TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENT	iii
ABSTRACT (In Thai)	iv
ABSTRACT (In English)	vi
TABLE OF CONTENTS	viii
LIST OF TABLES	xii
LIST OF FIGURES	xiii
CHAPTER 1 INTRODUCTION	I
1.1 Rationale and Background	
1.2 Literature Review	4
1.2.1 Hydrogeology of the MIE Area	4
1.2.2 VOCs Contamination in MIE	4
1.2.3 Groundwater Flow and	
Solute Transport Models of MIE	5
1.2.4 Groundwater Remediation of	
VOCs-Contaminated Site in MIE	
1.3 Objectives and Scope	
1.4 Methodology	niversity
CHAPTER 2 PRINCIPLES AND THEORIES	¹¹
2.1 VOCs Contamination	

viii

	2.2 Principles and Theories of Groundwater Flow	13
	2.3 Principles and Theories of Solute Transport	16
	2.4 Numerical Model	19
	2.4.1 Groundwater Flow Model	19
	2.4.2 Solute Transport Model	20
	2.5 Stochastic Theory	21
	2.6 Remediation Techniques	25
	2.7 Biodegradation of the Chlorinated Solvents	30
	2.7.1 Reductive dechlorination	31
	2.7.2 Aerobic Oxidation	33
	2.7.3 Anaerobic Oxidation	33
	2.7.4 Aerobic Cometabolism	33
CHAPTER 3	SITE CHARACTERIZATION	34
	3.1 Background Site Information	34
	3.2 Hydrogeological Characteristics	35
	3.2.1 Hydrogeologic Settings	37
	3.2.2 Hydraulic Properties	40
	3.3 Hydrogeochemical Characteristics	46
	3.3.1 Hydrochemical Facies	46
	3.3.2 VOCs Contamination	46
	3.3.3 Geomicrobiology	versity

CHAPTER 4 GROUNDWATER FLOW AND	
SOLUTE TRANSPORT MODELS	52
4.1 Site Conceptual Model	52
4.2 Model Design	55
4.2.1 Model Grids and Layers	56
4.2.2 Model Parameters	60
4.3 Model Calibration	62
4.4 Simulation Results	65
4.4.1 Groundwater Flow Simulation Resu	ilts 65
4.4.2 Solute Transport Simulation Results	68
CHAPTER 5 UNCERTAINTY ANALYSIS IN GROUND	WATER
REMEDIATION	77
5.1 Stochastic Simulation Setup	77
5.2 Stochastic Simulation Results	79
5.3 In-situ Bioremediation Simulation	82
5.4 Uncertainty Analysis	86
CHAPTER 6 CONCLUSIONS AND RECOMMENDATI	ONS 89
6.1 Conclusions	89
6.1.1 Site Characterization	90
6.1.2 Groundwater Flow and Solute Trans	sport Models 91
6.1.3 Uncertainty Analysis in Groundwat	er Remediation:
Demonstration Simulation	92
6.2 Recommendation	

REFERENCES	95
APPENDICES	100
APPENDIX A: Borehole Data	101
APPENDIX B: Slug Test Results	127
APPENDIX C: Hydrochemical Test Results	133
APPENDIX D: Parameter Estimation Result for	
Groundwater Flow Model	136
APPENDIX E: Parameter Estimation Result for	
Solute Transport Model	155
CURRICULUM VITAE	169

xi

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLE

	Page
Locations and results of the single-well tracer test.	44
Values of hydraulic conductivity for hydrogeologic unit in the	
study area (Domenico and Schwartz, 1990).	61
Estimated values and relative sensitivity values of all parameter	
from parameter estimation of groundwater flow simulation process.	66
Estimated values and relative sensitivity values of all parameter	
from parameter estimation of solute transport simulation process.	69
	Values of hydraulic conductivity for hydrogeologic unit in the study area (Domenico and Schwartz, 1990). Estimated values and relative sensitivity values of all parameter from parameter estimation of groundwater flow simulation process. Estimated values and relative sensitivity values of all parameter

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure

LIST OF FIGURES		
Figure		Page
1.1	The location of study area	
	(modified from Royal Thai Survey Department, 1992).	2
1.2	Hydrogeologic map of the Maptaphut area (DGR, 2007).	6
1.3	Steps involved in groundwater flow and contaminant transport	
	modeling in this study (modified from Anderson and Woessner, 1992).	10
2.1	The porous media model to elaborate Darcy's law.	14
2.2	Typical semivariogram for stationary process (Compos, 1998).	25
2.3	Proposed pathway for biological transformation of chlorinated ethene	
	(Maymo-Gatelle et al., 1997).	32
3.1	Top view picture of the study area and	
	general groundwater flow direction.	36
3.2	Borehole locations and soil structure showing sparse data	
	available for constructing a 3-D solid model.	37
3.3	Solid model of the study area.	39
3.4	Fence diagram of the study area.	40
3.5	General groundwater flow direction of the study area.	41
3.6	The results of the single-well tracer test.	45
3.7	Piper diagram showing hydrochemical facies of groundwater samples	
	in monitoring wells.	47
3.8	Concentrations of selected VOCs in some monitoring wells.	48

3.9	Electrical resistivity survey lines in the study area.	49
3.10	Plume of contamination from electrical resistivity survey	
	(DEQP, 2010).	50
4.1	The conceptual model of the study area.	53
4.2	The source zone for the solute transport simulation of the study area.	56
4.3	Non-uniform finite-difference grid of the study area.	57
4.4	Non-uniform finite-difference grid of the study area show 127 lows,	
	131 columns, and 15 layers in oblique view. (Z-magnification is 5)	58
4.5	Non-uniform finite-difference grid with the solid model	
	by grid overlay option in GMS [®] . (oblique view).	59
4.6	Non-uniform finite-difference grid with the solid model by	
	grid overlay option in GMS [®] (cross at row no. 85).	59
4.7	Non-uniform finite-difference grid with the solid model by	
	grid overlay option in GMS [®] (cross at column no. 85).	60
4.8	Hydraulic head from the groundwater flow simulation at layer no. 3.	67
4.9	Graphs of the results from solute transport simulation compare with	
	the observation data.	70
4.10	Plumes of PCE at the simulated time 27/12/2008 in layer no.3.	71
4.11	Plumes of PCE at the simulated time 27/12/2010 in layer no.3.	72
4.12	Plumes of TCE at the simulated time 27/12/2008 in layer no.3.	73
4.13	Plumes of TCE at the simulated time 27/12/2010 in layer no.3.	74
4.14	Plumes of DCE at the simulated time 27/12/2008 in layer no.3.	75
4.15	Plumes of DCE at the simulated time 27/12/2010 in layer no.3.	76

xiv

5.1	Non-uniform finite-difference discretization of the study area.	
	(Grids: 126 columns, 130 rows, and 15 layers)	78
5.2	Hydraulic conductivity fields for all ten realizations.	80
5.3	Hydraulic heads distribution (top view) of realizations	
	5, 18, 30, 31, 32, and 46.	81
5.4	Hydraulic heads distribution (top view) of realizations	
	53, 65, 66, and 87.	82
5.5	Plumes of DCE at the simulated time $1/1/2011$ with and	
	without remediation (top view of layer no. 3)	
	of realizations 5, 18, 30, and 31.	84
5.6	Plumes of DCE at the simulated time $1/1/2011$ with and	
	without remediation (top view of layer no. 3)	
	of realizations 32, 46, 53, and 65.	85
5.7	Plumes of DCE at the simulated time 1/1/2011 with and	
	without remediation (top view of layer no. 3)	
	of realizations 66 and 87.	86
5.8	Total mole of carbon crossing the compliance plane (column no. 46)	
	as a function of time (with and without remediation).	87
5.9	Mole carbon removal efficiency for all cases	
	(removal efficiency is in the range of 10-20%).	88