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Chapter 2 

 

Review of Literature  

 

2.1 Review of the Related Literature 

 

In this chapter we review some relevant works on the problem of confidence 

interval construction for the ratio of two binomial proportions. Various authors have 

come up with different solutions to this problem. Now we provide a brief discussion 

of the literature pertaining to this subject in order to compare our results with those 

already known. 

The first easily computed methods of confidence estimation for the ratio of 

binomial proportions have been suggested by Noether (1957) and Guttman (1958). A 

review of these early methods may be found in Sheps (1959). Methods of confidence 

estimation of the ratio of proportions as a diagnostic test that can detect a disease are 

used in McNeil et al. (1975). 

Next, methods based on the corresponding significance test have been 

developed. For example, Thomas and Gart (1977)  suggested to apply the method 

based on fixed marginals in the two-by-two tables for confidence interval 

construction. Santher et al. (1980) developed and generalizes this method and 

suggested three related exact methods for finding such intervals. 

Katz et al. (1978) suggests three methods of lower confidence limit for the 

ratio of binomial proportions, and the limits are defined as solutions of some 

equations. Numerical comparison of the methods shows that the method in which the 

logarithmic transformation is applied to the ratio of estimates of probabilities is 

preferential. Some modifications of these methods, that take their origin in Fieller’s 

method, are discussed in Bailey (1987). 

Santher and Snell (1980) derives exact intervals for the risk ratio from 

Cornfield's (1956) confidence interval for the odds ratio. 

Koopman (1984), as well as Miettinen and Nurminen (1985) proposed 

methods based on the asymptotic likelihood for hypothesis 0= θθ  testing with the 
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alternative of 0θθ ≠ . In Koopman(1984) this method was compared with the one 

recommended by Katz et al. (1978). 

All these results discovered until the end of the ’80 ’s were summarized in 

Gart and Nam (1988). In this paper they provide a comprehensive survey of various 

approximation methods of confidence limit constructions for the ratio of probabilities 

based on the properties of  goodness of fit with Pearson's chi-square test, invariance, 

universality of an application for all observations and computational simplicity. Also, 

methods for asymptotic of coverage probabilities improving by taking into account the 

asymptotic asymmetry of statistics are suggested (see also Gart and Nam (1990)). The 

results obtained are extended for the case of estimating the common ratio in a series of 

two-by-two tables, which was considered before in  Gart (1985). Extensive numerical 

illustrations are provided, which allow to compare accuracy properties of the methods 

of interval estimation of probability ratios. Instead of iterative algorithms for 

calculating the approximate confidence intervals that have been provided by Koopman 

(1984), Gart and Nam (1988), Nam (1995) give the analytical solutions for upper and 

lower confidence limits in a closed form. 

For interval estimator construction, Bedrick (1987) uses the special power 

divergence family of statistics. Intervals based on inverting the Pearson, likelihood-

ratio, and Freeman-Tukey statistics are included in this family. Asymptotic efficiency, 

coverage probability, and mean interval length are investigated. Comparisons of 

methods are provided by numerical examples. 

The bootstrap method of a confidence interval construction for the ratio of 

binomial proportions is suggested in Kinsella (1987) 

Coe and Tamhane (1993) provided a method for small sample confidence 

interval construction for the difference of probabilities, based on an extension of 

Sterne's method known for constructing small sample confidence intervals for a single 

success probability. Modifications of the algorithm for ratio probabilities are also 

indicated. 

Nam and Blackwelder (2002) developed a superior alternative to the Wald’s 

interval and gave corresponding sample size formulas. Bonett and Price (2006)  

proposed  alternatives to the Nam-Blackwelder confidence interval based on 

combining two Wilson score intervals. Two sample size formulas are derived to 
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approximate the sample size required to achieve an interval estimate with desired 

confidence level and length. 

Extensive numerical illustrations for comparison of exact and asymptotic 

methods for the ratio of binomial proportions confidence interval construction are 

presented in the thesis by Mukhopadhyay (2003).  

            A common epidemiological problem is concerned with estimating the ratio,θ , 

of the proportion of patients who respond in two treatment groups, or two groups of a 

cohort study. The response may, in fact, be the manifestation of a side effect, and θ  is 

often known as the risk ratio. In this paper we are concerned with the construction of 

large-sample confidence intervals forθ . 

            In this paper we present a new method, allied to that recommended by Katz et 

al. (1987), and so providing easily computed limits. 

          As it is mentioned in Bailey’s (1987) paper, for the problem of obtaining 

confidence limits to the risk ratio, or the ratio of two binomial probabilities, he 

proposes a method based on a power of the observed ratio, the power being chosen to 

minimize the skewness of the pivotal random variable. The method is simple to use 

and more stable than that of the previously known. A continuity correction is 

suggested if a conservative interval is desired.   

            We note once again that although many statisticians have studied in more 

details the ratio of two binomial proportions (see all the papers mentioned above), to 

the best of our knowledge no one has studied the problem of constructing confidence 

intervals for the ratio of proportions for inverse sampling. Our research considers both 

of direct binomial sampling and also inverse sampling. Our goal is to compare the 

performance of all five new methods with the previously known.  

 In the thesis we consider two different schemes of Binomial sampling. Direct 

Binomial sampling: Sample size is fixed before the experiment. Inverse binomial 

sampling: The number of successes in the sample is fixed, while sample size is 

random. The sampling stops after the last success is achieved. thm
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2.2 Confidence limits with using direct and inverse binomial sampling methods 

 

            Sufficiently simple methods of asymptotic confidence limits construction for 

the ratio of probabilities 21/= ppθ  exist in the case when the stopping moment for 

observations from the Bernoulli sequence with success probability  are priory fixed 

(

1p

n=1υ ). That is, the observations are done in the framework of direct binomial 

sampling, while observations from the sequence with success probability  are done 

as inverse binomial sampling. That is, the stopping time 

2p

υ  is defined by the number 

of the observation that results in achieving  successes. 1)(≥m

The likelihood function of the random samples ( ))()( , νYX n  depends on the 

components of these samples only through the values of complete sufficient statistics 

( )υ,
1 k
nX∑ . The distribution of the statistic k

nXT ∑1
=  follows the Binomial law 

, and the distribution of ),( 1pnB υ  follows the Negative Binomial distribution 

(sometimes also called Pascal law)  . It is well known that statistic ),( 2pmNb

nTX n /=  has the mean value 11 = pμ , variance , and is 

asymptotically  normal with parameters . Statistic 

npp )/(1= 11
2
1 −σ

)( ∞→n ),( 2
11 σμ mY m /=υ  has the 

mean value 22 1/= pμ , variance , and is asymptotically 2
22

2
2 )/(1= mpp−σ )( ∞→m  

normal with parameters  (Gut (1995), Apendix). ),( 2
22 σμ

Hence (see Lehmann (1998), Chapter 2, Section 1), mnmn YX=ˆ
,θ  is an 

unbiased estimation of probabilities ratio θ  such that uniformly by all values of 

 it minimizes any risk function with convex loss function and it is 

asymptotically  normal with mean 

21, pp

),( ∞→mn θμ =  and variance  
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The last statement immediately follows from the following easy to prove lemma. 

   

Lemma 1.  Let  be asymptotically nX )( ∞→n  normal  and  be 

asymptotically  normal , then 

)/,( 2
11 nσμ mY

)( ∞→m ),/,( 2
22 mσμ mn YX ⋅  is asymptotically 
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),( ∞→mn  normal with parameters 21= μμμ  and .  mn //= 2
2

2
1

2
1

2
2

2 σμσμσ +

 Proof. Introduce a normalized random variable  

 ,=
2

2

1

1
, mYnXZ mn
mn σ

μ
σ

μ −
⋅

−  

which under simultaneous limits n  and  to infinity has a nondegenerate 

distribution. Then  

m

 .= 2112
21

, μμμμσσ
−++⋅⋅ mnmnmn YX

nm
ZYX  

Hence, by Slutsky's theorem, the asymptotic distribution of mn YX ⋅  coincides with the 

asymptotic distribution of 2112 μμμμ −+ mn YX .  

            Below three confidence intervals for the direct-inverse case are obtained. In all 

formulas the standard procedure of obtaning normal approximation is used: Point 

estimation plus/minus  times standard error. In formula(3) the asymptotic 

variance from Lemma 1 is used. Contrary to this, in formula(4) the true value of the 

variance is substituted. Formula(6) is based on completely different idea than 

formula(3) and (4). For (6) the number of successes is fixed and equals to the number 

of successes in the first sample. The results obtained allow us to the state the 

following theorem.  

2/αZ

 

 Theorem 1.  If ∞→mn, , then an asymptotic )(1 α− -confidence region 

(interval) for the parametric function θ  as defined by the following inequality 
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The interval with bounds  
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m
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n
XYYXZ mnnm

mnmn
1)()(1ˆ

2/, αθ ---------------------(3) 

is an asymptotically )(1 α− -confidence interval for θ , where  is the quantile of 

standard normal distribution. 

2/αZ

 Proof. The statements follow from the asymptotic normality of the 

estimate . If in the right hand side of formula (1) for the asymptotic variance of the mn,θ̂
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estimate we change  and  on their consistent estimates 1p 1
2
−p nX  and mY  

respectively, then we obtain the asymptotically confidence region (2). If additionally 

in (1) we change θ  on its estimate , then we obtain the confidence interval (3).  mn,θ̂

Note that the left and right bounds of intervals (2) and (3) are the 

asymptotically lower and upper /2)(1 α− -confidence bounds for the parametric 

function θ . 

While if the true, not asymptotic variance of  is used, then all 

characteristics of the confidence interval direct-inverse sampling, confidence interval 

becomes better. Hence, the following (“upgraded”) variant of Theorem 1 is suggested. 

mn,θ̂

 

 Theorem 2.  If ∞→mn, , then an confidence interval for the parametric 

function θ  with bounds  

 ,1)()(1)1)(1(ˆˆ
,2/, ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
+

−
+

−−
±

m
YX

n
XY

nm
XYYXZ mnnmnm

mnmnmn θθ α ----(4) 

is an asymptotically )(1 α− -confidence interval for θ , where  is the quantile of 

standard normal distribution.                                                      

2/αZ

The important part of the suggested realization of the estimate of θ  is the 

choice of the number . The (random) sample size for the second sample depends on 

this number. If a statistician could obtain at least the same size of sample  which she 

had in the first sample, then the following sampling plan for the second stage of the 

statistical experiment can be suggested. Repeat observations until the same number of 

successes as in the first experiment, that is, set . Of course, we consider only the 

case when the value of 

m

n

Tm =

T  is greater than zero. Then for the estimate of  it is 

natural to consider the statistics 

21/p

TY T /=υ , where the conditional distribution of υ  is 

the Negative Binomial distribution  and the unconditional distribution is 

obtained by taking the expectation of this distribution by the truncated at zero 

Binomial distribution T . The estimate of the parameter 

),( 2pTNb

θ  is 
nmn

TYX mnn
υυθ == .=ˆ  

because  . mT =
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 Lemma 2.  If , then the estimate  Is asymptotically normal with the 

mean 

∞→n nθ̂

θμ =  and variance  

 .12=
2

2
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⎝

⎛
−−θθσ

pn
 

  

 Proof. The characteristic function of the Negative Binomial distribution 

 (the distribution of ),( 2pmNb υ  given ) is , where  mT = )(=)( tt m
m λϕ

 .
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Under the assumption that T  has truncated at zero Binomial distribution, the 

characteristic function of the unconditional distribution of ν  takes the form  

 ini
n

i
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The statement of the lemma follows now from the Taylor expansion of the function 

)(tϕ .  The lemma immediately implies the following result.  

 

             Theorem 3.  If ∞→n , the asymptotic )(1 α− -confidence interval for the 

parametric function θ  is defined by the inequality  

                                      ( )12ˆ
2/ −−≤− θθθθ α Tn Y

n
Z -------------------------(5) 

The interval bounded by the points  

                    
         

( )1ˆ2
ˆ

ˆ
2/ −−± nT

n
n Y

n
Z θ

θ
θ α ----------------------------(6) 

is the asymptotically )(1 α− -confidence interval for θ , where  is the quantile of 

standard normal distribution. 

2/αZ

              Of course, the left and right ends of the intervals (3), (4), and (6) provide the 

asymptotically upper and lower /2)(1 α− confidence boundaries for the parametric 

function θ  
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2.3  Confidence limits with using only direct binomial sampling method 

 

Consider now a standard situation when a statistician has in his hands only the 

numbers of success  

 i

m

mi

n

n XYmXXn ∑∑
11

=,=  

for two binomial experiments  and  with priory fixed sample sizes  

and . Initially for such type of data, asymptotic confidence intervals were 

constructed on the basis of the statistic of sample means ratio 

),( 1pnB ),( 2pmB n

m

mn YX / . That is, for 

, a biased estimation was explored. Moreover, a problem with its irregular 

behaviour under the absence of successes in trials  appear. As it has been 

mentioned in introduction, in this case there is no unbiased estimation of the 

parametric function . But it is possible to construct an estimation of this function 

that has an exponentially small value of a bias for 

21/p

),( 2pmB

21/p

∞→m . 

Let  be a sample in Bernoulli scheme with success probability , 

and . For a construction of an estimate  of the parametric function 

nXX ,...,1 p

i
nXT ∑1

= nθ̂

p1/=θ , we apply the statistic υ , which equals to the number of the last trial with 

. Then, by the analogy with the inverse binomial sampling, it is natural to 

suggest the statistic  as the estimate of 

1=υX

Tn /=ˆ υθ θ . But the value of υ  in our case is 

unknown, so it is better to use the projection  of this statistic on 

the sufficient statistic T . As it is known, (see Lehmann (1998), Chapter 2, Section 1), 

a projection does not cause an increase of the risk if the loss function is convex.  

}|ˆ{=)(= ** TET nnn θθθ

  

Lemma 2.  The projected estimator has the following representation 

 and its mean value is  1)1)/((=* ++ Tnnθ

 ( ).)(111=])([ 1* +−− n
n p

p
TE θ  

 Proof.  The joint distribution of statistics ν  and T  is defined by the 

probabilities  
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The marginal distribution of statistic T  is  
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All further calculations for mean values are trivial, if we use the well known 

combinatorial formula  
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It follows from the lemma proved above that for an estimate of the parametric 

function 21/= ppθ , it is appropriate to take the statistic  

 ,
1
1)(=ˆ

, +
+

m

n
mn Ym

mXθ  

with mean value  

 ( ).)(11=]ˆ[ 1
2,

+−− m
mn pE θθ  

The next theorem provides two kinds of asymptotic confidence intervals for θ .  

 

 Theorem 4.  If ∞→mn, , then an asymptotic )(1 α− -confident region 

(interval) for the parametric function θ  is defined by the inequality  
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The interval with bounds  
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is an asymptotically )(1 α− -confident interval for θ  , where  is the quantile of 

standard normal distribution. 

2/αZ

 

 Proof.  By the analogy with the proof of Theorem 1, the current proof follows 

from the following asymptotic representation (the standard technique of asymptotic 

normality parameters' calculations for a ratio of two asymptotically normal estimates 

is used):  
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             Therefore, the confidence interval constructed above is asymptotically 

equivalent to the interval based on the statistic mn YX / , but the problem that appears 

when the denominator of the estimate is zero with a positive probability is completely 

solved, and the estimate with smaller bias is explored. An interested reader may 

compare with a solution of this problem in the paper Cho (2007); see the beginning of 

Section 2. 

  

2.4  Confidence limits with using only inverse binomial sampling method 

 

For the case when both samples are obtained in the schemes 

 of the inverse binomial sampling, there exists an unbiased estimate 

of 

21,=),,( ipmNb ii

θ  with the uniformly minimal risk for any loss function. Really, for the parametric 

function  we have the unbiased estimate 21/p 22 /mυ , and for  under the scheme of 

inverse sampling for  there also exists the unbiased estimate (see Guttman, I. 

(1958)) 

1p

21 ≥m

1)1)/((=ˆ 111 −− υmp . Therefore, the optimal unbiased estimate of 21/= ppθ  

is  
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We have that ,1/=]/[ iii pmE υ  , and by the 

same method of asymptotic analysis for a ratio of two asymptotically normal estimates 

that we explored in the previous section, we obtain the following theorem.  

21,=,)/(1=]/[ 2 ipmpmVar iiiii −υ

 

 Theorem 5.  If 21,=, im i ∞→ , then the interval bounded by the points  
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where  

      ,21,=1),1)/((=ˆ imp iii −− υ  is an asymptotically )(1 α−  confidence interval for 

θ  , and  is the quantile of standard normal distribution. 2/αZ

 

 
 


