CHAPTER 4

RESULTS AND DISCUSSION

4.1 Qualitative and quantitative analysis of synthetic pyrethroids

4.1.1 Retention time of synthetic pyrethroid insecticides

Retention times of individual synthetic pyrethroids in standard mixture are presented in Table 4.1. The pure and extracted standard show multiple peaks while a control sample did not show peaks that could be attributed to any studied pesticide (Figure 4.1). Similar result was previously reported by Jing et al. (2010) multiple peaks were observed for several pyrethroids because the existence of isomers. In control extracts, crop sample without addition of insecticides passed through all steps. The purpose of control extract was to check accuracy of the method.

Synthetic pyrethroid insecticides	Retention time (minutes)
Lambda cyhalothrin 1	10.204
Lambda cyhalothrin 2	11.292
Lambda cyhalothrin 3	11.508
Permethrin 1	12.389
Permethrin 2	12.541
Cyfluthrin 1	11.816
Cyfluthrin 2	13.122
Cyfluthrin 3	13.237
Cyfluthrin 4	13.347
Cyfluthrin 5	13.394

Table 4.1 Retention times of synthetic pyrethroids in standard mixture

Synthetic pyrethroid insecticides	Retention time (minutes)
Cypermethrin 1	12.277
Cypermethrin 2	13.544
Cypermethrin 3	13.660
Cypermethrin 4	13.777
Cypermethrin 5	13.826
Senvalerate 1	14.897
Fenvalerate 2	15.230
Deltamethrin 1	14.238
Deltamethrin 2	15.813
Deltamethrin 3	16.207

Table 4.1 Retention times of synthetic pyrethroids in standard mixture (continued)

4.1.2 Linearity of synthetic pyrethroids

Linearity regression equations and regression coefficients (\mathbb{R}^2) of individual synthetic pyrethroids standard mixture are present in Table 4.2. The calibration curves were linear with correlation coefficients (\mathbb{R}^2) between area ratio of sample and internal standard for all insecticides were 0.9835 to 0.9972. The linearity ranged differs by their compounds from 5 – 500 ng/mL.

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

Fig 4.1 GC-ECD chromatogram of (a) a pure standard a control extract, (b) an extraction internal standard solution and (c) an extracted standard solution. The compounds are numbered as follows: bifenthrin (IS)20ng/mL, 1,2,3=lambda cyhalothrin 10ng/mL, 4,8,9,10,11=cyfluthrin 20ng/mL 6,7=permethrin 5ng/mL, 5,12,13,14,15 = cypermethrin 5 ng/mL, 17,18=fenvalerate 20ng/mL and 16,19,20=deltamethrin 20ng/mL

Table 4.2 Linearity regression equations and correlation coefficients (R^2) of individual synthetic pyrethroids standard mixture

Synthetic pyrethroid insecticides	Linearity regression equations	R ²
1. Lambda cyhalothrin	Y = 103.3 X + 0.49	0.9961
2. Bifenthrin (IS)	Y = 1X + 0	1.0000
3. Permethrin	Y = 54.0 X - 0.11	0.9835
4. Cyfluthrin	Y = 97.86 X + 0.59	0.9972
5. Cypermethrin	Y = 128.33 X + 1.68	0.9872
6. Fenvalerate	Y = 52.1 X + 0.55	0.9899
7. Deltamethrin	Y = 61.7 X + 0.22	0.9941

X: amount ratio of sum peaks of individual synthetic pyrethroids to internal standard (amt ratio)

Y: response ratio

R²: regression coefficients

IS : internal standard

4.2 Quality control of synthetic pyrethroid analysis

4.2.1 Level of detection of synthetic pyrethroid analysis

The limits of detection (LOD) and the limits of quantification (LOQ) of individual synthetic pyrethroid are present in Table 4.3. LOD and LOQ ranged vary depending on its component. Values of LOD differ from 0.001 for permethrin and cypermethrin, 0.003 for lambda cyhalothrin and 0.005 μ g/L for cyfluthrin, fenvalerate and deltamethrin. In addition, LOQ ranged from 0.005 for lambda cyhalothrin, 0.0025

for permethrin and cypermethrin to 0.01 mg/kg cyfluthrin, fenvalerate and deltamethrin. These results show the method has suitable range with lower value when compare to maximum residue limits (MRLs) recommended by Thai agriculture commodity and food standard (2006) and Codex alimentarius pesticide residues in food.

Table 4.3 Limit of detection (LOD) and limit of quantification (LOQ) of individual synthetic pyrethroids

Synthetic pyrethroid insecticides	LOD (mg/kg)	LOQ (mg/kg)	
1. Lambda cyhalothrin	0.003	0.005	
2. Permethrin	0.001	0.025	
3. Cyfluthrin	0.005	0.01	
4. Cypermethrin	0.001	0.025	
5. Fenvalerate	0.005	0.01	
6. Deltamethrin	0.005	0.01	

4.2.2 Recovery of synthetic pyrethroids' analysis

Percent recoveries of the six pyrethroids from fortified crop at three concentrations are presented in Table 4.4. Recoveries ranged 96.8% to 109.3%, from 86.5% to 96.9 % and 83.8% to 98.4% for spiked at low, medium and high level, respectively. The standard deviation were 2.1 to 12.4, 5.5 to 10.0 and 1.8 to 16.5 for all synthetic pyrethroids at the spiking levels of low, medium and high level, respectively. The result of this study showed that the values of recoveries percentage in all synthetic pyrethroids were in range of acceptable criteria recommended by CODEX (70-110%).

Synthetic	low spike	d levels	medium spil	ked levels	high spike	d levels
pyrethroid	concentration	Recoveries	concentration	Recoveries	concentration	Recoveries
insecticides	(ng/mL)	(%)±SD	(ng/mL)	(%)±SD	(ng/mL)	(%)±SD
1. Lambda cyhalothrin	10	98.4±12.4	20	92.2±5.7	50	89.0±15
2. Permethrin	5	106.9±2.7	10	93.1±4.7	20	84.8±16.5
3. Cyfluthrin	20	109.3±9.7	50	96.9±5.5	100	98.4±3.3
4.Cypermethrin	5	96.8±6.9	10	86.5±10.0	20	89.5±9.4
5. Fenvalerate	20	102.7±3.9	50	94.1±6.4	100	89.6±1.8
6. Deltamethrin	20	105.2±2.1	50	96.5±9.4	100	83.8±3.0

Table 4.4 Recoveries percentage (%) and standard deviation (SD) of individual synthetic pyrethroids at low, medium and high spiked levels

4.2.3 Synthetic pyrthroids of intra- and inter- batches of pooled samples

Variations of intra-batch and inter-batch of pooled vegetable and fruit samples are presented in Table 4.5. Ten of pooled vegetable and fruit samples were analyzed for both intra- and inter-batch. The intra-batch recoveries percentage ranged from 87.9 for cypermethrin to 102.1 for bifenthrin and CV percentage ranged from 1.9 for bifenthrin to 7.4 for deltamethrin. The recoveries of inter-batch ranged from 81.0 for permethrin to 113.9 for fenvalerate and CV percentage ranged from 5.8 for bifenthrin to 15.7 for permethrin. Both of them were acceptable for criteria determine at less than 21%. (Pihlström, 2010)

Synthetic pyrethroid	Intra- batch (n	=10)	Inter- batch (n	=10)
insecticides	%recovery±SD	%CV	%recovery ±SD	% CV
1. Lambda cyhalothrin	97.9±3.7	3.8	102.6±9.9	9.6
2. Bifenthrin (IS)	102.1±1.9	1.9	107.2±6.2	5.8
3. Permethrin	92.7±5.1	5.5	81.0±12.8	15.7
4. Cyfluthrin	98.9±1.8	1.8	91.8±10.3	11.3
5.Cypermethrin	87.9±1.7	2.1	94.5±14.4	15.3
6. Fenvalerate	98.7±4.3	4.3	113.9±11.6	10.3
7. Deltamethrin	92.8± 6.9	7.4	89.7 ± 8.0	8.9

Table 4.5 Intrabatch and interbatch analytical average recovery (%) \pm SD of six synthetic pyrethroids in a pooled sample (spike concentration 100µg/kg)

4.3 Qualitative and quantitative analysis of 3-PBA

4.3.1 Retention times of **3-PBA** in urine analysis

This study detected 3-phenoxybenzoic acid (3PBA), a common metabolite of pyrethroid insecticides. Retention times, linearity regression equations and regression coefficients (R²) of 3-PBA are presented in Table 4.6. Moreover, peaks of 2-PBA which served as an internal standard at 20 ng/mL and 3-PBA at 10 ng/mL are show in Figure 2.

Table 4.6 Retention times, linearity regression equations and regression coefficients

(R^{2})	of 3-	PBA
(/		

	synthetic pyrethroid	Retention time	Linearity regression	
	metabolite	(minutes)	equations	\mathbb{R}^2
opyri	2 PBA (IS)	9.931	Y = 1X + 0	1.0000
	3 PBA	10.212	y = 3.10x + 2.02	0.9939

Fig 4.2 GC-ECD chromatogram for a (a) pure standard 2-PBA (IS) 20ng/mL (b) pure standard 2-PBA (IS) 20ng/mL and 3-PBA 10ng/mL

4.3.2 Quality control of 3-PBA analysis

4.3.2.1 Recovery, limited of detection (LOD), and limit of quantification (LOQ) of 3-PBA

Recovery studies were performed at 50 ng/mL fortification of 3-PBA and 2-PBA (internal standard), at least five times in a pooled sample urine. These samples were prepared by spike 3 PBA solutions in methanol. Percent recovery of 3-PBA at 91.4, and percent CV at 0.13. For limit of detection, and limit of quantification of 3-PBA are presented in Table 4.7. These results were acceptable when compared to the reference value of German population which determines urinary concentration of metabolites of pyrethroid insecticides at not exceed 2 ng/mL (Human Biomonitoring Commission of the German Federal Environment Agency 2005).

Table 4.7 Average recoveries (%recoveries), limit of detection (LOD), and limit of quantification (LOQ) of 3-PBA

Synthetic pyrethroid metabolite	%recovery ±SD	%CV	LOD (µg/l)	LOQ (µg/l)
3 PBA	91.4±2.29	0.13	0.8	1

4.3.2.2. 3-PBA variations of intra- and inter-batches of pooled samples

Variations of intra-batch of pooled urine samples are present in Table 4.8. Sixteen of pooled urine samples were analyzed for intra-batch and 8 of pooled urine samples were analyzed for inter-batch variations. For intra-batch, percent CV at 0.18 for 3-PBA. For inter-batch, percent CV at 0.12 for 3-PBA. Both of them were in the acceptable criteria, which were less than 21%

Table 4.8 Intra-batch and inter-batch variation of recovery (%)±SD of 3-PBA in spiked pooled sample

Synthetic pyrethroid	Intra- batch variation	on (n=16)	Inter- batch variat	ion (n=8)
metabolite	%recovery±SD	%CV	%recovery±SD	% CV
3-PBA	88.1±2.98	0.18	88.9±3.75	0.12

ลิขสิทธิ์มหาวิทยาลัยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved

4.4 Results and discussion of section 1

Development method for detecting synthetic pyrethroid residues in vegetable and fruits using GC-ECD

4.4.1 Extraction of synthetic pyrethroid residues from various solvents

In this study, fruits and vegetables extraction efficiency for synthetic pyrethroid residues of four solvent extractions were compared in Table 4.9. Four solvents consisted of ethyl acetate, dichloromethane, acetonitrile, and acetone. Dichloromethane obtained highest recoveries percentage in most of synthetic pyrethroid residues except in deltamethrin. Recoveries percentage of dichloromethane ranged from 28% in deltamethrin to 90% in cypermethrin and fenvalerate.

Table 4.9 Percentage recovery of synthetic pyrethroid residues for ethyl acetate, dichloromethane, acetonitrile, and acetone

Synthetic pyrethroid		%	recovery	
insecticides	EA	DCM	ACN	acetone
lamda cyhalothrin	54	68	2	3
Permethrin	27	69	1	1
Cyfluthrin	37	79	4	3
Cypermethrin	63	90	6	3
fenvalerate	34	90	8	894-1
Deltamethrin	82	28	13	6

60

4.4.2 Effectiveness of clean up procedure for eliminating the interference in vegetable and fruits sample

In this study, the effectiveness of various solid-phase extraction cartridges to clean up sample which comprise SAX/PSA, activated carbon, and octadecyl (C_{18}) were determined. From initial study, due to inability to remove pigment from sample of octadecyl (C_{18}), the researcher decided to stop the study on this solid-phase extraction. Further study, activated carbon has better ability to remove pigment from sample than SAX/PSA. Similar to recoveries percentage, activated carbon have higher value than SAX/PSA in all synthetic pyrethroid insecticides. Recoveries percentage of activated carbon range from 63.3% in deltamethrin to 101.0 in bifenthrin and standard deviation range from 1.14 in bifenthrin to 20.41 in deltamethrin.

Table 4.10 Percentage of recoveries and standard deviation of synthetic pyrethroid residues for activated carbon and SAX/PSA

activated carbon (n=3)	SAX/PSA (n=3)
91.7±8.44	7.4±5.07
101.0±1.14	28.3±6.56
82.5±8.29	65.8±52.46
78.2±15.49	34.0±13.90
67.5±15.85	26.5±12.27
92.6±14.02	57.0±35.87
63.3±20.41	52.4±6.02
	91.7±8.44 101.0±1.14 82.5±8.29 78.2±15.49 67.5±15.85 92.6±14.02

4.4.3 Effectiveness of extraction of synthetic pyrethroid residues in various matrices

In this study, six synthetic pyrethroid insecticides various matrices vegetable and fruit samples are summarized in table 4.11. Four vegetable and fruit samples consist of cabbage, kale, longan, and tangerine were determined. From this study, the recoveries of synthetic pyrethroid in vegetable and fruit samples are higher than 80% except permethrin in cabbage and kale at 76 and 69 respectively. Recoveries percentage of various matrices vegetable and fruit samples range from 69% in permethrin of kale to 131 in cyfluthrin of cabbage and standard deviation range from 1.66 in deltamethrin of tangerine to 33.1 in lambda cyhalothrin of kale.

 Table 4.11 Percentage of recoveries and standard deviation of synthetic pyrethroid

 residues in various matrices.

Kale Longar	n Tangerine
±33.1 99±3.5	0 94±9.32
7±4.2 99±4.9	8 103±6.01
±25.2 93±6.7	9 91±10.20
7±20.5 118±15	.3 97±8.68
±16.5 104±13	.9 99±3.32
±23.2 103±10.	20 100±3.95
)±12.6 92±5.1	0 100±1.66
	±16.5 104±13 ±23.2 103±10.

4.4.4 Effectiveness of extraction of synthetic pyrethroid residues in rugged test

In this study, fruits and vegetables extraction efficiency for synthetic pyrethroid residues in rugged test were compared in Table 4.12. From initial study, three scientists obtained the recoveries of synthetic pyrethroid in vegetable and fruit samples are higher than 80%. Mean recoveries percentage of various scientists range from 90.8 % in deltamethrin to 118.9 in lambda cyhalothrin and CV percentage ranged from 0.68 for fenvalerate to 17.13 for bifenthrin.

Table 4.12 Percentage of recoveries and CV of synthetic pyrethroids' residues in rugged test.

Synthetic	Scientist 1	Scientist 2	Scientist 3	Mean	¥
pyrethroid	%recovery	%recovery	%recovery	%recovery	%
metabolite	±SD	±SD	±SD	±SD	CV
1. Lambda		1 23			
cyhalothrin	126.9±12.24	134.1±28.60	97.3±10.84	118.9±20.37	2.70
2. Bifenthrin (IS)	92.4±6.29	96.4±4.40	95.8±7.04	95.4±2.57	17.13
3. Permethrin	94.3±31.09	104.1±17.76	82.3±11.64	93.6±10.92	11.67
4. Cyfluthrin	110.1±36.63	119.1±21.11	113.3±14.61	114.2±4.56	4.00
5.Cypermethrin	85.5±64.71	104.1±48.29	95.5±8.96	95.0±9.28	9.76
6. Fenvalerate	100.9±13.00	99.6±17.79	100.0±6.48	100.2±0.68	0.68
7. Deltamethrin	85.8±26.79	89.8±9.86	96.8±3.95	90.8±5.56	6.13

63

4.5 Result and discussion of section 2

Development method for detecting synthetic pyrethroid metabolite in urine using GC-ECD.

4.5.1 Extraction of synthetic pyrethroid metabolite in urine from various solvent

In this study, urine extraction efficiency for synthetic pyrethroid metabolite of four solvent extractions. Four solvent consist of ethyl acetate, dichloromethane, tert buthyl methyl ether, and hexane. Ethyl acetate obtained highest recoveries percentage in most of synthetic pyrethroid metabolite in urine. Recoveries percentage of ethyl acetate at 91.4.

4.5.2 Effectiveness of clean up procedure for eliminating the interference in urine sample

In this study, the effectiveness of various solid-phase extraction cartridges to clean up sample which comprise SAX/PSA, activated carbon, and octadecyl (C_{18}) were determined. From initial study, due to inability to remove pigment from sample of SAX/PSA and activated carbon, the researcher decided to stop the study on these cartridges. Further study, C_{18} has better ability to remove pigment and noticeable chromatographic interferences from sample the recoveries percentage at 78.9.

ลิขสิทธิ์มหาวิทยาลัยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved

4.6 Assess the exposure of synthetic pyrethroid insecticides among school children

Exposure assessment should be based on combined questionnaire and marker data characterizing external and internal exposure. In this study external marker can be measured in vegetable and fruit samples, and internal biomarker relevant to children includes measurements in urine samples.

4.6.1 Types and levels of synthetic pyrethroid in vegetables and fruits

The common name and scientific name of vegetable and fruit samples present in Table 4.13.

Common name	Sciencetific name
Cabbage	Brassica oleracea L.var.capitata
Kale	Brassica oleracea L.var.acephala DC.
Water spinach	Impomoea aquatica Forsk.
Cauliflower	Brassica oleracea L.var.botrytis L.
Chinese cabbage	Brassica rapa L. subsp. pekinensis (Lour.) Olsson.
Chinese mustard	Brassica.camprestris L. ssp. Chinensis (Lour.)Ruprecht.
Yard long bean	Vigna unguiculata var.sesquipedalis
	(Vigna sinensis var.sesquipedalis L.Verdc.)
Cucumber	Cucumis sativus L.
Sugar pea	Pisum sativum var.macrocarpon Ser.

Table 4.13 Common name and scientific name of vegetables and fruits.

Common name	Sciencetific name
Tangerine	Citrus reticulate
Guava	Psidium guajava
Apple	Malus domestica
Dragon fruit	Hylocereu undatuss
Mango	Mangifere india Linn.
Sand pear	Pyrus pyrifolia
Grape	Vitis venefera
Lychee	Litchi chinensis Sonn.
Rose apple	Syzygium samarangense (Blume) Merr.&L.M.Perry

Table 4.13 Common name and scientific name of vegetables and fruits. (continued)

In June 2009, analysis of synthetic pyrethroid residues in vegetable and fruit samples, each of the lychee is a residue in the permethrin, cyfluthrin, lambda cyhalothrin, and cypermethrin were 0.07, 0.16, 0.22, and 3.24 mg/kg respectively, but for fenvalerate have a maximum residue on the grapes is 0.27 mg/kg and deltamethrin have a maximum residue on a tangerine at 0.76 mg/kg. Cucumber is a vegetable that has residue at least one substance that is minimal lambda cyhalothrin. Show in Table

4.14

Table 4.14 Mean±SD concentration of six synthetic pyrethroid residues in individual commodity in June 2009 (mg/kg)

Commodities	lambda cyhalothrin	permethrin	cyfluthrin	cypermethrin	fenvalerate	deltamethrin
Cabbage	0.044	0.028±0.04	0.087±0.04	0.080±0.06	0.024±0.01	0.329±0.19
(n=7) Kale (n=5)	ND	0.027±0.02	0.076±0.04	0.574±.67	0.055±0.03	0.555±0.24
	ND	0.027±0.02	0.070±0.04	0.374±.07	0.055±0.05	0.555±0.24
Chinese lettuce (n=5)	ND	0.014	0.100±0.02	1.962±2.65	0.015	0.045±0.04
Yard long bean (n=7)	ND	0.080±0.05	0.081±0.02	1.121±1.44	0.031±0.02	0.050
Long						
cucumber	ND	ND	<loq< td=""><td>ND</td><td><loq< td=""><td>ND</td></loq<></td></loq<>	ND	<loq< td=""><td>ND</td></loq<>	ND
(n=8)						
Sugar pea	ND	0.092±0.02	0.050±0.01	0.751±1.07	0.02	0.054±0.07
(n=3)	ND	0.092±0.02	0.030±0.01	0.73111.07	0.02	0.034±0.07
Tangerine	0.097±0.02	0.085±0.06	0.052±0.02	0.645±0.55	0.031	0.757±0.26
(n=6)	0.097±0.02	0.085±0.00	0.032±0.02	0.04510.55	0.031	0.737±0.20
Apple	ND	0.033±0.02	0.092±0.08	0.060±0.06	0.017	ND
(n=35)	ND	0.055±0.02	0.072±0.08	0.000±0.00	0.017	ND
Grape (n=2)	ND	ND	ND	0.409±0.52	0.269±0.37	ND
Lychee	0.219	0.072+0.07	0.16410.05	2 229 + 4.96	0.075+0.02	0.07410.02
(n=5)	0.218	0.073±0.07	0.164±0.06	3.238±4.86	0.075±0.03	0.074±0.03
dragon fruit (n=5)	0.054	0.024±0.01	0.116±0.03	0.165±0.07	0.020	0.071±0.01

Table 4.15 Mean±SD concentration of six synthetic pyrethroid residues in individual commodity in March 2010 (mg/kg)

Commodities	lambda cyhalothrin	permethrin	cyfluthrin	cypermethrin	fenvalerate	deltamethrin
Cabbage (n=5)	0.38±0.32	0.06±0.01	0.11±0.04	0.10±0.03	0.68±0.93	1.55±1.87
Kale (n=4)	0.29±0.19	0.02	0.11±0.13	0.19±0.20	0.03	3.79±5.36
Water spinash (n=2)	0.70	0.04	0.19±0.20	0.17±0.14	0.54±0.52	0.42
Cauliflower (n=3)	0.27±0.07	0.04±0.02	0.15±0.07	0.09±0.01	0.11±0.01	0.48
Chinese cabbage(n=4)	0.63±0.30	0.03±0.04	0.07±0.01	0.34±0.60	0.20±0.02	1.53±2.15
Chinese mustard (n=6)	0.256±0.03	0.09±0.06	0.27±0.25	0.13±0.07	0.35±0.22	0.55±0.35
Yard long bean (n=3)	0.27±0.07	0.04±0.02	0.15±0.07	0.09±0.01	0.11±0.01	0.48
Long						
cucumber	0.25±0.20	0.11±0.12	0.14±0.06	0.04±0.03	0.34±0.37	0.48±0.08
(n=5) Tangerine (n=4)	0.29±0.05	0.07	0.27	2.69±1.81	0.14	0.45±0.30
Apple (n=4)	0.39	0.39±0.42	0.06±0.01	0.07 ± 0.08	0.09±0.06	0.38
Guava (n=3)	0.12±0.07	0.22±0.18	0.31±0.13	0.10±0.09	0.06±0.03	0.42±0.18
Sand pear (n=3)	0.14±0.12	0.02	0.07±0.09	0.10±0.08	0.26±0.27	0.19
Mango (n=5)	0.08±0.09	0.06 ± 0.07	0.20±0.33	0.06±0.06	0.41±0.41	0.27±0.16
Rose apple (n=3)	0.13±0.06	0.11±0.12	0.03	0.64±0.84	2.05±1.81	1.39±1.90

68

Analysis of synthetic pyrethroid residues in vegetable and fruit samples separate by commodities found, kale is the highest deltamethrin in 3.79 mg/kg, tangerine is the highest cypermethrin at 2.69 mg/kg, rose apple is the highest fenvalerate at 2.05 mg/kg, chinese cabbage is the highest lambda cyhalothrin at 0.63 mg/kg, apple is the highest permethrin at 0.39 mh/kg, and Guava is the highest cyfluthrin at 0.31 mg/kg, as shown in Table 4.15

The mean level of pyrethroid insecticides in vegetable and fruit samples in June 2009 present in table 4.16. Cyfluthrin has the highest positive sample at 26 samples of vegetable. Cypermethrin has the highest positive sample at 20 samples of fruit. The result also shows the highest mean value of cypermethrin in fruits at 1.062 mg/kg and 0.907 mg/kg in vegetable samples. In addition, the mean value of others pesticides in vegetables are 0.286 mg/kg of deltamethrin, 0.082 mg/kg of cyfluthrin, 0.050 mg/kg of permethrin, 0.044 mg/kg of lambda cyhalothrin and 0.030 mg/kg of fenvalerate. The following mean value of pesticide in fruit samples from cypermethrin are deltamehrin (0.317 mg/kg), lambda cyhalothrin (0.113 mg/kg), cyfluthrin (0.105 mg/kg), fenvalerate (0.072 mg/kg), and permethrin (0.052 mg/kg).

ลิขสิทธิ์มหาวิทยาลัยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved Table 4.16 Mean levels of six synthetic pyrethroid residues in vegetable and fruit samples in Fang district in June 2009 (mg/kg fresh weight).

Synthetic pyrethroid	Vegeta	ble (n=35)	Fruit (n=21)			
insecticides	mean value	No. of positive	mean value	No. of positive		
insecticides	(mg/kg)	samples	(mg/kg)	samples		
1. Lambda cyhalothrin	0.044	y 1	0.113	5		
2. Permethrin	0.050	12	0.052	16		
3. Cyfluthrin	0.082	26	0.105	19		
4. Cypermethrin	0.907	25	1.062	20		
5. Fenvalerate	0.030	19	0.072	15		
6. Deltamethrin	0.286	19	0.317	14		

The mean level of pyrethroid insecticides in vegetable and fruit samples in March 2010 present in table 4.17. Cypermethrin has the highest positive sample at 25 samples of vegetable and 21 samples of fruit. The result also shows the highest mean value of cypermethrin in fruits at 0.655 mg/kg., while deltamethrin shows the highest mean value in vegetables at 1.382 mg/kg. In addition, the mean value of others insecticides in vegetables are 0.407 mg/kg of fenvalerate, 0.388 mg/kg of lambda cyhalothrin, 0.153 mg/kg of cypermethrin, 0.147 mg/kg of cyfluthrin and 0.074 mg/kg of permethrin. The following mean value of pesticide in fruit samples from cypermethrin are deltamehrin (0.551 mg/kg), fenvalerate (0.532 mg/kg), permethrin (0.181 mg/kg), lambda cyhalothrin (0.170 mg/kg), and cyfluthrin (0.160 mg/kg).

Table 4.17 Mean levels of six synthetic pyrethroid residues in vegetable and fruit samples in Fang district in March 2010 (mg/kg fresh weight).

Synthetic pyrothroid	Vegeta	ible (n=31)	Fruit	t (n=22)
Synthetic pyrethroid insecticides	mean value (mg/kg)	No. of positive samples	mean value (mg/kg)	No. of positive samples
1. Lambda cyhalothrin	0.388	24	0.170	15
2. Permethrin	0.074	20	0.181	15
3. Cyfluthrin	0.147	21	0.160	15
4. Cypermethrin	0.153	25	0.655	21
5. Fenvalerate	0.407	19	0.532	18
6. Deltamethrin	1.382	22	0.551	11-

According to the Thai agricultural commodity and food standard (2006), the MRLs of pesticide was varies by commodities as shown in table 4.18. The mean values of pesticide in most samples were generally exceeded the MRLs, except cypermethrin in cabbage, fenvalerate in mango and deltamethrin in yard long bean. The highest percentage was found in cypermethrin of sugar pea while deltamethrin of yard long bean showed the lowest percentage.

Insecticides	Commodities	Mean value	MRLs ^a	Percentage of samples
Insecucides	Commodities	(mg/kg)	(mg/kg)	exceeded MRLs
Lambda	Cabbage	0.327	0.2	23.1
cyhalothrin	Cauliflower	0.273	0.2	66.7
Cypermethrin	Cabbage	0.087	0.1	30.8
	Yard long bean	0.810	0.05	80.0
	Sugar pea	0.751	0.05	100.0
	Chinese cabbage	1.962	1	40.0
Fenvalerate	Mango	0.408	1	20.0
Deltamethrin	Cabbage	0.838	0.2	76.9
	Kale	1.770	0.5	62.5
	Yard long bean	0.192	0.2	10.0
	Cauliflower	0.478	0.1	33.3
	Chinese mustard	1.962	0.5	33.3

Table 4.18 The MRLs of pesticide in commodities and number of samples above MRLs

^a Thai agricultural commodity and food standard. 2006.

Furthermore, the percentage of sample above MRLs of different international standard has been presented in table 4.19. Samples with permethrin were not detected when compare to the Codex MRLs. Percentage of the samples above MRLs of Codex and Thailand have similar trend in all insecticides with range from 4.6 to 19.3 %. In addition, the European standards which have lower concentration limit shows higher percentage of sample exceed the MRLs in range of 22 to 55 %.

		Percentage	•	Percentage		Percentage
	Codex		Thai		EU	
Insecticides	MRLs ^a	of sample	MRLs ^b	of sample	MRLs ^c	of sample
Insecticides	WIKLS "	exceeded	WIKLS *	exceeded	WIKLS	exceeded
	(mg/kg)	encecaea	(mg/kg)	eneccuca	(mg/kg)	checcucu
		MRLs		MRLs		MRLs
Lambda						
Lamoda						
cyhalothrin	0.05-0.5	4.6	0.2-0.5	4.6	0.02-1	26.6
Permethrin	0.5-5	ND	No	No	0.02-0.05	22.0
~ ~						8
Cyfluthrin	0.1-2	0.9	No	No	0.02-0.5	55.0
Cypermethrin	0.2-2	7.3	0.05-2	15.6	0.02-2	44.0
Fenvalerate	0.2-2	0.9	0.1-10	0.9	0.02-0.05	50.5
i ciivalei ate	0.2-2	0.9	0.1-10	0.9	0.02-0.03	50.5
Deltamethrin	0.02-2	19.3	0.05-0.5	18.3	0.02-0.5	48.6

Table 4.19 Comparison of the percentage of sample exceeded Codex, Thailand, and the European standard.

^a Codex alimentarius; Pesticide Residues in Food. Maximum Residue Limits

^b Thai agricultural commodity and food standard. 2006.

^c The European commission, Council Directive "76/895/EEC" Insecticides MRLs Selected fruit & Vegetables

4.6.2 Levels of 3-PBA in urine

In this study, the concentration of 3-PBA in urine metabolite samples data for our study in 4 subdistricts of the studied areas, Fang district, Chiang Mai province.

In table 4.20 show, characteristic of school children in this studied include sex, age, family types, use of insecticide in agricultural area, and school children into the agricultural area. The study found that female student in the agricultural area, 52.8% in those aged 11-12 years, and 50.7 %. School children from agriculture families at 68.6%, and the use of insecticide in agriculture area 52.4%. Students to work in agriculture area 62.1%

	June 2009	March 2010
Variables	(N=290)	(N=285)
Gender	D °	4
Male	136 (46.9)	134 (47.2)
Female	154 (53.1)	156 (52.8)
Age		
≤ 10	104 (35.7)	107 (37.4)
211-12	147 (50.7)	140 (49.3)
≥ 12	39 (13.4)	73 (25.8)
Family types		
Agricultural family	199 (68.6)	195 (68.7)
Non-agricultural family	90 (31.0)	88 (31.0)
Use of insecticide in agricultural area		
Use insecticide	152 (52.4)	147 (51.8)
Non-use insecticide	138 (47.6)	137 (48.2)
School children into the agricultural area		
Yes	180 (62.1)	177 (62.3)
No	110 (37.9)	107 (37.7)

Table 4.20 Characteristic of the study subject

In analyzing by gender showed that 3PBA in urine by the second period, gender did not affect the concentration of 3 PBA. Shown in Table 4.21

 Table 4.21 Concentration of 3 PBA metabolite detected in urine samples classified by gender

Gender	Statistic	June 2009		March 201	(· · · · · · /
		Unadj	Adj	Unadj	Adj
		creatinine	creatinine	creatinine	creatinine
Male	Mean±SD	18.45±37.9	0.14±0.3	4.91±7.3	0.04±0.1
	Min	1.06	0.013	1.00	0.004
	Max	198.99	1.59	47.07	0.46
Female	Mean±SD	19.82±27.0	0.13±0.3	4.35±7.2	0.04±0.1
	Min	1.31	0.004	1.02	0.007
	Max	134.63	1.45	49.32	0.46
Total	Mean±SD	18.93±33.3	0.14±0.3	4.68±7.2	0.04±0.1
	Min	1.06	0.004	1.00	0.004
	Max	198.99	1.59	49.32	0.46

Note: Unadjust creatinine (μ g/L) and adjusted creatinine (μ g/g creatinine)

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

Table 4.22 Mean	concentration	of 3	PBA	metabolite	detected	in	urine	samples
classified by school	l in June 2009							

4		Percent	Unadjust o	creatinine	Adjust c	reatinine	
school	Ν	detection	(µg/	/L)	(µg/g creatinine)		
school			Mean±SD	Maximum	Mean±SD	Maximum	
Ban Lai Fang	23	47.83	6.15±5.6	18.32	0.47±0.4	1.36	
Ban Mae Kha	35	71.43	16.7±25.5	102.94	1.22±3.9	15.91	
Ban MaeLuang	26	96.15	33.43±31.4	113.25	2.81±3.5	12.98	
Ban Tung Hluk	16	81.25	18.19±31.3	131.29	1.90±2.7	8.38	
Ban Mae Ngon	21	57.43	7.17±12.1	33.37	0.77±0.9	2.71	
Ban Lan	28	82.14	21.10±22.6	79.74	1.53±2.1	7.9	
Ban Mung Chum	26	69.23	21.09±18.3	53.65	1.74±1.4	3.48	
Ban San Sai Klong Noi	43	79.07	15.51±31.3	134.63	1.53±3.2	14.54	
Rangsri	72	61.10	25.58±46.2	198.99	1.99±3.2	11.72	

The study found that the amount 3PBA separate school in June 2009, most school found that Ban Mea Luang 96.15% and the average concentration of most the concentration unadjusted creatinine was 33.43 ± 31.4 µg/L and adjusted creatinine was 2.81 ± 3.5 µg/g creatinine. Show in Table 4.22

school	N	Percent	Percent Unadjust creatinine		Adjust creatinine		
school	IN	detection	Mean±SD	Maximum	Mean±SD	Maximum	
Ban Lai Fang	21	71.43	3.55±13.9	47.07	0.30±1.3	4.28	
Ban Mae Kha	35	82.86	4.54±9.1	36.97	0.32±0.8	3.03	
Ban MaeLuang	25	88.00	4.67±2.6	9.39	0.54±0.5	1.61	
Ban Tung Hluk	17	82.35	4.92±13.5	38.74	0.57±1.6	4.62	
Ban Mae Ngon	19	94.74	2.76±3.1	10.65	0.25±0.1	0.6	
Ban Lan	27	81.48	3.06±2.6	10.05	0.29±0.4	1.23	
Ban Mung Chum	26	88.46	5.87±4.1	17.39	0.65±0.3	1.57	
Ban San Sai Klong Noi	39	84.62	6.98±9.5	49.32	0.67±1.1	4.64	
Rangsri	76	75.00	4.80±4.7	22.47	0.37±0.7	4.09	

 Table 4.23 Mean concentration of 3 PBA metabolite detected in urine samples

 classified by school in March 2010

The study found that the amount 3PBA separate school in March 2010, most school found that Ban Mea Nong 94.74%, and the average concentration of 3PBA higher concentration unadjusted creatinine was $6.98\pm9.5\mu$ g/L in Ban San Sai school and adjusted creatinine was $0.67\pm1.1\mu$ g/g creatinine. Show in Table 4.23.

 Table 4.24 Concentration of 3-PBA in urine samples collected from school children in

 June 2009.

Community	% pos	Dilution	GM	Max	Percentiles			
Community	% pos	adjustment	(µg/l)	(µg/l)	25th	50th	75th	95th
Mae Kha (n=58)	62.1	Unadjusted	11.74	102.9	5.30	14.28	26.02	59.80
Wae Kila (II=38)		Cre.adj	0.09	1.6	0.04	0.08	0.22	0.75
Maa Ngong (n=62)	81.0	unadjusted	19.32	131.3	8.53	20.82	39.24	94.67
Mae Ngong (n=63)	81.0	Cre.adj	0.10	0.8	0.06	0.11	0.20	0.53
Mon Pin (n=54)	75.9	unadjusted	16.03	79.7	6.17	21.10	33.13	60.57
WOII FIII (II–34)	73.9	Cre.adj	0.13	0.8	0.06	0.15	0.32	0.55
Wiang (n=115)	68.7	unadjusted	19.78	199.0	9.90	25.12	50.46	113.72
Wiang (II=115)		Cre.adj	0.16	1.5	0.08	0.18	0.39	0.93
Total (n=290)	71.4	unadjusted	17.41	199.0	7.35	18.93	39.41	87.14
	/1.4	Cre.adj	0.12	1.6	0.06	0.14	0.26	0.83

N= Number of samples, % pos = The positively percentages, Cre.adj = Creatinine adjusted, GM = Geometric mean, Max = Maximum, Concentration of individual 3-PBA presented in unit of $\mu g/l$ for non-creatinine adjusted results and $\mu g/g$ creatinine adjusted result

In June 2009, 3-PBA was detected most frequently in Mae Ngong (81.0%) followed by Mon pin (75.9%), Wiang (68.7%), and Mae Kha (62.1%), respectively. The result also shows the highest geometric mean value of 3 PBA unadjusted in waing at 19.78 μ g/l. In addition, the geometric mean value of others area in Mae Ngong at 19.32 μ g/l, Mon Pin at 16.03 μ g/l, and Mae Kha at 11.74 μ g/l. Shown in Table 4.24.

 Table: 4.25 Distribution of 3-PBA in urine samples collected from school children in

 March 2010.

Community	% pos	Dilution adjustment	GM	Max	Percentiles			
Community	70 pos	Difution adjustment	(µg/l)	(µg/l)	25th	50th	75th	95th
Mae Kha	78.6	Unadjusted	4.55	47.07	2.19	4.35	8.17	32.88
(N=56)	10.0	Cre.adj	0.04	0.43	0.02	0.03	0.09	0.28
Mae Ngong	88.5	unadjusted	4.19	38.74	2.43	4.35	6.24	17.96
(N=61)		Cre.adj	0.61	6.70	0.33	0.60	0.88	2.41
Mon Pin	84.9	unadjusted	4.18	17.39	2.23	4.58	6.79	10.75
(N=53)		Cre.adj	0.60	2.29	0.28	0.66	1.20	1.75
Wiang	81.7	unadjusted	5.23	49.32	2.71	5.34	8.90	19.43
(n=115)		Cre.adj	0.71	6.73	0.39	0.67	1.24	2.67
Total	83.2	unadjusted	49.32	4.67	2.53	4.68	8.39	19.26
(N=285)		Cre.adj	0.42	6.73	0.24	0.50	1.08	2.34

Note: N= Number of samples, % pos = The positively percentages, Cre.adj = Creatinine adjusted, GM = GeoMean, Max = Maximum, Concentration of individual 3-PBA presented in unit of μ g/l for non-creatinine adjusted results and μ g/g creatinine adjusted result

In March 2010, 3-PBA was detected most frequently in Mae Ngong (88.5%) followed by Mon pin (84.9%), Wiang (81.7%), and Mae Kha (78.6%), respectively. The result also shows the highest geometric mean value of 3 PBA unadjusted in waing at 5.23 μ g/l. In addition, the geometric mean value of others area in Mae Kha at 4.55 μ g/l, Mae Ngon at 4.19 μ g/l, and Mon Pin at 4.18 μ g/l. Shown in Table 4.25.

In figure 4.3, graph comparing the concentration of 3 PBA in urine samples with creatinine values were the result of the analysis in March 2010, there were 1.4 times higher than in June 2009. In subdistrict sepsrate analysis showed that 4.3 times higher than in Mae Kha district, 3.9 times higher than in Mae Ngon subdistrict, 2.9 times higher than in Mon Pin subdistrict, except in Wiang subdistrict in concentration higher than 4.1 times.

Figure 4.3 comparing the concentration of 3 PBA in urine samples

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved