TABLE OF CONTENTS	
TABLE OF CONTENTS	
	Page
ACKNOWLEDGEMENTS	iii
ENGLISH ABSTRACT	iv
THAI ABSTRACT	vi
TABLE OF CONTENTS	viii
LIST OF TABLES	xi
LIST OF FIGURES	xiii
ABBREVIATIONS	xvi
CHAPTER 1 INTRODUCTION	1
1.1 Problem	1
1.2 Background	1
1.3 Hypothesis	3
1.4 Objectives	3
CHAPTER 2 LITERATURE REVIEW	5
2.1 The Naban River Watershed National Nature Reser	5
2.1.1 Climate	7
2.1.2 Soils	9
2.1.3 Biological Diversity and Ecosystem Services	11
2.1.4 Land Use	12
2.1.5 Demography and Economy	13
2.2 Hevea brasiliensis	15
2.2.1 Cultivation	17
2.2.2 Temperature, Sunlight and Wind	18
2.2.3 Water and Irrigation	e 19
2.2.4 Soils and Fertilization	21

TABLE OF CONTENTS (Continued)

2.2.5 Diseases and Pests	23
2.2.6 Tree Spacing and Intercropping	24
2.2.7 Latex Properties and Collection	25
2.2.8 Limiting Factors	26
2.2.9 Current Distribution of Rubber Plantations	27
CHAPTER3 MATERIALS AND METHODS	29
3.1 The Study Area	29
3.2 Software	29
3.3 Maps	30
3.4 Parameterization of the LUCIA Model	34
3.5 Model Outputs	35
3.6 Calibration of the LUCIA Model	35
CHAPTER 4 RESULTS	37
4.1 Biomass and Carbon Sequestration of Selected Land Uses in the N	aban River
Watershed National Nature Reserve	37
4.1.1Rubber	38
4.1.1.2 Xishuangbanna	39
4.1.1.3Hainan Island	41
4.1.2 Calculation of Rubber Tree Biomass in the Naban River Watersho	ed National
Nature Reserve	42
4.1.3 Paddy Rice, Maize, Orchards/tea, Grasslands and Forests	48
4.1.3.1 Paddy Rice, Maize, Orchards/tea and Grasslands	48
4.1.3.2 Primary Tropical Seasonal Rainforests	49
4.1.3.3 Primary Tropical Montane Rainforests and Secondary Tropical Secondary	easonal and
Montane Rainforests	50
4.1.3.4 Primary and Secondary Subtropical Evergreen Broadleaf Forests	51

TABLE OF CONTENTS (Continued)

4.2 Simulated Biomass, Soil Carbon, Soil CO ₂ Emissions and Carbon Balance	53
4.2.1 Biomass, Litter Inputs and Carbon Exports	54
4.2.1.1 Biomass	54
4.2.1.2 Litter Inputs and Carbon Exports	58
4.2.2 Soil Carbon	60
4.2.3 Soil Carbon Dioxide Emissions	64
4.2.4 Carbon Balance	67
CHAPTER 5 DISCUSSION	72
CHAPTER6 CONCLUIONS	88
REFERENCES	93
APPENDICES	109
APPENDI A	110
APPENDIX B	114
CURRICULUM VITAE	123

LIST OF TABLES

	LIST OF TABLES	
Tal		
1	Phenological stages of mature rubber plantations in Xishuangbanna	17
2	Effect of different irrigation treatments on girth increment, biomass	
	production and tappable trees (January 1994) in rubber in North Konkan,	
	India	20
3	Fertilization of rubber plantations in the NRWNNR	22
4	Application of pesticides in rubber plantations in the NRWNNR	24
5	Share of aboveground and belowground biomass in % of rubber trees of	
	ages 7, 13, 19, 25 and 47 years at low elevations in Xishuangbanna	40
6	Aboveground biomass allocation of 14 year old rubber trees at low,	
	medium and high elevations in Xishuangbanna	41
7	Tree biomass regression models for rubber plantations at low, medium an	d
	high elevations in the NRWNNR	43
8	Biomass regression models for rubber plantations (450 trees per ha) at lov	w,
	medium and high elevations in the NRWNNR	45
9	Biomass estimations of Xishuangbanna's primary tropical seasonal	
	rainforests	50
10	Biomass estimations of Xishuangbanna's primary tropical montane	
	rainforests	50
11	Outputs of the LUCIA model	53
12	Total area in ha by land use in the sub-watershed, 1992 to 2003	55
13	Average yearly expansion rate in ha and % by land use in the sub-	
	watershed, 1992 to 2003	55
14	Biomass in Mg by land use area in the sub-watershed, 1992 and 2003	V 57 S T V
15	Cumulative litter inputs in Mg C by land use area in the sub-watershed,	
	1992 to 2003	59

16	Cumulative carbon exports in Mg C by land use area in the sub-watershed,	
	1992 to 2003	60
17	Topsoil carbon contents in Mg C per ha, 1992 and 2003	62
18	Total soil carbon in Mg C by land use area in the sub-watershed, 1992 and	
	2003	63
19	Mean daily and mean yearly cumulative soil CO ₂ emissions in Mg CO ₂ per	
	ha, 1993 to 2003	65
20	Yearly soil CO ₂ emissions in Mg CO ₂ by land use area, 1994 and 2003	66
21	Cumulative soil CO ₂ emissions in Mg CO ₂ by land use area, 1992 to 2003	66
22	Simulated (sim.) and estimated (est.) yearly cumulative soil CO ₂ emissions	
	in Mg CO ₂ of the sub-watershed, 1992 to 2003	67
23	Carbon balance in Mg CO ₂ per ha of the land uses in the sub-watershed,	
	1994 and 2001	69
24	Yearly and cumulative carbon balance in Mg CO ₂ by land use area in the	
	sub-watershed, 1992 to 2003	70

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Fig	ure Page Location of the NRWNNR	5
2		
2	Zonation and settlements in the NRWNNR	6
3	Chinese price of natural rubber in € per Mg, 1967 to 1990, and world price	
	of natural rubber in € per Mg, 2002 to first half of 2012	7
4	Mean monthly precipitation in mm/month; and mean highest, mean	
	average and mean lowest temperatures in ° C in Jinghong, 1954 to 2007	9
5	Average daily soil and air temperature in ° C and daily precipitation in mm	
	in Jinghong, 2011	10
6	Rubber cover in ha in Xishuangbanna, 1963 to 2010	12
7	Land uses in the NRWNNR, 2006/07	13
8	Rubber plantation in the NRWNNR	15
9	Rubber fruits	16
10	Rubber seeds	16
11	Latex tapping from a rubber tree in the NRWNNR	25
12	Dry latex yield at low, medium and high elevations during the tapping	
	period in Xishuangbanna	26
13	Selected sub-watershed in the NRWNNR	31
14	Elevation map of the sub-watershed	31
15	Cost distance map for the contraction of agricultural land uses from each	
	village centre	32
16	Yearly contraction of agricultural land uses, 2007 to 1992	32
17	Land use map from 1993	33
18	Land use map from 2006/07	33
19	Soil type map	33
20	Local drain direction map	33
21	Biomass in Mg per ha of rubber plantations in western Ghana, Mato	
	Grosso, Xishuangbanna, the NRWNNR, and Hainan Island	40

22	Total, total C, aboveground and belowground biomass in Mg per ha (450	
	trees per ha) of a 14 year old rubber plantation at low, medium and high	
	elevations in the NRWNNR	44
23	Aboveground (AB) and belowground (BB) biomass in Mg per ha of 0 to	
	38 year old rubber plantations at low, medium and high elevations in the	
	NRWNNR	46
24	Stem, branch and leaf biomass in Mg per ha of 0 to 38 year old rubber	
	plantations at low and medium elevations in the NRWNNR	47
25	Biomass carbon estimations in Mg C per ha of mature rubber, paddy rice,	
	and primary and secondary forests in Xishuangbanna	52
26	Total area in ha by land use in the sub-watershed, 1992 to 2003	54
27	Biomass in Mg per ha of the sub-watershed's land uses, 1992 to 2003	56
28	Biomass in Mg by land use area in the sub-watershed, 1992 to 2003	57
29	Biomass in Mg by forest type area and sub-watershed, 1992 to 2003	58
30	Litter inputs in Mg C per ha by land use of the sub-watershed, 1992 to	
	2003	59
31	Carbon exports in Mg C per ha by land use of the sub-watershed, 1992 to	
	2003	60
32	Carbon in topsoil in Mg C per ha for every land use in the sub-watershed,	
	1992 to 2003	61
33	Carbon in subsoil in Mg C per ha for every land use in the sub-watershed,	
	1992 to 2003	62
34	Total soil carbon in Mg C by land use area in the sub-watershed, 1992 to	
	2003	63
35	Daily soil CO ₂ release in Mg CO ₂ per ha by land use in the sub-watershed,	
	1992 to 2003	64
36	Daily soil CO ₂ release in Mg CO ₂ by land use area in the sub-watershed,	
	1992 to 2003 I	65
37	Daily soil CO ₂ release in Mg CO ₂ by land use area in the sub-watershed,	
	1992 to 2003 II	65
38	Daily soil CO ₂ release in Mg CO ₂ of the sub-watershed, 1992 to 2003	66

20		
39	Carbon balance in Mg CO_2 per ha of the land uses in the sub-watershed,	
	1992 to 2003	68
40	Cumulative carbon balance in Mg CO ₂ per ha of the land uses in the sub-	
	watershed, 1992 to 2003	69
41	Yearly carbon balance in Mg CO ₂ by land use area in the sub-watershed,	
	1992 to 2003	70
42	Carbon balance in Mg CO ₂ of the sub-watershed, 1992 to 2003	71

ABBREVIATIONS

NRWNNR Naban River Watershed National Nature Reserve

MMSEA Mainland Montane South East Asia

LUCIA model Land Use Change Impact Assessment model

cm³ cubic centimetre km² Square kilometre

ha hectare metre m centimetre cm millimetre mm gram g kilogram kg Mg mega gram Mt mega ton

GBH girth at breast height
DBH diameter at breast height

° C degree centigrade

C carbon

CO₂ carbon dioxide SOC soil organic carbon LAI leaf area index

ET₀ reference evapotranspiration

LE low elevation
ME medium elevation
HE high elevation

LME low and medium elevations
LMHE low, medium and high elevations