalued) contraction mappings

Banach’s Contraction Mapping Principle extends nicely to set-valued map-

pings, a fact first noticed by S.Nadler [47] (also see [45]).

Definition 2.3.12. For any set X, we shall let CL(X) (resp. CB(X), K(X))
denote the class of all nonempty closed (resp. nonempty closed bounded, nonempty

compact) subsets of X.

Definition 2.3.13. Let (X, d) be a metric space. The distance between a point

x € X and a non-empty subset A of X is denoted and defined by

d(xz,A) :=inf {d(z,a) : a € A}.
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Definition 2.3.14. Let (X,d) be a metric space. The Hausdorff metric is a

function H : X x X — R such that

H(A, B) := max {sup d(a, B),sup d(b, A)} ,
acA beB

forall A, B C X.

Example 2.3.15. Let d : R x R — R such that d(z,y) = |z — y|. Then (R,d) is

metric space.
1. H({1},[2,3]) = 2.
2. H({0},[0,1]) = 1.
3. H([1,2],[5,10]) = 8.
4. H([0,1],[1,3]) = 2.
5. H([0,1]U[3,4],[2,3]) = 2 etc.

Proposition 2.3.16. Let A, B be nonempty closed subsets of a non-empty set X

and z € X. If d is a metric on X and H is a Hausdorff metric on X, then:
1. If d(z,A) =0, then z € A.
2. f H(A,B) =0, then A = B.

Proof.

1. Assume that d(z, A) = 0.
Then inf{d(x,a) : a € A} = 0.
Since A is a closed set, thus d(x, ag) = 0 for some ay € A.

Hence z = ay € A.
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2. Assume that H(A, B) = 0.

Therefore H(A, B) = max {sup d(a, B),sup d(b, A)} =0.

acA beB
Thus sup d(a, B) =0 and sup d(b, A) = 0.
acA beB

It follows that d(a, B) =0 for all a € A and d(b, A) =0 for all b € B.
Byl,ac Bforallac Aand be A forallbe B.

That is A C B and B C A. Therefore A = B.
O

Definition 2.3.17. Let (X, d) be a metric space. A map T : X — CL(X) is called

a contraction mapping if there is a positive constant k£ < 1 such that
H(Tz, Ty) < kd(z,y)
for all z,y € X.

Definition 2.3.18. Let 7' : X — CL(X) be a map from X into CL(X). A point

x € X is called a fixed point of multivalued mapping T if x € Tx.

Example 2.3.19. Let T : R — CL(R) be such that Tz = {3,z — 1} for all z € R.

Since T3 = {2,3} and 3 € {2,3}, 3 is a fixed point of 7.

Example 2.3.20. Let 7' : R — CL(R) be such that Tz = {3,2x — 1,3z — 4} for

all z € R.
1. Since T1 ={-1,1,3} and 1 € {—1,1,3}, 1 is a fixed point of T
2. Since T2 = {1,2,3} and 2 € {1,2,3}, 2 is a fixed point of T
3. Since T3 = {3,5} and 3 € {3,5}, 3 is a fixed point of T.

Example 2.3.21. Let T': R — C'L(R) be such that Tx = [z, 00) for all x € R.

Since x € [x,00) = Tz for all x € R, x is a fixed point of T for all x € R.
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Example 2.3.22.

1. From Example [2.3.19] F(T") = {3}.
2. From Example [2.3.20, F'(T') = {1,2,3}.
3. From Example [2.3.21] F(T') = R.

Theorem 2.3.23 (Nadler Contraction Principle [47]). Let (X,d) be a complete
metric space and let T : X — CB(X) be a contraction mapping. Then T has a

fixed point.
Proof. See [34] O

We now let (X,d) be a complete metric space and T': X — X be a con-
traction mapping. Then the map T} : X — CB(X) given by Tz = {Tz} is also
a contraction mapping. It follows from Nadler Contraction Principle that 7T} has a
fixed point. That is there exists x € X such that x € Thx = {Tx}. Thus there exists
x € X which x = Tx. Therefore T" has a fixed point. In fact Nadler Contraction
Principle generalizes the Banach’s contraction principle.

In contrast to Banach’s theorem, the preceding theorem does not assert that
the fixed point is unique. Indeed, it need not be. In [52] an example in R? is given
of a multivalued contraction mapping whose values are compact and connected yet
the mapping has a disconnected fixed point set. It is also show in [52] that if x is
a fixed point of a multivalued contraction mapping T defined on a closed convex
subset of a Banach space and if Tz is not a singleton, then 7" always has at least one
additional fixed point distinct from z. On the other hand, Ricceri [54] has shown
that the fixed point set is an absolute retract if X is a closed and convex subset of

a Banach space and T" has closed convex values.
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There is an interesting stability result (due to T. C. Lim [43]) that holds
for set-valued contractions (hence ordinary contractions as well). Such results find
applications, for example, in the study of iterated function systems ([20], [25]). We

begin with a technical lemma as follows.

Lemma 2.3.24 (Lemma 5.2 in [38]). Let (X,d) be a complete metric space and
letTy, Ty : X — CB(X) be two contraction mappings each having Lipschitz constant

k< 1. Then

H(F(T), F(Ty)) < tsupH (Tyx, Tox).

zeX

Theorem 2.3.25 (Theorem 5.3 in [38]). Let (X,d) be a complete metric space
and let T; : X — CB(X), i=1,2,3,..., be sequence of contraction mappings each

having Lipschitz constant k < 1. If lim H(T,x, Tox) = 0 uniformly for x € X, then

n—oo

lim H(F(T,), F(Ty)) =0

n—oo

Proof. Let € > 0. Since lim H(T,z,Tox) = 0 uniformly it is possible to choose

n—oo

N € N so that for n > N, supH(T,z,Tox) < (1 — k)e. By lemma [2.3.24]
zeX

H(F(T,), F(1y)) < € for all such n. O

2.3.3 Generalized contraction mappings

There is a vast amount of literature dealing with technical extensions
and generalizations of Banach’s theorem. Most of these results involve a common
underlying strategy. One assumes that a self-mapping T" of a complete metric space
X satisfies some general (and frequently quite complex) contractive type condition

(C) which implies that

1. The sequence of Picard iterates of the mapping, or some related sequence is

Cauchy.
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2. The limit of such a sequence is always a fixed point of the mapping.

The condition (C) usually involves a relationship between the six distance
{d(z,y),d(Tx, Ty), d(x, Ty),d(Tz,y), d(z,Tx),d(y, Ty)}

for each pair z,y € X, and continuity of the mapping may or may not be assumed.
People who want to fully acquaint themselves with this literature are directed to
the survey of Rhoades [53] which covers the period up through the mid-seventies, a
paper by Hegediis [28], a subsequent survey by Park and Rhoades [51], an analysis
of [53] by Collaco and Silva [21]], as well as references found in these sources. Further
escalations in the level of complexity can be found in a paper by Park [50] and in

Liu’s recent observations [44] involving Park’s conditions.

2.3.4 I-contraction mappings

The idea of I-contraction is extended from one mapping to two mappings such

that the first mapping is single valued while the second mapping is multivalued.

Definition 2.3.26. Let I : X — X be a map of a metric space into itself. A
mapping T : X — CL(X) is said to be I-contraction mapping if there is a

positive constant £ < 1 such that
H(Tz,Ty) < kd(Ix, Iy)
for all z,y € X.

Definition 2.3.27. Let (X, d) be a metric space, z € X, [ : X - X and T : X —

CL(X).
1. z is a cotncidence point of [ and T iff Iz € Tx.

2. x is a common fixzed point of I and T iff v = Ix € Tx.
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Example 2.3.28. Let [ : R - R, T : R — CL(R) be such that [z = 1 — z? and

Tz = (0,27 for all x € R. Since I\/Li =1¢€10,4) =171, i is a coincidence point of

Tand T.

Example 2.3.29. Let ] : R — R, T': R — CL(R) be such that [z = z + 1 and
Tx = [z,00) for all z € R. Since [t =x+1€ [z,00) =Tz forall z € R, zis a

coincidence points of I and T for all x € R.

Example 2.3.30. Let ] : R — R, T': R — CL(R) be such that [z = = and

Tx = {320 — 1,3z — 4} for all x € R.

1. Since 71 ={—1,1,3} and I1 =1 € {—1,1,3}, 1 is a common fixed point of

lTand T.

2. Since T2 = {1,2,3} and 12 = 2 € {1,2,3}, 2 is a common fixed point of /

and T

3. Since T3 = {3,5} and I3 = 3 € {3,5}, 3 is a common fixed point of I and T

Example 2.3.31. Let X = [1,00), [ : X — X, T : X — CL(X) be such that
Iz =2?and Tx = [1,z+1] for all z € R. Since I1 =1 € [1,2] =T1, 1 is a common

fixed point of I and T.

Definition 2.3.32. Let (X,d) be a metric space and let [ : X — X, T : X —

CL(X).

1. The set of all coincidence points of I and 7" is denoted by C(I,T):
C(I,T)={xeD:lzeTz}.
2. The set of all common fixed points of I and T is denoted by F(I,T):

F(I,T)={x€D:z=1IzxeTx}.
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Example 2.3.33.
1. From Example [2.3.28, C(I,T) = {3}.
2. From Example 2.3.29 C(I,T) = R.
3. From Example 2.3.30, F(I,T) = {1,2,3}.

4. From Example 2.3.31 F(I,T) = {1}.

Definition 2.3.34 ([32]). Let (X,d) be a metric space and let I : X — X,
T:X — CL(X). A mapping [ is said to be T-weakly commuting at x € X iff

Iz eTlx.

Example 2.3.35. Let I : R — R and T : R — CL(R) such that Iz = z?

Tx =[0,x].

1. We have that 170 = 10 = 0 and 770 = T0 = {0}. It follows that 170 € T'10.

Thus [ is T-weakly commuting at 0.

2. We have that I11 =11 =1and T11 =T1 = [0,1]. It follows that I11 € TI1.

Thus [ is T-weakly commuting at 1.

Example 2.3.36. Let / : R — R and 7" : R — CL(R) be such that [z = x + 1
and Tx = [x,x + 1]. Then we have that [Tz = I[(x 4+ 1) =(x+ 1)+ 1 =2+2 and
Tle=T(x+1)=[z+1,(z+1)+1]=[x+1,z+2]. So IIx € TIx for all z € R.

Thus [ is T-weakly commuting at = for all x € R.

Example 2.3.37. Let X = [1,00), [/ : X — X and T : X — CL(X) be such that
Ix = 2x and Tx = [1,2z + 1]. Then we have that [z = I(2z) = 2(2z) = 42 and
Tix =T2z) =[1,222) + 1] = [1,4x + 1]. So Ilz € Tlx for all z € D. Thus [ is

T-weakly commuting at x for all x € X.



27

We extend the condition in Nadler Contraction Principle from 7(X) C X
to T(X) C I(X) and from T is contraction to T is I-contraction. We expect to get
the preliminary result that I and 7" have a common fixed point. But we get that I

and T have a coincidence point.

Theorem 2.3.38. Let (X,d) be a complete metric space and let I : X — X,
T:X — CL(X). If T is I-contraction mapping and T(X) C I(X), then I and T

have a coincidence point.
Afterward we try to add the following conditions in the above theorem.
1. IIv=1v at v for some v € C(I,T).
2. I is T-weakly commuting at v for some v € C(I,T).
Consequently we obtain that I and T have a common fixed point.

Theorem 2.3.39. Let (X,d) be a complete metric space and let I : X — X,
T:X — CB(X). If T is I-contraction mapping, T(X) C I(X), Ilv=1v at v for
some v € C(I1,T), and I is T-weakly commuting at v for some v € C(I,T), then I

and T have a common fized point.

Remark 2.3.40. If we assume that I : X — X in Theorem [2.3.39|is the identity
mapping, then Theorem [2.3.39is Nadler Contraction Principle. So Theorem [2.3.39

generalizes Nadler Contraction Principle.

2.3.5 Generalized I-contraction mappings

In 2007 Al-Thagafi and Shahzad establish new mapping which used the

relation between five distance

{d(Iz, Iy),d(Iz,Tx),d(ly, Ty),d(Iz, Ty),d(Iy, Tx)}
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which generalizes [-contraction.

Definition 2.3.41 ([1]). Let (X,d) be a metric space and let [ : X — X. A
mapping 7' : X — CL(X) is said to be generalized I-contraction mapping if

there is a positive constant £ < 1 such that for all z,y € X
H(Tz,Ty) < kmax{d(Iz,Iy),d(Iz,Tx),d(ly,Ty), 3(d(Iz,Ty) + d(Iy, Tz))}.

Afterward, Al-Thagafi and Shahzad extend the conditions in many theorems
which generalizes Banach’s contraction principle , Nadler Contraction Principle,

and many theorems.

Theorem 2.3.42 (Theorem 2.1 in [1]). Let (X,d) be a metric space and let I :

X —X,T: X — CL(X). If T is generalized I-contraction mapping, T'(X) C I(X)
and T(X) is complete, then C(I1,T) # .

Moreover, if IIv = Iv and I is T-weakly commuting at v for some v €

C(I,T), then F(I,T) # @.

Example 2.3.43 ([1]). Let X = [0,1) be the usual metric space. Define [z = z?
and Tz = [0, 22?] for all z € X. Then all hypotheses of Theorem [2.3.42are satisfied.

Note that 0 € C(I,T). Note also that Nadler’s theorem cannot be used.

2.4 Nonexpansive mappings

Mapping which are defined on metric spaces and which do not increase
distances between pairs of point and their images are called nonexpansive. Thus
an abstract metric space is all that is needed to define the concept. At the same
time, the more interesting results seem to require some notion of topology; more

specifically a topology which assures that closed metric balls are compact. This
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is not a serious limitation, however, because many spaces which arise naturally
in functional analysis possess such topologies; most notably the weak and weak*

topologies in Banach spaces.

2.4.1 Nonexpansive Mappings

Definition 2.4.1. Let (X, d) be a metric space. A mapping 7" : X — X is called

a nonerpansive mapping if
d(Tz, Ty) < d(z,y)
for all z,y € X.

Definition 2.4.2. A nonempty subset D of a normed space (X, | ||) is a convex

iff kx+ (1 —k)y € D for all z,y € D and for all k € [0, 1].

Recognition of fixed point theory for nonexpansive mapping as a noteworthy
avenue of research almost surely dates from the 1965 publication of likely the most

widely known result in the theory.

Theorem 2.4.3. If K is bounded closed and convex subset of a uniformly convex
Banach space X and if T : K — K is nonexpansive (that is, | Tx — Ty|| < ||l — y||

for each x,y € K), then T has a fized point.

The above theorem was proved independently by F. Browder [I7] and D.
Gohde [27] in the form stated above, and by W. Kirk [35] in a more general form.
(Slightly earlier Browder obtained the Hilbert space version of this result ([16]) as
a by-product of the fact that a mapping 7" in a Hilbert space is nonexpansive if and
only if the mapping I — T is monotone) Browder and Kirk used the same line of

argument - indeed, one which in fact yields a more general results - while the proof
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of Gohde relies on properties essentially unique to uniformly convex spaces. As a
result, Gohde’s proof reveals that fixed points in this setting may be obtained as

weak limits of sequences of 'approximate’ fixed point.

2.4.2 Set-valued (Multivalued) nonexpansive mappings

Definition 2.4.4. Let (X, d) be a metric space. A mapping 7 : X — CL(X) is

called a nonexpansive mapping if
H(Tx,Ty) < d(z,y)
for all z,y € X.
The principle result in this section is due to T. C. Lim [42].

Theorem 2.4.5. Let X be uniformly convex Banach space, let K be a bounded closed
conver subset of X, and let T : K — K(K), where K(K) denotes the collection of
all nonempty compact subset of K. If T is nonexpansive relative to the Hausdorff
metric on K(K), then T has a fized point (there ezists a point v € K such that

reTz).

The proof of theorem uses the so-called asymptotic center method which
was discussed in the section 4 of chapter 3 in [3§].

Earlier versions of Theorem were obtained by Markin [46] in Hilbert
spaces, by Browder [I8] for spaces possessing weakly continuous duality mappings.
In each of these instances, the mapping is assumed to have compact convex values.

It has been shown in [37] that under this additional assumption about the valued

of T" Theorem holds in an even wider class of spaces.

Theorem 2.4.6 (Theorem 5.3 in [38]). Let X be a Banach space and let K

be a bounded closed convex subset of X. If K has the property that the asymptotic
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center of each sequence in K (Relative to K) is nonempty and compact and T :
K — CC(K) is nonexpansive, where CC(K) denotes the collection of all nonempty
compact convex subset of K endowed with the Hausdorff metric, then T has a fized

point (there exists a point x € K such that v € Tx).

Spaces which satisfy the assumptions of the above theorem include, for exam-
ple, all the k-uniformly rotund spaces of Sullivan [62], the initial step in the proof
involves showing that every sequence in K has a subsequence with the property
that each of its subsequences has the same asymptotic radius and asymptotic cen-
ter. The proof also has a topological ingredient in that it invokes the Bohnenblust-
Karlin extension ([I5]) of a well known fixed point theorem of Kakutani [31] for

upper semicontinuous set-valued mapping.

Definition 2.4.7 ([49]). A Banach space X satisfies Opial’s condition if for
each sequence {z,} in X, x, — z, then the inequality
i i o, — ] <t inf i, —
holds for all y # .
Definition 2.4.8. Let M be subset of a normed space X. The mapping T : M —

CL(X) is said to be demiclosed at 0 if for every sequence {z,} in M and {y,}

in X with y, € Tx, such that z,, = x and y,, — 0, then 0 € T'x.

As with the demiclosedness principle, Theorem [2.4.5| also holds for spaces

satisfying Opial’s condition. This fact is due to E. Lami Dozo [24].

Theorem 2.4.9 ([24]). Let K be a weakly compact convex subset of a Banach space
X which satisfies Opial’s condition and let T : K — K(K) be a nonexpansive. Then

there exists x € K such that x € Tx.
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2.4.3 I-nonexpansive mappings

Definition 2.4.10. Let (X, d) be a metric space. A mapping T : X — CL(X) is

called a I-nonexpansive mapping if
H(Tz,Ty) < d(Iz, Iy)
for all x,y € X.

Definition 2.4.11. Let D be a nonempty subset of normed space (X, || ||) and
qe D. If ke +(1—k)g € Dforall z € D and all k € [0,1], then D is called

g-starshaped.
Proposition 2.4.12. If D is a convex, then D is g-starshaped.

Proof. Since D is a convex, so kx+(1—k)y € D for all 2,y € D and for all k € [0, 1].

Take y = ¢ € D. Thus kxz + (1 —k)g € D for all z € D and all k € [0, 1]. Therefore

D is g-starshaped. O

Remark 2.4.13. Since the class of g-starshaped is a subclass of a class of convex,

if we represent convex by ¢-starshaped then the theorem is general.

Definition 2.4.14. Let D be a subset of a normed space (X, | ||). A function

I : D — D is affine iff it has the following two properties:
1. D is a convex.
2. I(kx + (1 — k)y) = klx+ (1 — k)Iy for all x,y € D and for all k € [0, 1].

Definition 2.4.15. Let D be a subset of a normed space (X, | ||). A function

I: D — D is g-affine iff it has the following two properties:

1. D is g-starshaped.
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2. I(kx+ (1 —k)q) =kI(z)+ (1 —k)q for all z € D and for all k € [0, 1].

Latif and Tweddle [41] establish some coincidence point theorems for I-
nonexpansive mapping using the commutativity condition of mapping. Recently
Shahzad and Hussain obtain some coincidence point results and prove some common
fixed point theorems for a more general class of noncommuting mapping which they

assume that [ is T-weakly commuting at v for some v € C(1,T).

Theorem 2.4.16 (Theorem 2.7 in [61]). Let X be a nonempty weakly compact
and g-starshaped subset of a Banach space X, I : X — X such that [(X) = X. Let
T :X — CL(X) be an I-nonzpansive mapping and such that one of the following

two conditions is satisfied:
(a) (I =1T) is demiclosed at 0;
(b) I is weakly continuous, T is compact-valued and X satisfies Opial’s conditions.

If I is T-weakly commuting and Iv=Iv for v € C(1,T), then F(I,T) # &.

2.5 Random coincidence and common random fixed
points

Definition 2.5.1. Let €2 be a set. A collection X of subsets of € is called a sigma

algebra on () iff it satisfies the following properties
1. Y40
2. If w e X, then w® € X.

3. fw, € X foralln>1, then |Jw, € 2.
1

n=



34

Definition 2.5.2. A pair (£2,X), where X is a sigma algebra on €, is called a

measurable space.

Definition 2.5.3. Let D be a nonempty subset of a normed space (X, | ||) and

(2,%) be a measurable space. Let £ : 2 — D and S : Q — CL(D).
1. A function ¢ is measurable iff £71(V) € T for every open subset V of D.

2. A function S is measurable iff S7'(V) € ¥ for every open subset V of D,

where S7H(V) ={w e Q: S(w)NV # o}

3. A function ¢ is a measurable selector of S iff £ is measurable and &(w) €

S(w) for all w € Q.

Definition 2.5.4. Let D be a nonempty subset of a normed space (X, | ||) and

(22,Y) be a measurable space. Let [ : Qx D — D and T : Q x D — CL(D).

1. For some fixed w € Q, then I(w,-) is a map of D into itself such that
I(w,")(z) = I(w,z) for all x € D.

2. For some fixed w € 2, then T'(w, ) is a map from D into C'L(D) such that
T(w, )(x) =T(w,z) for all x € D.

3. For some fixed x € D, then I(-,x) is a map from € into D such that
I(,2)(w) = I(w, z) for all w € Q.

4. For some fixed z € D, then T'(-,z) is a map from  into C'L(D) such that

T(x)(w)=T(w,x) for all w € Q.
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Definition 2.5.5. Let D be a nonempty subset of a normed space (X, | ||) and

(2,%) be measurable space. Let £ : Q — D, [ :QxD — Dand T :QxD —

CL(D). Then

1.

10.

A mapping [ is a random operator iff I(-, x) is measurable for all z € D.

. A mapping 7T is a random operator iff T'(-,z) is measurable for all z € D.

. A function £ is a deterministic fixzed point of a random operator I iff

¢(w) = I(w,&(w)) for all w € Q.

. A function £ is a deterministic fixed point of a random operator T iff

£(w) € T(w,&(w)) for all w € Q.

. A function ¢ is a determanistic coincidence point of random operator [

and T iff [(w,&(w)) € T'(w,{(w)) for all w € Q.

. A function £ is a deterministic common fixed point of random operator

Iand T iff {(w) = [(w,€(w)) € T(w,&(w)) for all w € Q.

. A function £ is a random fixed point of a random operator 7' iff

¢ is measurable and {(w) € T'(w, {(w)) for all w € Q.

. A function £ is a random fixed point of a random operator [ iff

¢ is measurable and {(w) = I(w, {(w)) for all w € Q.

. A function £ is a random coincidence point of a random operator I and

T iff £ is measurable and [(w,{(w)) € T'(w,&(w)) for all w € Q.

A function £ is a common random fixed point of a random operator [

and T iff £ is measurable and £(w) = I(w, £(w)) € T(w,&(w)) for all w € Q.
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Definition 2.5.6. Let D be a nonempty subset of a normed space (X, | ||) and

(2, %) be measurable space. Let I : Q@ x D — D and T : Q2 x D — CL(D).

1. The set of all random fixed points of a random operator I is denoted by

RF(I).

2. The set of all random fixed points of a random operator T is denoted by

RF(T).

3. The set of all random coincidence points of random operators I and T is

denoted by RC(I,T).

4. The set of all common random fixed points of random operators I and T is

denoted by RF(I,T).

Definition 2.5.7. Let D be a nonempty subset of a normed space (X, | ||) and

(2, %) be measurable space. Let I : Q@ x D — D and T : Q2 x D — CL(D).

1. A random operator I is nonexpansive iff

I(w,-) is nonexpansive for all w € €.

2. A random operator T is nonexpansive iff

T'(w,-) is nonexpansive for all w € Q.

3. A random operator T is I-nonexpansive iff

T(w,-) is I-nonexpansive for all w € Q.
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