
Chapter 2

Preliminaries

In this chapter, we give some definitions, notations, and some useful results

that will be used in the later chapters. Although details are included in some case,

many of the fundamental principle analysis are merely stated without proof.

Throughout this thesis, we let R stand for the set of all real number and N

the set of all natural number. Let T be function (mapping) from a set X into itself.

If x ∈ X, then Tx is the image of x under function T .

2.1 Metric spaces

Definition 2.1.1. Let X be a nonempty set. A metric on X (or distance

function on X) is a function d : X×X → R with the properties, for all x, y, z ∈ X

1. d(x, y) ≥ 0.

2. d(x, y) = 0 iff x = y

3. d(x, y) = d(y, x). (Symmetry).

4. d(x, y) ≤ d(x, z) + d(z, y) (The triangle inequality).
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d(x, y) is called the distance between x and y.

Example 2.1.2. Let X be a set of real numbers R and define d : R× R → R by

d(x, y) = |x− y| ∀x, y ∈ R.

Then d is a metric on R and d is called a usual metric.

Example 2.1.3. Let X = R2 and define d : R2 × R2 → R by

d((x1, y1), (x2, y2)) =
√

(x1 − x2)2 + (y1 − y2)2 ∀(x1, x2), (y1, y2) ∈ R2.

Then d is a metric on R2.

Example 2.1.4. Let X be an arbitrary set and define d : X×X → R by d(x, y) = 0

if x = y and d(x, y) = 1 if x 6= y ∀x, y ∈ X. Then d is a metric on X and we called

that discrete metric.

Example 2.1.5. Let X = {f : [a, b] → R : f is continuous on [a, b]} and define

d : X ×X → R by

d(f, g) = max
x∈[a,b]

|f(x)− g(x)| ∀f, g ∈ X.

Then d is a metric on X.

Definition 2.1.6. A set X equipped with a metric d, denoted by (X, d), is called

a metric space.

Definition 2.1.7. A function of positive integer variable, designated by f(n) or

xn, where n = 1, 2, 3, ... , is called a sequence. The sequence x1, x2, ... is also

designated briefly by {xn}.

Definition 2.1.8. A sequence {xn} in a metric space (X, d) is said to converge

to x ∈ X iff, for every ε > 0, there exist N ∈ N such that d(xn, x) < ε for n ≥ N .
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In such case we write xn → x or lim
n→∞

xn = x and x is called the limit of a sequence

{xn}. If lim
n→∞

xn = x for some x ∈ X, the sequence {xn} is called convergent ;

otherwise it is called divergent.

Definition 2.1.9. Let (M,d) and (N, ρ) be metric spaces. A map T : M → N is

called an isometry if ρ(Tx, Ty) = d(x, y) for all x, y ∈M .

If T is surjective (onto), then we say that M and N are isometric. A surjective

isometric T : M → N is called a motion of M .

Definition 2.1.10. A sequence {xn} in a metric space (X, d) is called a Cauchy

sequence if, for every ε > 0, there exist N ∈ N such that d(xn, xm) < ε for

n,m ≥ N .

Proposition 2.1.11. Every convergent sequence in a metric space is a Cauchy

sequence.

Definition 2.1.12. A metric space (X, d) is complete if every Cauchy sequence

in X converges.

Definition 2.1.13. A subset M of metric space (X, d) is closed if every sequence

{xn} in M such that xn → x implies x ∈M .

Definition 2.1.14. Let (X, d) be a metric space, x ∈ X and let r be a positive real

number. The d-open ball of center x and radius r is the set

Bd(x, r) = {y ∈ X : d(x, y) < r}.

Definition 2.1.15. Let M be a subset of a metric space (X, d). The closure of

M , denoted by M , is the set

M = {x ∈ X : Bd(x, r) ∩M 6= ∅ for all r ∈ R}.
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2.2 Vector spaces

Definition 2.2.1. Let V be a nonempty set and K be a field. Let + : X×X → X

and · : K×X → X. A vector space (V,+, ·) over a field K is one that satisfies

these eight properties, for all x, y, z ∈ V and for all k, l ∈ K,

1. (x+ y) + z = x+ (y + z).

2. There exists 0 ∈ V such that x+ 0 = x = 0 + x.

3. For all x ∈ V , there exist−x ∈ V such that x+ (−x) = −x+ x = 0.

4. x+ y = y + x.

5. k(lx) = (kl)x.

6. (k + l)x = kx+ lx.

7. k(x+ y) = kx+ ky.

8. 1x = x.

Definition 2.2.2. Let (V,+, ·) be a vector space over a field K. A norm on V

is a map ‖ ‖ : V → K with the properties: for all x, y ∈ V and k ∈ K

1. ‖x‖ ≥ 0.

2. ‖x‖ = 0 iff x = 0.

3. ‖kx‖ = |k| ‖x‖.

4. ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Definition 2.2.3. A vector space V together with a norm is called a normed

space, and is denoted by (V, ‖ ‖).

The real number ‖x‖ is called the norm of the vector x.
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Proposition 2.2.4. If (V, ‖ ‖) is a normed space and d : V × V → R such that

d(x, y) = ‖x− y‖, then (V, d) is a metric space.

Proof. For each x, y, z ∈ V we have

1. d(x, y) = ‖x− y‖ ≥ 0;

2. d(x, y) = ‖x− y‖ = | − 1|‖y − x‖ = ‖y − x‖ = d(y, x);

3. d(x, y) = 0 iff ‖x− y‖ = 0 iff x− y = 0 iff x = y;

4. d(x, y) = ‖x− z + z − y‖ ≤ ‖x− z‖+ ‖z − y‖ = d(x, z) + d(z, y).

Thus d is metric on V . Therefore V equipped with a metric d is a metric space

Definition 2.2.5. A complete normed space is called a Banach space.

Definition 2.2.6. Let (V, ‖ ‖) be a normed space. A sequence {xn} in X is said to

converge to x ∈ X iff, for every ε > 0, there exist N ∈ N such that ‖xn − x‖ < ε

for n ≥ N . In such case we write xn → x or lim
n→∞

xn = x and x is called the limit

of a sequence {xn}. If lim
n→∞

xn = x for some x ∈ X, the sequence {xn} is called

convergent ; otherwise it is called divergent.

Definition 2.2.7. Let (V,+, ·) be a vector space over a fieldK. A mapping f : V →

K is called a linear functional on V if f(x + y) = fx + fy and f(kx) = kf(x),

for all x, y ∈ V , and for all k ∈ K.

Definition 2.2.8. Let (V, ‖ ‖) be a normed space. A sequence {xn} in X is said

to converge weakly to x ∈ X iff, lim
n→∞

f(xn) = f(x) holds for every continuous

linear functional f . In such case we write xn ⇀ x.
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2.3 Contraction mappings

A complete survey of all that has been written about contraction mappings

would appear to be nearly impossible, and perhaps not really useful. In particular

the wealth of applications of Banach’s contraction mapping principle is astonishingly

diverse. We only attempt to touch on some of the high points of this profound and

seminal development in metric fixed point theory.

The origins of metric contraction principles and, ergo, metric fixed point

theory itself, rest in the method of successive approximations for proving existence

and uniqueness of solutions of differential equations. This method is associated with

the names of such celebrated nineteenth century mathematicians such as Cauchy,

Liouville, Lipschitz, Peano, and, especially, Picard. In fact the precursors of the

fixed point theoretic approach are explicit in the work of Picard. However it is

the Polish mathematician Stefan Banach who is credited with placing the ideas

underlying the method into an abstract framework suitable for broad applications

well beyond the scope of elementary differential and integral equation. Accordingly

we take Banach’s formulation as our point of departure in Section 2.3.2. It is

remarkable in its simplicity, yet it is perhaps the most widely applied fixed point

theorem in all of analysis. This is because the contraction condition on the mapping

is easy to test and it requires only the structure of a complete metric space for its

setting.

The key ingredients of the Contraction Mapping Principle as it first appeared

in Banach’s 1922 thesis [3] are these. (X, d) is a complete metric space and T : X →

X is a contraction mapping. Thus there exists a constant k < 1 such that

d(Tx, Ty) ≤ kd(x, y)

for each x, y ∈ X. From this one draws three conclusions:
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(i) T has a unique fixed point, say x0.

(ii) For each x ∈ X the Picard sequence {T n(x)} converges to x0.

(iii) The convergence is uniform if X is bounded

In fact condition (iii) can be put in much more explicit form in terms of error

estimates.

(iii)1 d(T nx, x0) ≤ kn

1−k
d(x, Tx) for each x ∈ X and n ≥ 1.

(iii)2 d(T n+1x, x0) ≤ kn

1−k
d(T n+1x, T nx) for each x ∈ X and n ≥ 1.

In particular, there is an explicit rate of convergence:

(iv) d(T n+1x, x0) ≤ kd(T nx, x0).

A primary early example of an extension of Banach’s principle is a theorem

of Caccioppoli [19] which asserts that the Picard iterates of a mapping T converge

in a complete metric space X provided for each n ≥ 1, there exists a constant cn

such that

d(T nx, T ny) ≤ cnd(x, y)

for all x, y ∈ X, where
∑∞

n=1 cn <∞.

The Contraction Mapping Principle has seen many other extensions particu-

larly to mappings for which conclusions (i) and (ii) hold. In many of these instances

(especially ones which reduce to Banach’s principle under an appropriate renorm-

ing) it is possible to obtain (iii) as well. We give an overview of these facts below.

We begin with an explicit proof of Banach’s theorem (one of many) along with

one of its canonical applications. We then take up many of the extensions. We

conclude with a brief discussion of converses of Banach’s theorem. Many other part
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are devoted to the limiting case k = 1, where in general it is possible to conclude

at most that T has a (not necessarily unique) fixed point.

Before proceeding we turn to a simple example to illustrate the usefulness of

the contraction mapping principle. Consider Volterra integral equation

u(x) = f(x) +

∫ x

0

F (x, y)u(y)dy, (2.3.1)

where f and the kernel F are defined and continuous on, respectively, [0, a] and

[0, a] × [0, a]. By employing the standard method of successive approximations it

is possible to show that 2.3.1 has a unique continuous solution for any F . On the

other hand, if the operator T : C[0, a] → C[0, a] is defined by setting

T (u(x)) = f(x) +
∫ x

0
F (x, y)u(y)dy

then it is easy to see that for u, v ∈ C[0, a]

‖Tu− Tv‖ ≤ aK‖u− v‖

where K = sup
0≤x,y≤a

|F (x, y)| and ‖ · ‖ is the usual supremum norm on C[0, a]. Ba-

nach’s contraction principle thus immediately yields a unique solution on any inter-

val for which aK < 1. The problem is that in order to obtain a solution one must

either restrict the size of the interval [0, a] or the magnitude of the kernel F . This

is not serious since in the first instance standard continuation arguments can then

be applied to extend the solution.

On the other hand, A. Bielecki [14] discovered another way to remedy this

problem. By assigning a new norm ‖ · ‖λ, λ > 0, to C[0, a] as follows:

‖u‖λ = sup
0≤x≤a

[exp(−λx)|u(x)|],

it is possible to show that for all u, v ∈ C[0, a],

‖Tu− Tv‖λ ≤ K
λ
‖u− v‖λ,
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where K is defined as above. (For details, see e.g., [26].) It is then clear that

for λ sufficiently large T is indeed a contraction mapping on the Banach space

(C[0, a], ‖ · ‖λ). A direct application of the contraction mapping principle now

yields the desired solution.

2.3.1 The contraction mapping principle

Definition 2.3.1. Let (X, d) be a metric space. A mapping T : X → X is said to

be lipschitzian if there is a constant k ≥ 0 such that

d(Tx, Ty) ≤ kd(x, y)

for all x, y ∈ X.

The smallest number k is called the Lipschitz constant of T .

Definition 2.3.2. Let (X, d) be a metric space. A mapping T : X → X is said to

be contraction if there is a constant k ∈ (0, 1) such that

d(Tx, Ty) ≤ kd(x, y)

for all x, y ∈ X.

Definition 2.3.3. Let T : X → X be a map of a set X into itself. A point x ∈ X

is called a fixed point of single mapping T if Tx = x.

Example 2.3.4. Let T : R → R be such that Tx = 2x− 2 for all x ∈ R.

Since T2 = 2 · 2− 2 = 2, 2 is a fixed point of T .

Example 2.3.5. Let T : R → R be such that Tx = x2 + x− 1 for all x ∈ R.

Since T1 = 12 + 1− 1 = 1 and T (−1) = (−1)2 − 1− 1 = −1 , 1,-1 are fixed points

of T .
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Example 2.3.6. Let T : R → R be such that Tx = x for all x ∈ R.

Since Tx = x for all x ∈ R, x is a fixed point of T for all x ∈ R.

Example 2.3.7. The map T : R → R given by Tx = x + 1 for all x ∈ R has no

fixed point.

Definition 2.3.8. Let T : X → X be a map of a set X into itself. The set of all

fixed points of T is denoted by F (T ):

F (T ) = {x ∈ X : Tx = x} .

Example 2.3.9.

1. From Example 2.3.4, F (T ) = {2}.

2. From Example 2.3.5, F (T ) = {−1, 1}.

3. From Example 2.3.6, F (T ) = R.

4. From Example 2.3.7, F (T ) = ∅.

Theorem 2.3.10 (Banach’s Contraction Mapping Principle). Let (X,d) be

a complete metric space and let T : X → X be a contraction mapping. Then T has

a unique fixed point z. Moreover, for each x ∈ X,

lim
n→∞

T nx = z

and in fact for each x ∈ X,

d(T nx, z) ≤ kn

1−k
d(z, Tz), n=1, 2, 3,...

Proof. See section 2 of chapter 1 in [38].
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Observes that in theorem 2.3.10, the existance of fixed point of T needs the

assumption that T : X → X is a contraction mapping. The following theorem

shows that if T is not a contraction mapping but TN is a contraction mapping for

some positive integer N , then T still has a unique fixed point.

Theorem 2.3.11 (Theorem 2.4 in Chapter 1[38]). Let (X,d) be a complete

metric space and let T : X → X be a mapping for which TN is a contraction

mapping for some positive integer N. Then T has a unique fixed point.

Proof. By Banach’s Theorem TN has a unique fixed point z. So TNz = z. However,

TNTz = TN+1z = TTNz = Tz,

so Tz is also a fixed point of TN . Since the fixed point of TN is unique, it follows

that Tz = z. Also, if Ty = y then TNy = y proving (again by uniqueness) that

y = z. Thus T has a unique fixed point.

2.3.2 Set-valued (Multivalued) contraction mappings

Banach’s Contraction Mapping Principle extends nicely to set-valued map-

pings, a fact first noticed by S.Nadler [47] (also see [45]).

Definition 2.3.12. For any set X, we shall let CL(X) (resp. CB(X), K(X))

denote the class of all nonempty closed (resp. nonempty closed bounded, nonempty

compact) subsets of X.

Definition 2.3.13. Let (X, d) be a metric space. The distance between a point

x ∈ X and a non-empty subset A of X is denoted and defined by

d(x,A) := inf {d(x, a) : a ∈ A}.
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Definition 2.3.14. Let (X, d) be a metric space. The Hausdorff metric is a

function H : X ×X → R such that

H(A,B) := max

{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}
,

for all A,B ⊆ X.

Example 2.3.15. Let d : R × R → R such that d(x, y) = |x − y|. Then (R, d) is

metric space.

1. H({1}, [2, 3]) = 2.

2. H({0}, [0, 1]) = 1.

3. H([1, 2], [5, 10]) = 8.

4. H([0, 1], [1, 3]) = 2.

5. H([0, 1] ∪ [3, 4], [2, 3]) = 2 etc.

Proposition 2.3.16. Let A,B be nonempty closed subsets of a non-empty set X

and x ∈ X. If d is a metric on X and H is a Hausdorff metric on X, then:

1. If d(x,A) = 0, then x ∈ A.

2. If H(A,B) = 0, then A = B.

Proof.

1. Assume that d(x,A) = 0.

Then inf{d(x, a) : a ∈ A} = 0.

Since A is a closed set, thus d(x, a0) = 0 for some a0 ∈ A.

Hence x = a0 ∈ A.
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2. Assume that H(A,B) = 0.

Therefore H(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}
= 0.

Thus sup
a∈A

d(a,B) = 0 and sup
b∈B

d(b, A) = 0.

It follows that d(a,B) = 0 for all a ∈ A and d(b, A) = 0 for all b ∈ B.

By 1., a ∈ B for all a ∈ A and b ∈ A for all b ∈ B.

That is A ⊆ B and B ⊆ A. Therefore A = B.

Definition 2.3.17. Let (X, d) be a metric space. A map T : X → CL(X) is called

a contraction mapping if there is a positive constant k < 1 such that

H(Tx, Ty) ≤ kd(x, y)

for all x, y ∈ X.

Definition 2.3.18. Let T : X → CL(X) be a map from X into CL(X). A point

x ∈ X is called a fixed point of multivalued mapping T if x ∈ Tx.

Example 2.3.19. Let T : R → CL(R) be such that Tx = {3, x− 1} for all x ∈ R.

Since T3 = {2, 3} and 3 ∈ {2, 3}, 3 is a fixed point of T .

Example 2.3.20. Let T : R → CL(R) be such that Tx = {3, 2x − 1, 3x − 4} for

all x ∈ R.

1. Since T1 = {−1, 1, 3} and 1 ∈ {−1, 1, 3}, 1 is a fixed point of T .

2. Since T2 = {1, 2, 3} and 2 ∈ {1, 2, 3}, 2 is a fixed point of T .

3. Since T3 = {3, 5} and 3 ∈ {3, 5}, 3 is a fixed point of T .

Example 2.3.21. Let T : R → CL(R) be such that Tx = [x,∞) for all x ∈ R.

Since x ∈ [x,∞) = Tx for all x ∈ R, x is a fixed point of T for all x ∈ R.
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Example 2.3.22.

1. From Example 2.3.19, F (T ) = {3}.

2. From Example 2.3.20, F (T ) = {1, 2, 3}.

3. From Example 2.3.21, F (T ) = R.

Theorem 2.3.23 (Nadler Contraction Principle [47]). Let (X,d) be a complete

metric space and let T : X → CB(X) be a contraction mapping. Then T has a

fixed point.

Proof. See [34]

We now let (X, d) be a complete metric space and T : X → X be a con-

traction mapping. Then the map T1 : X → CB(X) given by T1x = {Tx} is also

a contraction mapping. It follows from Nadler Contraction Principle that T1 has a

fixed point. That is there exists x ∈ X such that x ∈ T1x = {Tx}. Thus there exists

x ∈ X which x = Tx. Therefore T has a fixed point. In fact Nadler Contraction

Principle generalizes the Banach’s contraction principle.

In contrast to Banach’s theorem, the preceding theorem does not assert that

the fixed point is unique. Indeed, it need not be. In [52] an example in R2 is given

of a multivalued contraction mapping whose values are compact and connected yet

the mapping has a disconnected fixed point set. It is also show in [52] that if x is

a fixed point of a multivalued contraction mapping T defined on a closed convex

subset of a Banach space and if Tx is not a singleton, then T always has at least one

additional fixed point distinct from x. On the other hand, Ricceri [54] has shown

that the fixed point set is an absolute retract if X is a closed and convex subset of

a Banach space and T has closed convex values.



23

There is an interesting stability result (due to T. C. Lim [43]) that holds

for set-valued contractions (hence ordinary contractions as well). Such results find

applications, for example, in the study of iterated function systems ([20], [25]). We

begin with a technical lemma as follows.

Lemma 2.3.24 (Lemma 5.2 in [38]). Let (X,d) be a complete metric space and

let T1, T2 : X → CB(X) be two contraction mappings each having Lipschitz constant

k < 1. Then

H(F (T1), F (T2)) ≤ 1
1−k

sup
x∈X

H(T1x, T2x).

Theorem 2.3.25 (Theorem 5.3 in [38]). Let (X,d) be a complete metric space

and let Ti : X → CB(X), i=1, 2, 3,..., be sequence of contraction mappings each

having Lipschitz constant k < 1. If lim
n→∞

H(Tnx, T0x) = 0 uniformly for x ∈ X, then

lim
n→∞

H(F (Tn), F (T0)) = 0

Proof. Let ε > 0. Since lim
n→∞

H(Tnx, T0x) = 0 uniformly it is possible to choose

N ∈ N so that for n ≥ N , sup
x∈X

H(Tnx, T0x) < (1 − k)ε. By lemma 2.3.24,

H(F (Tn), F (T0)) < ε for all such n.

2.3.3 Generalized contraction mappings

There is a vast amount of literature dealing with technical extensions

and generalizations of Banach’s theorem. Most of these results involve a common

underlying strategy. One assumes that a self-mapping T of a complete metric space

X satisfies some general (and frequently quite complex) contractive type condition

(C) which implies that

1. The sequence of Picard iterates of the mapping, or some related sequence is

Cauchy.
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2. The limit of such a sequence is always a fixed point of the mapping.

The condition (C) usually involves a relationship between the six distance

{d(x, y), d(Tx, Ty), d(x, Ty), d(Tx, y), d(x, Tx), d(y, Ty)}

for each pair x, y ∈ X, and continuity of the mapping may or may not be assumed.

People who want to fully acquaint themselves with this literature are directed to

the survey of Rhoades [53] which covers the period up through the mid-seventies, a

paper by Hegedüs [28], a subsequent survey by Park and Rhoades [51], an analysis

of [53] by Collaco and Silva [21], as well as references found in these sources. Further

escalations in the level of complexity can be found in a paper by Park [50] and in

Liu’s recent observations [44] involving Park’s conditions.

2.3.4 I-contraction mappings

The idea of I-contraction is extended from one mapping to two mappings such

that the first mapping is single valued while the second mapping is multivalued.

Definition 2.3.26. Let I : X → X be a map of a metric space into itself. A

mapping T : X → CL(X) is said to be I-contraction mapping if there is a

positive constant k < 1 such that

H(Tx, Ty) ≤ kd(Ix, Iy)

for all x, y ∈ X.

Definition 2.3.27. Let (X, d) be a metric space, x ∈ X, I : X → X and T : X →

CL(X).

1. x is a coincidence point of I and T iff Ix ∈ Tx.

2. x is a common fixed point of I and T iff x = Ix ∈ Tx.
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Example 2.3.28. Let I : R → R, T : R → CL(R) be such that Ix = 1 − x2 and

Tx = [0, x2] for all x ∈ R. Since I 1√
2

= 1
2
∈ [0, 1

2
) = T 1

2
, 1

2
is a coincidence point of

I and T .

Example 2.3.29. Let I : R → R, T : R → CL(R) be such that Ix = x + 1 and

Tx = [x,∞) for all x ∈ R. Since Ix = x + 1 ∈ [x,∞) = Tx for all x ∈ R, x is a

coincidence points of I and T for all x ∈ R.

Example 2.3.30. Let I : R → R, T : R → CL(R) be such that Ix = x and

Tx = {3, 2x− 1, 3x− 4} for all x ∈ R.

1. Since T1 = {−1, 1, 3} and I1 = 1 ∈ {−1, 1, 3}, 1 is a common fixed point of

I and T .

2. Since T2 = {1, 2, 3} and I2 = 2 ∈ {1, 2, 3}, 2 is a common fixed point of I

and T .

3. Since T3 = {3, 5} and I3 = 3 ∈ {3, 5}, 3 is a common fixed point of I and T .

Example 2.3.31. Let X = [1,∞), I : X → X, T : X → CL(X) be such that

Ix = x2 and Tx = [1, x+1] for all x ∈ R. Since I1 = 1 ∈ [1, 2] = T1, 1 is a common

fixed point of I and T .

Definition 2.3.32. Let (X, d) be a metric space and let I : X → X, T : X →

CL(X).

1. The set of all coincidence points of I and T is denoted by C(I, T ):

C(I, T ) = {x ∈ D : Ix ∈ Tx} .

2. The set of all common fixed points of I and T is denoted by F (I, T ):

F (I, T ) = {x ∈ D : x = Ix ∈ Tx} .
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Example 2.3.33.

1. From Example 2.3.28, C(I, T ) = {1
2
}.

2. From Example 2.3.29, C(I, T ) = R.

3. From Example 2.3.30, F (I, T ) = {1, 2, 3}.

4. From Example 2.3.31, F (I, T ) = {1}.

Definition 2.3.34 ([32]). Let (X, d) be a metric space and let I : X → X,

T : X → CL(X). A mapping I is said to be T -weakly commuting at x ∈ X iff

IIx ∈ TIx.

Example 2.3.35. Let I : R → R and T : R → CL(R) such that Ix = x2,

Tx = [0, x].

1. We have that II0 = I0 = 0 and TI0 = T0 = {0}. It follows that II0 ∈ TI0.

Thus I is T -weakly commuting at 0.

2. We have that II1 = I1 = 1 and TI1 = T1 = [0, 1]. It follows that II1 ∈ TI1.

Thus I is T -weakly commuting at 1.

Example 2.3.36. Let I : R → R and T : R → CL(R) be such that Ix = x + 1

and Tx = [x, x+ 1]. Then we have that IIx = I(x+ 1) = (x+ 1) + 1 = x+ 2 and

TIx = T (x+ 1) = [x+ 1, (x+ 1) + 1] = [x+ 1, x+ 2]. So IIx ∈ TIx for all x ∈ R.

Thus I is T -weakly commuting at x for all x ∈ R.

Example 2.3.37. Let X = [1,∞), I : X → X and T : X → CL(X) be such that

Ix = 2x and Tx = [1, 2x + 1]. Then we have that IIx = I(2x) = 2(2x) = 4x and

TIx = T (2x) = [1, 2(2x) + 1] = [1, 4x + 1]. So IIx ∈ TIx for all x ∈ D. Thus I is

T -weakly commuting at x for all x ∈ X.
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We extend the condition in Nadler Contraction Principle from T (X) ⊆ X

to T (X) ⊆ I(X) and from T is contraction to T is I-contraction. We expect to get

the preliminary result that I and T have a common fixed point. But we get that I

and T have a coincidence point.

Theorem 2.3.38. Let (X,d) be a complete metric space and let I : X → X,

T : X → CL(X). If T is I-contraction mapping and T (X) ⊆ I(X), then I and T

have a coincidence point.

Afterward we try to add the following conditions in the above theorem.

1. IIv = Iv at v for some v ∈ C(I, T ).

2. I is T -weakly commuting at v for some v ∈ C(I, T ).

Consequently we obtain that I and T have a common fixed point.

Theorem 2.3.39. Let (X,d) be a complete metric space and let I : X → X,

T : X → CB(X). If T is I-contraction mapping, T (X) ⊆ I(X), IIv = Iv at v for

some v ∈ C(I, T ), and I is T -weakly commuting at v for some v ∈ C(I, T ), then I

and T have a common fixed point.

Remark 2.3.40. If we assume that I : X → X in Theorem 2.3.39 is the identity

mapping, then Theorem 2.3.39 is Nadler Contraction Principle. So Theorem 2.3.39

generalizes Nadler Contraction Principle.

2.3.5 Generalized I-contraction mappings

In 2007 Al-Thagafi and Shahzad establish new mapping which used the

relation between five distance

{d(Ix, Iy), d(Ix, Tx), d(Iy, Ty), d(Ix, Ty), d(Iy, Tx)}
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which generalizes I-contraction.

Definition 2.3.41 ([1]). Let (X, d) be a metric space and let I : X → X. A

mapping T : X → CL(X) is said to be generalized I-contraction mapping if

there is a positive constant k < 1 such that for all x, y ∈ X

H(Tx, Ty) ≤ kmax{d(Ix, Iy), d(Ix, Tx), d(Iy, Ty), 1
2
(d(Ix, Ty) + d(Iy, Tx))}.

Afterward, Al-Thagafi and Shahzad extend the conditions in many theorems

which generalizes Banach’s contraction principle , Nadler Contraction Principle,

and many theorems.

Theorem 2.3.42 (Theorem 2.1 in [1]). Let (X,d) be a metric space and let I :

X → X, T : X → CL(X). If T is generalized I-contraction mapping, T (X) ⊆ I(X)

and T (X) is complete, then C(I, T ) 6= ∅.

Moreover, if IIv = Iv and I is T -weakly commuting at v for some v ∈

C(I, T ), then F (I, T ) 6= ∅.

Example 2.3.43 ([1]). Let X = [0, 1) be the usual metric space. Define Ix = x2

and Tx = [0, 2
3
x2] for all x ∈ X. Then all hypotheses of Theorem 2.3.42 are satisfied.

Note that 0 ∈ C(I, T ). Note also that Nadler’s theorem cannot be used.

2.4 Nonexpansive mappings

Mapping which are defined on metric spaces and which do not increase

distances between pairs of point and their images are called nonexpansive. Thus

an abstract metric space is all that is needed to define the concept. At the same

time, the more interesting results seem to require some notion of topology; more

specifically a topology which assures that closed metric balls are compact. This
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is not a serious limitation, however, because many spaces which arise naturally

in functional analysis possess such topologies; most notably the weak and weak*

topologies in Banach spaces.

2.4.1 Nonexpansive Mappings

Definition 2.4.1. Let (X, d) be a metric space. A mapping T : X → X is called

a nonexpansive mapping if

d(Tx, Ty) ≤ d(x, y)

for all x, y ∈ X.

Definition 2.4.2. A nonempty subset D of a normed space (X, ‖ ‖) is a convex

iff kx+ (1− k)y ∈ D for all x, y ∈ D and for all k ∈ [0, 1].

Recognition of fixed point theory for nonexpansive mapping as a noteworthy

avenue of research almost surely dates from the 1965 publication of likely the most

widely known result in the theory.

Theorem 2.4.3. If K is bounded closed and convex subset of a uniformly convex

Banach space X and if T : K → K is nonexpansive (that is, ‖Tx− Ty‖ ≤ ‖x− y‖

for each x, y ∈ K), then T has a fixed point.

The above theorem was proved independently by F. Browder [17] and D.

Göhde [27] in the form stated above, and by W. Kirk [35] in a more general form.

(Slightly earlier Browder obtained the Hilbert space version of this result ([16]) as

a by-product of the fact that a mapping T in a Hilbert space is nonexpansive if and

only if the mapping I − T is monotone) Browder and Kirk used the same line of

argument - indeed, one which in fact yields a more general results - while the proof
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of Göhde relies on properties essentially unique to uniformly convex spaces. As a

result, Göhde’s proof reveals that fixed points in this setting may be obtained as

weak limits of sequences of ’approximate’ fixed point.

2.4.2 Set-valued (Multivalued) nonexpansive mappings

Definition 2.4.4. Let (X, d) be a metric space. A mapping T : X → CL(X) is

called a nonexpansive mapping if

H(Tx, Ty) ≤ d(x, y)

for all x, y ∈ X.

The principle result in this section is due to T. C. Lim [42].

Theorem 2.4.5. Let X be uniformly convex Banach space, let K be a bounded closed

convex subset of X, and let T : K → K(K), where K(K) denotes the collection of

all nonempty compact subset of K. If T is nonexpansive relative to the Hausdorff

metric on K(K), then T has a fixed point (there exists a point x ∈ K such that

x ∈ Tx).

The proof of theorem 2.4.5 uses the so-called asymptotic center method which

was discussed in the section 4 of chapter 3 in [38].

Earlier versions of Theorem 2.4.5 were obtained by Markin [46] in Hilbert

spaces, by Browder [18] for spaces possessing weakly continuous duality mappings.

In each of these instances, the mapping is assumed to have compact convex values.

It has been shown in [37] that under this additional assumption about the valued

of T Theorem 2.4.5 holds in an even wider class of spaces.

Theorem 2.4.6 (Theorem 5.3 in [38]). Let X be a Banach space and let K

be a bounded closed convex subset of X. If K has the property that the asymptotic
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center of each sequence in K (Relative to K) is nonempty and compact and T :

K → CC(K) is nonexpansive, where CC(K) denotes the collection of all nonempty

compact convex subset of K endowed with the Hausdorff metric, then T has a fixed

point (there exists a point x ∈ K such that x ∈ Tx).

Spaces which satisfy the assumptions of the above theorem include, for exam-

ple, all the k-uniformly rotund spaces of Sullivan [62], the initial step in the proof

involves showing that every sequence in K has a subsequence with the property

that each of its subsequences has the same asymptotic radius and asymptotic cen-

ter. The proof also has a topological ingredient in that it invokes the Bohnenblust-

Karlin extension ([15]) of a well known fixed point theorem of Kakutani [31] for

upper semicontinuous set-valued mapping.

Definition 2.4.7 ([49]). A Banach space X satisfies Opial’s condition if for

each sequence {xn} in X, xn ⇀ x, then the inequality

lim
n→∞

inf ‖xn − x‖ ≤ lim
n→∞

inf ‖xn − y‖

holds for all y 6= x.

Definition 2.4.8. Let M be subset of a normed space X. The mapping T : M →

CL(X) is said to be demiclosed at 0 if for every sequence {xn} in M and {yn}

in X with yn ∈ Txn such that xn ⇀ x and yn → 0, then 0 ∈ Tx.

As with the demiclosedness principle, Theorem 2.4.5 also holds for spaces

satisfying Opial’s condition. This fact is due to E. Lami Dozo [24].

Theorem 2.4.9 ([24]). Let K be a weakly compact convex subset of a Banach space

X which satisfies Opial’s condition and let T : K → K(K) be a nonexpansive. Then

there exists x ∈ K such that x ∈ Tx.
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2.4.3 I-nonexpansive mappings

Definition 2.4.10. Let (X, d) be a metric space. A mapping T : X → CL(X) is

called a I-nonexpansive mapping if

H(Tx, Ty) ≤ d(Ix, Iy)

for all x, y ∈ X.

Definition 2.4.11. Let D be a nonempty subset of normed space (X, ‖ ‖) and

q ∈ D. If kx + (1 − k)q ∈ D for all x ∈ D and all k ∈ [0, 1], then D is called

q-starshaped.

Proposition 2.4.12. If D is a convex, then D is q-starshaped.

Proof. Since D is a convex, so kx+(1−k)y ∈ D for all x, y ∈ D and for all k ∈ [0, 1].

Take y = q ∈ D. Thus kx+ (1− k)q ∈ D for all x ∈ D and all k ∈ [0, 1]. Therefore

D is q-starshaped.

Remark 2.4.13. Since the class of q-starshaped is a subclass of a class of convex,

if we represent convex by q-starshaped then the theorem is general.

Definition 2.4.14. Let D be a subset of a normed space (X, ‖ ‖). A function

I : D → D is affine iff it has the following two properties:

1. D is a convex.

2. I(kx+ (1− k)y) = kIx+ (1− k)Iy for all x, y ∈ D and for all k ∈ [0, 1].

Definition 2.4.15. Let D be a subset of a normed space (X, ‖ ‖). A function

I : D → D is q-affine iff it has the following two properties:

1. D is q-starshaped.
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2. I(kx+ (1− k)q) = kI(x) + (1− k)q for all x ∈ D and for all k ∈ [0, 1].

Latif and Tweddle [41] establish some coincidence point theorems for I-

nonexpansive mapping using the commutativity condition of mapping. Recently

Shahzad and Hussain obtain some coincidence point results and prove some common

fixed point theorems for a more general class of noncommuting mapping which they

assume that I is T -weakly commuting at v for some v ∈ C(I, T ).

Theorem 2.4.16 (Theorem 2.7 in [61]). Let X be a nonempty weakly compact

and q-starshaped subset of a Banach space X, I : X → X such that I(X) = X. Let

T : X → CL(X) be an I-nonxpansive mapping and such that one of the following

two conditions is satisfied:

(a) (I − T ) is demiclosed at 0;

(b) I is weakly continuous, T is compact-valued and X satisfies Opial’s conditions.

If I is T-weakly commuting and IIv=Iv for v ∈ C(I, T ), then F (I, T ) 6= ∅.

2.5 Random coincidence and common random fixed

points

Definition 2.5.1. Let Ω be a set. A collection Σ of subsets of Ω is called a sigma

algebra on Ω iff it satisfies the following properties

1. Σ 6= ∅

2. If ω ∈ Σ, then ωc ∈ Σ.

3. If ωn ∈ Σ for all n ≥ 1, then
∞⋃

n=1

ωn ∈ Σ.
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Definition 2.5.2. A pair (Ω,Σ), where Σ is a sigma algebra on Ω, is called a

measurable space.

Definition 2.5.3. Let D be a nonempty subset of a normed space (X, ‖ ‖) and

(Ω,Σ) be a measurable space. Let ξ : Ω → D and S : Ω → CL(D).

1. A function ξ is measurable iff ξ−1(V ) ∈ Σ for every open subset V of D.

2. A function S is measurable iff S−1(V ) ∈ Σ for every open subset V of D,

where S−1(V ) = {ω ∈ Ω : S(ω) ∩ V 6= ∅}.

3. A function ξ is a measurable selector of S iff ξ is measurable and ξ(ω) ∈

S(ω) for all ω ∈ Ω.

Definition 2.5.4. Let D be a nonempty subset of a normed space (X, ‖ ‖) and

(Ω,Σ) be a measurable space. Let I : Ω×D → D and T : Ω×D → CL(D).

1. For some fixed ω ∈ Ω, then I(ω, ·) is a map of D into itself such that

I(ω, ·)(x) = I(ω, x) for all x ∈ D.

2. For some fixed ω ∈ Ω, then T (ω, ·) is a map from D into CL(D) such that

T (ω, ·)(x) = T (ω, x) for all x ∈ D.

3. For some fixed x ∈ D, then I(·, x) is a map from Ω into D such that

I(·, x)(ω) = I(ω, x) for all ω ∈ Ω.

4. For some fixed x ∈ D, then T (·, x) is a map from Ω into CL(D) such that

T (·, x)(ω) = T (ω, x) for all ω ∈ Ω.
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Definition 2.5.5. Let D be a nonempty subset of a normed space (X, ‖ ‖) and

(Ω,Σ) be measurable space. Let ξ : Ω → D, I : Ω × D → D and T : Ω × D →

CL(D). Then

1. A mapping I is a random operator iff I(·, x) is measurable for all x ∈ D.

2. A mapping T is a random operator iff T (·, x) is measurable for all x ∈ D.

3. A function ξ is a deterministic fixed point of a random operator I iff

ξ(ω) = I(ω, ξ(ω)) for all ω ∈ Ω.

4. A function ξ is a deterministic fixed point of a random operator T iff

ξ(ω) ∈ T (ω, ξ(ω)) for all ω ∈ Ω.

5. A function ξ is a deterministic coincidence point of random operator I

and T iff I(ω, ξ(ω)) ∈ T (ω, ξ(ω)) for all ω ∈ Ω.

6. A function ξ is a deterministic common fixed point of random operator

I and T iff ξ(ω) = I(ω, ξ(ω)) ∈ T (ω, ξ(ω)) for all ω ∈ Ω.

7. A function ξ is a random fixed point of a random operator T iff

ξ is measurable and ξ(ω) ∈ T (ω, ξ(ω)) for all ω ∈ Ω.

8. A function ξ is a random fixed point of a random operator I iff

ξ is measurable and ξ(ω) = I(ω, ξ(ω)) for all ω ∈ Ω.

9. A function ξ is a random coincidence point of a random operator I and

T iff ξ is measurable and I(ω, ξ(ω)) ∈ T (ω, ξ(ω)) for all ω ∈ Ω.

10. A function ξ is a common random fixed point of a random operator I

and T iff ξ is measurable and ξ(ω) = I(ω, ξ(ω)) ∈ T (ω, ξ(ω)) for all ω ∈ Ω.
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Definition 2.5.6. Let D be a nonempty subset of a normed space (X, ‖ ‖) and

(Ω,Σ) be measurable space. Let I : Ω×D → D and T : Ω×D → CL(D).

1. The set of all random fixed points of a random operator I is denoted by

RF (I).

2. The set of all random fixed points of a random operator T is denoted by

RF (T ).

3. The set of all random coincidence points of random operators I and T is

denoted by RC(I, T ).

4. The set of all common random fixed points of random operators I and T is

denoted by RF (I, T ).

Definition 2.5.7. Let D be a nonempty subset of a normed space (X, ‖ ‖) and

(Ω,Σ) be measurable space. Let I : Ω×D → D and T : Ω×D → CL(D).

1. A random operator I is nonexpansive iff

I(ω, ·) is nonexpansive for all ω ∈ Ω.

2. A random operator T is nonexpansive iff

T (ω, ·) is nonexpansive for all ω ∈ Ω.

3. A random operator T is I-nonexpansive iff

T (ω, ·) is I-nonexpansive for all ω ∈ Ω.
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