## TABLE OF CONTENTS

|                                           | Page                  |
|-------------------------------------------|-----------------------|
| Acknowledgement                           | iii                   |
| Abstract (English)                        | iv                    |
| Abstract (Thai)                           | vi                    |
| List of Tables                            | XV                    |
| List of Figures                           | xvi                   |
| Abbreviation and Symbols                  | xix                   |
| Chapter 1 Introduction                    |                       |
| 1.1 Statement and significance of problem | 1                     |
| 1.2 Chili                                 | 3                     |
| 1.3 Mycotoxins                            | 6                     |
| 1.3.1 Aflatoxins                          | 9                     |
| 1.3.2 Ochratoxins                         | 10                    |
| 1.3.3 Fusarium mycotoxins                 | 10                    |
| 1.3.4 Endophyte alkaloids                 | v <sup>10</sup> rsity |
| 1.3.5 Phomopsins                          | 11                    |
| 1.3.6 Sporidesmin                         | 11                    |

|                                                             | Page             |
|-------------------------------------------------------------|------------------|
| 1.4 Aflatoxins                                              | 11               |
| 1.4.1 Aflatoxins and their health consequences              | 14               |
| 1.4.2 Acute exposure to aflatoxins                          | 16               |
| 1.4.3 Chronic exposure to aflatoxins                        | 16               |
| 1.4.4 Aflatoxins screening test                             | 18               |
| 1.5 Aflatoxigenic fungi                                     | 19               |
| 1.5.1 Morphological Studies of A. flavus, A. parasiticus    | 20               |
| and A. nomius                                               |                  |
| 1.5.2 Morphological separation of A. flavus and             | 21               |
| A. parasiticus                                              |                  |
| 1.5.3 Molecular methods for Aspergillus Section Flavi       | 24               |
| species differentiation                                     |                  |
| 1.6 Aspergillus flavus                                      | 26               |
| 1.6.1 Classification and characterization of Aspergillus    | 27               |
| section Flavi                                               |                  |
| 1.6.2 Morphological and biological characters of A. flavus  | 31               |
| 1.6.3 Production of aflatoxin                               | 33               |
| 1.6.4 Biocontrol of aflatoxin producing fungi and aflatoxin | 36               |
| production                                                  |                  |
| 1.7 <i>Bacillus subtilis</i><br>1.8 Hydrolytic enzymes      | $Univ_{42}^{38}$ |
| (i) Protease                                                | <b>4</b> 2       |
| (ii) Chitinase                                              | 44               |

ix

|                                                                      | Page                    |
|----------------------------------------------------------------------|-------------------------|
| (iii) Amylase                                                        | 49                      |
| (iv) Cellulase                                                       | 51                      |
| (v) Lipase                                                           | 55                      |
| 1.9 Purpose of research                                              | 57                      |
| Chapter 2 Materials and Methods                                      | 58                      |
| 2.1 Chemicals                                                        | 58                      |
| 2.2 Instruments                                                      | 61                      |
| 2.3 Chili powder samples and microorganism                           | 63                      |
| 2.3.1 Bird chili powder                                              | 63                      |
| 2.3.2 Bacillus subtilis                                              | 63                      |
| 2.4 Isolation and characterization of aflatoxigenic fungi from       | 64                      |
| bird chili powders                                                   |                         |
| 2.4.1 Preparation of dilution series and pour plate                  | 64                      |
| 2.4.2 Identification of aflatoxigenic and non-aflatoxigenic          | 64                      |
| fungal species                                                       |                         |
| 2.4.3 Molecular identification of the fungal species                 | 65                      |
| 2.5 Aflatoxin analysis in chili powder sample and Aspergillus flavus | 67                      |
| production                                                           |                         |
| 2.5.1 Analysis of aflatoxins of bird chili powder                    | 67                      |
| 2.5.2 Aflatoxin production capability of A. flavus                   | 68<br>110<br>110<br>110 |
| 2.6 Growth pattern of <i>B. subttilis</i> on nutrient broth medium   | 69                      |
|                                                                      |                         |

|                                                                            | Page |
|----------------------------------------------------------------------------|------|
| 2.7 Testing for the antagonistic activity of B. subtilis against A. flavus | 69   |
| 2.7.1 The antagonistic activity of <i>B. subtilis</i> against              | 69   |
| A. flavus in broth                                                         |      |
| 2.7.2 The antagonistic activity of a single streak of                      | 70   |
| B. subtilis against A. flavus on plate                                     |      |
| 2.7.3 The antagonistic activity of <i>B. subtilis</i> against              | 71   |
| a mycelial plug of A. flavus on plate                                      |      |
| 2.8 Inhibitory activity of extracellular metabolites in cell free          | 72   |
| supernatant of <i>B. subtilis</i>                                          |      |
| 2.8.1 Inhibition of fungal mycelium by cell free supernatant               | 72   |
| of <i>B. subtilis</i> in broth medium                                      |      |
| 2.8.2 Inhibition of fungal mycelium by cell free supernatant               | 73   |
| of B. subtilis on agar plate                                               |      |
| 2.8.3 Fungal hyphal morphology as affected by the                          | 73   |
| crude extracellular metabolites                                            |      |
| 2.9 Plate screening of hydrolytic enzymes produced from <i>B. subtilis</i> | 74   |
| 2.9.1 Amylase screening plate                                              | 74   |
| 2.9.2 Chitinase screening plate                                            | 75   |
| 2.9.3 Protease screening plate                                             | 75   |
| 2.9.4 Cellulase screening plate                                            | 75   |
| 2.9.5 Lipase screening plate                                               | 76   |
| 2.10 Determination of enzyme activity                                      | 76   |
| 2.10.1 Proteolytic activity                                                | 77   |

|                                                                            | Page |
|----------------------------------------------------------------------------|------|
| 2.10.2 Chitinolytic activity                                               | 78   |
| 2.10.3 Cellulolytic activity                                               | 79   |
| 2.10.4 Protein content determination                                       | 80   |
| 2.11 Effect of dried mycelia on production of lytic enzymes                | 81   |
| 2.11.1 Preparation of dried mycelium                                       | 81   |
| 2.11.2 Qualitative determination of lytic enzyme activity                  | 82   |
| 2.11.3 Enzyme activity assays                                              | 82   |
| 2.11.4 Determination of the released glucose and GlcNAc                    | 84   |
| 2.12 Inhibition of fungal growth by cell free supernatant from             | 85   |
| each enzyme production of <i>B. subtilis</i>                               |      |
| 2.13 Antifungal activity of the cell free supernatant on bird chili powder | 86   |
| Chapter 3 Results and Discussions                                          | 87   |
| 3.1 Identification of fungal genera and frequency of occurrence            | 87   |
| in bird chili powder samples                                               |      |
| 3.2 Molecular identification of the fungal species                         | 89   |
| 3.3 Aflatoxin analysis in chili powder sample and A. flavus production     | 93   |
| 3.4 Growth pattern of <i>B. subtilis</i> on nutrient broth medium          | 94   |
| 3.5 Screening for the antagonistic activity of <i>B. subtilis</i>          | 95   |
| against A. flavus                                                          |      |
| 3.5.1 The antagonistic activity of <i>B. subtilis</i> against              | 95   |
| A. flavus on broth                                                         |      |
|                                                                            |      |

|                                                                            | Page  |  |
|----------------------------------------------------------------------------|-------|--|
| 3.5.2 The antagonistic activity of a single streak of                      | 97    |  |
| B. subtilis against A. flavus on plate                                     |       |  |
| 3.5.3 The antagonistic activity of <i>B. subtilis</i> against              | 98    |  |
| a mycelial plug of A. <i>flavus</i> on plate                               |       |  |
| 3.6 Inhibition of extracellular metabolites in cell free supernatant       | 99    |  |
| of B. subtilis                                                             |       |  |
| 3.6.1 Inhibition of fungal mycelium by cell free supernatant               | 100   |  |
| of <i>B. subtilis</i> in broth                                             |       |  |
| 3.6.2 Inhibition of fungal mycelium by cell free supernatant               | 102   |  |
| of B. subtilis in agar plate                                               |       |  |
| 3.6.3 Fungal hyphal morphology as affected by the crude                    | 104   |  |
| extracellular metabolites                                                  |       |  |
| .7 Plate screening of hydrolytic enzymes produced from <i>B. subtilis</i>  | 106   |  |
| .8 Enzyme activity assay                                                   | 108   |  |
| 3.8.1 Protease activity in each growth phase                               | 108   |  |
| 3.8.2 Chitinase activity in each growth phase                              | 109   |  |
| 3.8.3 Cellulase activity in each growth phase                              | 110   |  |
| 3.9 Qualitative determination of lytic enzyme activity in the presence     | 111   |  |
| of fungal dried mycelia                                                    |       |  |
| 3.10 Inhibition of fungal growth by cell free supernatant                  | 114   |  |
| from each enzyme production of <i>B. subtilis</i>                          |       |  |
| 3.11 Antifungal activity of the cell free supernatant on bird chili powder | 117 е |  |
|                                                                            |       |  |

xiii

|                                                            | Pag |
|------------------------------------------------------------|-----|
| Chapter 4 Conclusions                                      | 119 |
| References                                                 |     |
| Appendices                                                 | 158 |
| Appendix A Preparation of the chemical reagents            | 15  |
| A.1 Media Preparation                                      | 15  |
| A.2 Preparation of peptone solution for fungal isolated    | 16. |
| dilution series                                            |     |
| A.3 Aflatoxin B <sub>1</sub> ELISA test kit                | 164 |
| A.4 Reagent preparation for protease activity assay        | 16  |
| A.5 Reagent preparation for chitinase activity assay       | 16  |
| A.6 Reagent preparation for cellulose activity assay       | 16  |
| A.7 Reagent preparation for ß-1,3-glucanase activity assay | 16  |
| A.8 Reagent preparation for released glucose determination | 170 |
| A.9 Reagent preparation for GlcNAc determination           | 170 |
| A.10 Bradfort reagent                                      | 17  |
| Appendix B Bacteria counting                               | 172 |
| B.1 Standard plate count                                   | 17  |
| B.2 Direct microscope method                               | 17. |
| Appendix C Tables of raw data                              | 17  |
| Appendix D Standard curves and calculations                | 19  |
| Vita by Chiang Mai U                                       | 21  |
|                                                            |     |

### LIST OF TABLES

| Table                                                                    | Page |
|--------------------------------------------------------------------------|------|
| 1.1 Origin of principal mycotoxins occurring in common                   | 8    |
| feeds and forages                                                        |      |
| 1.2 Morphological separation of A. flavus and A. parasiticus             | 23   |
| 1.3 Mycotoxin producing abilities of the economically                    | 31   |
| important species of Aspergillus section Flavi                           |      |
| 1.4 Microscopic characters of three Aspergillus species                  | 33   |
| 1.5 Morphology and characteristic of <i>B. subtilis</i>                  | 39   |
| 3.1 Radii of fungal growth in each treatment                             | 99   |
| 3.2 Dried weight and percentage of the fungal mycelia inhibition         | 101  |
| by cell free supernatant of <i>B. subtilis</i> incubated at various      |      |
| time points                                                              |      |
| 3.3 Radius and percentage of the fungal mycelia inhibition by            | 103  |
| cell free supernatant (54h) of <i>B. subtilis</i>                        |      |
| 3.4 Specific activity of protease, chitinase and $\beta$ -1, 3-glucanase | 113  |
| in NB with dried mycelium and NB                                         |      |
| 3.5 The amount of sugar released in culture filtrate on NB with          | 113  |
| dried mycelium and NB media                                              |      |
| 3.6 Radii of fungal growth in each enzyme production treatment           | 116  |
|                                                                          |      |

## LIST OF FIGURES

| Figure                                                                 | Page |
|------------------------------------------------------------------------|------|
| 1.1 Structure of aflatoxins                                            | 13   |
| 1.2 Aflatoxin and disease pathways in humans                           | 6-14 |
| 1.3 Scanning Electron Micoroscopy pictures of A. parasiticus,          | 21   |
| A. flavus spores and A. parasiticus conidial head                      |      |
| 1.4 A. flavus in AFPA and aflatoxigenic A. flavus grown on             | 23   |
| small plates of CCA under long-wave UV light, after 7 days             |      |
| incubation                                                             |      |
| 1.5 A. flavus and A. parasiticus strains growing on CZ                 | 23   |
| 1.6 Neighbour-joining tree of ITS sequences of species                 | 30   |
| assigned to Aspergillus sections Circumdati and Flavi                  |      |
| 1.7 Structures of importance for identification of Aspergillus species | 33   |
| 1.8 Fungal cell wall components                                        | 46   |
| 2.1 Three chili powder samples                                         | 63   |
| 3.1 Pour plate cultures of bird chili powder sample                    | 88   |
| 3.2 White fungal colonies and morphology                               | 88   |
| 3.3 Black fungal colonies and morphology                               | 88   |
| 3.4 18S rRNA nucleotide sequence of Aspergillus flavus                 | 89   |
| 3.5 Alignment 18S ribosomal RNA sequences of the                       | 90   |
| isolated Aspergillus flavus and A. flavus ATCC 11489                   |      |
|                                                                        |      |

| Figure                                                                     | Page |
|----------------------------------------------------------------------------|------|
| 3.6 Alignment 18S ribosomal RNA sequences of the                           | 91   |
| isolated Aspergillus flavus and A. flavus ATCC 9643                        |      |
| 3.7 Alignment 18S ribosomal RNA sequences of the                           | 92   |
| isolated Aspergillus flavus and A. flavus 11497                            |      |
| 3.8 Mycelia of A. flavus after 8 days of incubation                        | 93   |
| 3.9 B. subtilis colonies on NA                                             | 94   |
| 3.10 Culture broth of <i>B. subtilis</i> in NB                             | 94   |
| 8.11 Growth curve of <i>B. subtilis</i> in NB liquid medium for 60 h       | 95   |
| 3.12 Test tube of dual culture with spore suspension of <i>B. subtilis</i> | 96   |
| 3.13 Dry weight of mycelia mass of aflatoxigenic fungi in control          | 96   |
| and dual culture with spore suspension of <i>B. subtilis</i> test tube     |      |
| after 7 days incubation                                                    |      |
| 3.14 The dual culture plate of antagonistic of <i>B. subtilis</i> against  | 97   |
| the mycelia growth A. flavus.                                              |      |
| 3.15 Growth of fungi on PDA, NA and dual culture plate in NA,              | 99   |
| for 3 days after inoculation                                               |      |
| 3.16 Mycelial material of fungal on control, 12, 24 and 36 h               | 101  |
| collecting times of cell free supernatant flask                            |      |
| 3.17 Mycelial material of fungal in control and 12 h collecting            | 101  |
| time of cell free supernatant                                              |      |
| 3.18 Growth of fungi on PDA without cell free supernatant and              |      |
| with 54h old bacterial cell free supernatant plate for 7 days              |      |
| after inoculation                                                          |      |

xviii

| Figure                                                                  | Page |
|-------------------------------------------------------------------------|------|
| 3.19 Morphology of fungi from PDA with and with bacterial cell free     | 104  |
| supernatant under 10X microscope                                        |      |
| 3.20 Morphology of fungi under 40X microscope on PDA without            | 105  |
| and with cell free supernatant                                          |      |
| 3.21 Slide culture on PDA and cell free supernatant                     | 105  |
| 3.22 Plate test for hydrolytic enzyme productions by <i>B. subtilis</i> | 107  |
| Agar plates contained corresponding substrates for amylase,             |      |
| chitinase, protease, cellulose and lipase                               |      |
| 3.23 Protease activity and OD 610 nm along growing time course of       | 109  |
| the <i>B. subtilis</i> in protease production liquid medium             |      |
| 3.24 Chitinase activity and cell number of bacteria of each growing     | 110  |
| time point of B. subtilis in colloidal chitin liquid medium             |      |
| 3.25 Treatment culture on bird chili powder flasks                      | 118  |
| 3.26 Pour plates culture after 7 days of incubation                     | 118  |

# ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright<sup>©</sup> by Chiang Mai University All rights reserved

#### **ABBREVIATIONS AND SYMBOLS**

| A    | Absorbance                      |
|------|---------------------------------|
| °C   | degree of Celcius               |
| cm   | centimeter                      |
| %    | percentage                      |
| bp   | base pair                       |
| DNA  | deoxyribonucleic acid           |
| g    | gram                            |
| h    | hour                            |
| КОН  | potassium hydroxide             |
| М    | Molar                           |
| mM   | milimolar                       |
| mg   | miligram                        |
| ml   | milliliter                      |
| min  | minute                          |
| NaOH | sodium hydroxide                |
| nm   | nanometer ang Mai University    |
| psi  | pound per square inch           |
| rDNA | ribosomal deoxyribonucleic acid |



<mark>ລິບສິກຣົ້ນหາວົກຍາລັຍເຮີຍວໃหນ່</mark> Copyright<sup>©</sup> by Chiang Mai University All rights reserved