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Full-field measurement of deformations using digital image correlation, DIC,

technique is investigated in this work. The technique yields the surface deformation

by correlating a pair of digital images, one before loading, and the other after

loading. The DIC algorithms including sub-pixel methods were studied and

implemented for analyzing the displacement fields. The experiment on deformation

of cantilever beam was performed to demonstrate the DIC measurement.

The analytical solution of an infinite plate with a circular hole is introduced

for investigating algorithm errors in identification of material parameters instead of

performing actual experiments. The simulated speckle image pairs, consisting of

undeformed images and deformed images, are created from analytical function.

Then, a new formulation of DIC based on optical flow and finite element methods is

developed to estimate heterogeneous displacement fields from simulated speckle

images. The compliance coefficients of testing materials are iteratively computed by

mixed numerical-experimental technique (MNET). The isotropic and orthotropic

models of material parameters are investigated for accuracy of the purposed

algorithms. The interaction between algorithm errors is studied. The sources of

errors are discussed and progressive improvement is suggested for these

identification techniques. Finally, discontinuous finite element method is applied to

conservation of optical flow to circumvent discontinuous problems.
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MIXED NUMERICAL-EXPERIMENTAL TECHNIQUE FOR

IDENTIFICATION OF CONSTITUTIVE PARAMETERS

INTRODUCTION

Developing mathematical models for stress analyses is cumbersome in design

phases. In conceptual designs, the analysts make assumptions to define geometries,

materials, loads and so on. The finite element method (FEM) is a simple way to

analyze mathematical models. However, when the components or prototypes exist,

situations involving real components are partially specified. After all, the analysts can

not be completely aware of every material properties, every aspect of the loading, and

every condition of environment for these particular components. The unknown

parameters which can not identify by only analytical procedures lead designers to do

trials and errors of experimental and analytical methods. The experiments are used to

measure some unknowns, and guesses/assumptions are used to fill in remaining

unknowns (Doyle, 2004).

An inverse problem is one where we know something of the responses

(usually by measurement) and wish to infer something of the systems or the inputs.

For examples, the measurements of loads (inputs) and strains (responses) on a

uniaxial specimen infer the Young’s modulus (systems). In fact, all experimental

problems can be thought of as inverse problems because we begin with response

information and wish to infer something about the systems or unknowns (Doyle,

2004). The assumptions such as boundary conditions, material properties, loads, and

dimensions in finite element methods make the results of the analyses uncertain and

unreliable. The most direct way of narrowing the unreliability in the results is to

simply measure the unknown. In case of dimensions, it can measure directly.

However, in case of Young’s modulus of irregular specimen geometries and

anisotropic materials, indirect measurements might be suitable to identify this

parameter. How to use indirect measurements to find the solution of partially
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specified problems is an important concern of this research. The finite element

method is combined with experimental methods to identify unknowns or solutions.

Identifying constitutive parameters for materials is an inverse problem for

mechanical design. The heterogeneous displacements as in composite materials are

difficult to measure by simple strain gages. Many steps of measurements and many

sampling points make analysis too slow in developments and production of

composites. The accuracy and precision of measurements are the main factors that

have to take into accounts. Then, the optic metrology is incorporated with inverse

techniques facilitating measurements. The full-field non-contact measurements, for

example, Photoelasticity (Frocht, 1941; Frocht, 1948), Moire’ (Post et al., 1994),

Digital Image Correlation (DIC) (Sutton et al., 2009) and Electronic Speckle Pattern

Interferometer (ESPI) (Jacquot and Fournier, 2000), can gather tremendous full-field

data for stress-strain measurements. Therefore, designers can easily apply these data

through inverse techniques to identify material properties. The key point is to identify

material properties by two snap-shot of camera, load and unload of specimens.

Identification of elastic properties of materials is very important for

establishing constitutive equations in mechanical models. Irregular specimen

geometries and anisotropic behavior of materials are not simple to identify material

properties with old traditional methods. Therefore, mixed numerical-experimental

technique (MNET) (Cardon et al., 2004) integrated with digital image correlation

(DIC) offers an alternative tool that eases material-testing methods. An advantage of

MNET and DIC is to identify all material parameters in a single test with acceptable

accuracy. The actual experiments are able to simulate in computers and suggestion of

experimental modification can be made to improve precision and accuracy of

measurements.

The errors and noises of hardware and software algorithm play an important

role for accuracy and precision in the development of MNET and DIC. There are

many literatures that study about errors of MNET and DIC but they study separately.

The resolution of digital cameras, arrangement of all devices, lighting conditions,



3

lens, speckle patterns and subset sizes influence accuracy of DIC measurements

(Haddadi and Belhabib, 2008). In addition, different DIC algorithms can give results

in different errors (Bing et al., 2006). Not only DIC algorithms but also MNET

algorithms might be able to magnify systematic errors due to assumption of boundary

condition, mesh configuration and finite element model construction. To quantify

systematic errors of measurements, the connectivity between DIC errors and MNET

errors should be addressed before doing the real experiments.

The aim of this work is to introduce computer simulation to identify elastic

parameters of isotropic materials in order to reduce the length and the cost of the

“trial and error” phase in experimental setup and computer program developments.

The novel DIC algorithm based on optical flow and MNET are developed to identify

isotropic properties of materials by using isotropic models and orthotropic models.

The interconnection errors between DIC errors and MNET errors are studied and they

are evaluated by analytical solution. Moreover, an advantage of computer simulation

throughout identification processes can establish the baseline before doing the actual

experiments. Finally, performing the real experiments confirms possibility and

accuracy of the simulations.
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OBJECTIVES

The overall objectives of this research shall be to identify constitutive

parameters of materials by the uses of mixed numerical-experimental technique

(MNET). A Full-field measurement, digital image correlation (DIC), has been

developed for better suites with experiments. The final goal is to improve all

algorithms for flexibility, accuracy and robust. The new numerical algorithms will be

purposed for the better precision of measurements. This research will be focused on

algorithm developments.

There are three major objectives will be pursued for this research.

1. Basic principles of 2D-DIC algorithms such as template matching and sub-

pixel registration algorithms are studied for the concepts and implementation. The

computer simulation is introduced to evaluate algorithm accuracy using simple rigid

body translation and cantilever beam deflection.

2. The Q4-DIC and MNET algorithms are developed for identification of

isotropic properties of a plate with a central hole. The computer simulation is

introduced to facilitate experimental setup. The interconnection errors between DIC

errors and MNET errors are studied and they are evaluated by analytical solution.

3. To circumvent discontinuous problems such as cracks and object

separation, the conservation of optical flow based on discontinuous finite element

method is formulated and tested for performance and accuracy.
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LITURATURE REVIEW

The inverse methods to identify mechanical material parameters by using

digital images began in developments of computer visions and numerical algorithms.

The higher performances and lower prices of digital cameras are attractive to

researchers in using digital images to measure displacements and strain fields instead

of pointwise measurements such as strain gauges. The displacements and strain fields

measured from digital images are used as inputs for inverse algorithms to determine

material properties. To extract displacement fields from digital images, numerous

sub-pixel algorithms of digital image correlation (DIC) are introduced to solve the

problems such as least square correlation coefficient based on Newton-Raphson

iteration (N-R method) and optical flow method.

In 1982, Peters and Ranson proposed digital imaging techniques to measure

surface displacement fields in laser speckle metrology. The methods suggested a

comparison of digital images before and after deformation using small regions (or

subsets). Using this approach, Sutton et al. (1983) developed a numerical algorithm

that is to match two speckle patterns before and after deformation by correlation

scheme. Improving accuracy, Bruck et al. (1989) introduced a first-order Taylor

series expansion for the mapping functions to capture displacement gradients.

Moreover, Lu and Cary (2000) increased accuracy by a second-order Taylor series

expansion for the mapping functions or shape functions. A least square correlation

coefficient is used to determine the optimum values for the mapping parameters. The

Newton-Raphson iteration method is used to solve systems of nonlinear equations

that are calculated from minimizing the least square correlation coefficient. Then,

large-deformation measurements can be achieved 0.0002 for the first-order

displacement gradients and 0.0002 per pixel for the second-order displacement

gradients. The DIC based on the Newton-Raphson methods was applied to determine

displacement fields from STM (Scanning tunneling microscope) (Vendnroux et al.,

1998; Vendroux and Knauss, 1998b, 1998a). The resolution yields 4.8 nm for in-

plane and 1.5 nm for the out-of-plane displacement.
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Even through least square correlation coefficient based on Newton-Raphson

iteration has the highest accuracy than optical flow method, the computation time is

longer than optical flow method (Bing et al., 2006). The optical flow that is apparent

motion of objects in images can arise from relative motion of objects and the viewers

(Gibson, 1950). The image brightness, position and time are derived in partial

derivative equations to estimate optical flow. Since optical flow is an ill-posed

problem, the calculus of variation and a spatial regularization were proposed by Horn

and Schunck (1981) to determine displacement fields that are based on an assumption

of smooth displacements. For large motions, Lucas and Kanade (1981) developed

registration techniques using optical flow and Newton-Raphson iteration. The

convergences of Lucas-Kanade algorithm are studied and the range of convergences

will be improved by suppressing high spatial frequencies in the images. To gain

better interface between optical flow and finite element method, finite element

method based on conservation of optical flow that is called Q4-DIC is developed by

Besnard et al. (2006) to study Portevin-Le Chatelier bands in an aluminum alloy

sample.

Hild and Roux (2006) using Q4-DIC measured displacements from Brazilian

disk tests to identify material properties of polycarbonate disks. The closed-form

solutions of displacements of Brazilian disk test are referred to the subject in

elasticity. Identifying material properties, the closed-form solutions of displacements

are compared with DIC measurement displacements by least square method. The

noisy strains can be recovered by the so-called integrated approach. The difficulty to

find the closed-form solutions for complex geometries and ambiguous boundary

conditions leads to develop alternative methods such as the finite element model

updating method (FEMU), the virtual fields method (VFM)(Grédiac et al., 2002a,

2002b, 2003), the equilibrium gap method (EGM), the constitutive equation gap

method (CEGM) and the reciprocity gap method (RGM). Avril et al. (2008) reviews

these methods intensively in a journal article.



7

The FEMU or MNET is the most intuitive approach that consists in

performing iteratively finite element simulations to find constitutive parameters. The

iterative processes will be achieved when the best match between computed and

experimental measurements satisfy acceptable relative errors The forces and

displacements are measured from the sensors and the least-square method is formed

to compute searched material parameters (Pagnacco et al., 2005). The alternative

MNET by using resonant frequency of orthotropic metal plates is very efficient to

identify orthotropic properties (Lauwagie et al., 2003). The resonant frequencies of

metal plates are measures by Resonalyser procedures. Then, the resonant frequencies

that are related to elastic properties of materials are compared by weighted least

squares. Not only identifying elastic coefficients but also other mechanical

parameters such as natural frequency of structures (Sinha and Friswell, 2003) can be

detected.

The use of heterogeneous or inhomogeneous strain fields gives arises for

identification of material parameters due to geometry complexity of design

components and anisotropic properties of materials. The heterogeneous displacement

fields of a plate with a hole in uniaxial tension are measured by the ESPI methods and

strains are computed from the heterogeneous displacement fields. The MNET

identifies the orthotropic material parameters by comparing FEM strains and

measured strain (Lecompte et al., 2005). Likewise, DIC measures displacements of

biaxial tests on cruciform specimens and the MNET identifies mechanical properties

of glass fibre reinforced epoxy (Lecompte et al., 2007). However, measuring

heterogeneous strain fields by conventional DIC still requires accuracy improvement.

To improve accuracy in measuring heterogeneous strain fields, the least

square method with adaptive spatial regularization was developed to determine

displacements of a plate with a hole under biaxial loads and rectangular specimens

with lateral slits under tensile loads (Cofaru et al., 2010b). The regularized methods

improve mean errors up to 50 percents smaller compared to the non-regularized

methods. Most DIC algorithms are based on continuous displacement hypothesis. In

contrast, discontinuous formulation of DIC using extended finite element methods
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(XFEM) (Mohammadi, 2008), which is called X-DIC, is developed to capture

discontinuous displacements. The X-DIC is useful for detecting localized shear band

(Réthoré et al., 2007), cracks (Réthoré et al., 2008a) and 3D cracks (Réthoré et al.,

2008b).

The XFEM based on enrichment terms in field variables that are created from

analytical solutions is called intrinsic enrichment (Fries and Belytschko, 2006). In

addition, the enrichment terms called extrinsic enrichment can be created from set of

the partition of unity functions (Babuška and Melenk, 1997). In contrast,

discontinuous finite element method (DFEM) concerns the discontinuity across the

element boundaries (Reed and Hill, 1973). There are various approaches of

discontinuous finite element method such as interior penalty (IP) method for

hyperbolic equations (Burman et al., 2010). For a one-dimensional inverse problem,

the discontinuous Galerkin (DG) method using a Tikhonov regularization is

developed for parameter sought (Epshteyn et al., 2009). For advantages of both

XFEM and DG, a combination of XFEM and DG leads to XFEM-DG (Gracie et al.,

2008) which deals with the discontinuity in elements and the discontinuity across

element boundary.

The biases or errors of DIC measurements are studied in various literatures.

The greyscale interpolations such as bicubic spline and Fourier interpolation are

required for sub-pixel accuracy and displacement shape function are required for

improving accuracy. However, interpolation of greyscale and displacements might

cause inaccuracy and interpolation biases to the DIC algorithms. The systematic

errors in DIC due to undermatched subset shape functions of displacements (Schreier

and Sutton, 2002) are studied for error analysis. Next, the systematic errors in DIC

caused by gray-value interpolations are studied and the methods reducing these errors

are proposed (Schreier et al., 2000). Other parameters such as sizes of the speckles

(Lecompte et al., 2006), sizes of subsets and speckle patterns(Pan et al., 2008) that

relate to the errors of DIC measurements are identified and analyzed. Intuitive

methods to quantify errors of DIC are to use synthetic images that are generated by

computers. The synthetic deformed images imposed by a sinusoidal displacement
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fields is utilized to quantify errors of DIC (Bornert et al., 2009). The errors using

deformation of Bi-axial loading of an infinite plate with a hole and realistic ground

truth speckle images quantify errors of N-R methods based DIC and the gradient-

based DIC methods (Cofaru et al., 2010a).



10

MATERIALS AND METHODS

1. Study of DIC algorithms

Image matching is a discipline of computer vision that is to detect objects in

motion. The 2D DIC employs concepts of image matching to detect motion of studied

objects. For in-plane measurements of DIC, experimental set-up can be displayed as

figure 1. The white light is emitted from the lighting sources and it is reflected from

the specimen surfaces to a digital camera by passing though a camera lens. The

specimen surfaces should be painted with random speckle patterns to create a unique

identity for analysis regions. During loading, the specimens should be parallel to an

image sensor to prevent errors from out-of-plane motions. Next, a digital camera

captures the speckle pattern images of specimen surfaces before and after loading.

Both speckle pattern images carry displacement information of deformed specimen

surfaces waiting for computer analyses.

Figure 1 2D-DIC equipment arrangement.

Digital Camera
Lens

Specimen

Lighting Source

Lighting Source

Computer

90
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The image sensors in digital cameras are very important for DIC accuracy.

Selection of image sensors for DIC can be CCD (Charge-Couple Devices) or CMOS

(Complementary Metal Oxide Semiconductor) sensor. In physics, light consider as

photons. The mechanism of image sensors is to converse a number of photons that

hits the pixel during exposure time to create electrons. The electrons are collected and

form a charge which is transformed into voltage after the end of exposure. This

voltage is amplified and digitized to gray value for each pixel. An image is

represented as a 2D array of pixels and a pixel is the smallest entity in an image.

1.1 Simple search methods

For simple motion measurement, a subset of )12()12(  ji from the

undeformed image is chosen to find its location in the deformed image as figure 2.

Searching the best matching between a subset of an undeformed image and a subset

of an deformed image is to utilize the cross-correlation coefficients. The definition of

the cross-correlation coefficients can be expressed as

   
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where ),( yxf and ),( vyuxg  are the grey values of each pixel in undeformed

and deformed subsets. mf and mg are the averages of grey values in the subsets. u and

v are x and y displacements of subset centers. The values of cross-correlation

coefficients in eq.(1) have the ranges -1 to 1. If ),( vuC is close to 1, undeformed

subsets likely relate to deformed subsets. On the other hands, if ),( vuC is close to 0,

undeformed subsets unlikely relate to deformed subsets. The accuracy of measured

displacements of this method is one pixel because the minimal unit in digital image is

one pixel.
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Figure 2 Searching for the best matching between undeformed and deformed

subsets.

1.2 Newton-Raphson Method

Improving DIC algorithm accuracy from integer pixel resolution to sub-pixel

resolution, different sub-pixel algorithms have been developed by many researchers.

One type of various sub-pixel algorithms is least square methods based on Newton-

Raphson iteration or N-R methods which is more accurate than other methods such as

optical flow method and correlation coefficient curve-fitting method (Bing et al.,

2006; Hung and Voloshin, 2003). However, computational time of N-R methods is

longer than other methods due to iterative computation. The development of N-R

methods for sub-pixel accuracy has a need to interpolate grey values of an

undeformed image ),( yxf and a deformed image )~,~( yxg by using bicubic splines:
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),( yx is the positions of grey values at each pixel in undeformed images and )~,~( yx

is the positions of grey values at each pixel in deformed images. mna and mnb are

coefficients of spline functions which are determined by using grey values and their

gradients of each pixel position.

If a body is subjected to a system of forces, individual points of the body will

move. This movement of an arbitrary point is a vector quantity known as a

displacement. If the various points in the object undergo different movements, each

can be represented by its own unique displacement vector. For two dimensions, each

vector can be decomposed into components parallel to a set of Cartesian coordinate

axes. For examples, u and v are the displacement components in the x and y

directions, respectively.

Motion of the object can be considered as the sum of two parts (Dally and

Riley, 1991), rigid-body motion and deformation. The rigid-body motion is the

translation or rotation of the whole body and the deformation is the movement of the

points of the body relative to each other. The rigid body motions can be large or

small. Deformations, in general, are small except when rubberlike materials or

specialized structure as long, slender beams are involved. DIC measures both rigid-

body displacements and deformation displacements.

An advantage of N-R methods is to introduce the mapping functions or shape

functions to increase DIC accuracy for approximating deformation in the subsets.

First order and second order Taylor series approximation of displacement functions

are introduced to create mapping functions. Figure 3 illustrates how to map subset

points in an undeformed subset to a deformed subset. The center point P in the

undeformed subset located at position ),( PP yx is moved to the center point P
~

in

deformed subset located at position ),( ~~ pp yx . The relation of ),( PP yx and ),( ~~
PP

yx

can be expressed as
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PPP
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where pU and pV are displacement components at point P in the x and y directions

respectively. First order Taylor series approximation of ),( yxU and ),( yxV about

),( pp yx is given by:
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From figure (3), the point Q in the undeformed subset located at ),( QQ yx is moved to

the point Q
~

in deformed subset located at ),( ~~
QQ

yx . The point Q
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has the relation to

point P as
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where QU and QV are displacement components at point Q in the x and y

directions. )( PQ xxx  and )( PQ yyy  . Using eq.(4) to approximate QU and

QV in eq.(5) rewrites eq.(5) as
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Other points instead of point Q can be rewritten in general forms as
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where x~ and y~ are the positions of any points in deformed subsets. x and y are the

positions of any points in undeformed subsets. u ,
x

u




,

y

u




, v ,

x

v




and

y

v




are

displacements and displacement gradients at the center positions of subsets. The

terms, )( Pxxx  and )( Pyyy  , are the distances from subset centers to the

points ),( yx .

Figure 3 Mapping functions from undeformed and deformed subsets.
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An image is a scalar function of the spatial coordinate that gives the gray

values at each discrete point of coordinate ),( yx . The advection of the undeformed

image ),( yxf creates the deformed image )~,~( yxg , such that

)~,~(),(),( yxgyxbyxf  (8)

where ),( yxb is noise induced by image acquisition. Neglecting noise ),( yxb can be

made if noise’s amplitude is low with respect to those of ),( yxf and )~,~( yxg .

Equation (8) formulates a square of residual function:





SS p

yxgyxfyxR 2)]~,~(),([),( (9)

Let S represent all points in the subset, and let pS represent any single point in the

subset. Next, employing least square method compares the undeformed image and the

deformed image. Then, eq. (9) can be rewritten as

0





u

R
R (10)

where vector u is

T

y

v

x

v
v

y

u

x

u
u 
























,,,,, and R is gradient of R . Equation (10) is

a system of nonlinear equation that can be solved by the Newton-Raphson method.

The good initial guesses and iteration steps are required in the Newton-Raphson

method. Therefore, eq. (10) solving by the Newton-Raphson method would be

 )]([)]([ 1
000 uuuu RR   (11)

where the vector 0u is an initial guess of the solution and vector u is the next

iterative solution approximate solution of equation (10). )( 0uR is the second order
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gradient of the square of residual function known as the Hessian matrix (Liu and

Han, 2003). The convergence of this method faces with difficulty when the Hessian

matrix is close to singular. While determinant of the Hessian matrix ( R ) is equal

to zero, the Hessian matrix is not invertible.

In this study, the main purpose is to point out the importance of using sub-

pixel algorithms for better accuracy than integer search methods. Both the simple

search methods and N-R methods are written in MATLAB software. First, the

accuracy of both methods is evaluated by using theoretical images of simple

translation. Second, the measured displacements of cantilever beams are compared

with elastic theory.

For translation simulation, creating synthetic images employs two following

analytic functions (Bing et al., 2006):
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
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(12)

s is the total number of speckle granule, R is the size of the speckle granule and

),( kk yx are the central positions of each speckle granule with a random distribution,

0
kI is the random peak intensity of each speckle granule. 0u and 0v are rigid body

displacements in x and y directions. xu and yv are components of normal strains in x

and y directions. yu and xv are components of shear strains in x and y directions. The

theoretical images or synthetic images are useful because they have no needs for real

experimental set-up. The virtual experimental set-up can be performed in computers

which parameters such as speckle patterns, subset sizes, initial guesses and

interpolation functions can be investigated before performing the actual experiments.
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After investigating translation simulation by DIC, experiments of a cantilever

beam are set-up to measure displacements in x and z directions as shown in figure 4.

A digital camera (Olympus Camedia E-10) captures speckle images of undeformed

and deformed cantilever beam. Systematic accuracy of DIC is evaluated by using

analytical solutions derived from theory of elasticity.

Figure 4 Experimental setup of the cantilever beam measured by DIC.

2. Identification of elastic material properties using MNET and DIC

The main goals of this study are to simulate all algorithms in figure 5 that

apply for identifying material properties. In the previous works (Lecompte et. al.,

2005, 2007), experiments of tensile tests on perforated specimens and biaxial tests on

cruciform specimens have been performed very well but accuracy improvement is

still required to investigate sources of errors in computer algorithms. Because those

experiments are hardly performed to satisfy all conditions, analytical solutions are

introduced to eliminate difficulty. In spite of experimental data, displacements from

analytical data can also create speckle images in both undeformed stages and

deformed stages.

Measurement area
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x

z

b

h

L
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Figure 5 Flow-chart of MNET for identify material parameters.

2.1 Analytical solution of a plate with a circular hole

In figure 6, analytical solutions of an isotropic infinite plate with a circular

hole subjected to uniaxial tensile loads are derived from Airy stress function (Barber,

2002; Sadd, 2009; Timoshenko and Goodier, 1969). Displacement fields in polar

coordinates are given by
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where T is stress or surface traction, E is Young’s modulus and  is Poisson’s ratio.

a is a radius of a central hole. The displacement transformation between polar

coordinate and x-y coordinate can be written as









cossin),(

sincos),(

uuyxv

uuyxu

r

r




(14)

where ),( yxu is displacement in x-direction and ),( yxv is displacement in y-

direction. In this simulation, the displacements in eq. (14) are the baseline to calculate

errors of MNET and DIC. A specimen in this simulation is a square rectangular plate

40  40 mm subjected to traction T = 2 MPa and it has a central hole radius of 2 mm.

The thickness of the plate is 1 mm. The plate is made of polycarbonate with E = 2.4

GPa and  = 0.45.

Figure 6 An infinite plate with a central hole.

2.2 Speckle simulation

Evaluating the DIC accuracy, computer-generated speckle images are more

efficient methods to control speckle patterns. The quality of speckle sizes and

distribution of speckle patterns are very crucial for DIC accuracy (Lecompte et. al.,

2006). The displacements of analytical solutions in eq. (14) are used instead of finite



x

y
r

TT
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element simulation. Light intensity of each pixel in the image pairs of undeformed

image ),( yxf and deformed images )','( yxg is generated by following analytic

function (Bing et. al., 2006):
















 









 


s

k

kk
k

s

k

kk
k

R

yxvyyyxuxx
Iyxg

R

yyxx
Iyxf

1
2

22
0

1
2

22
0

)],([)],([
exp)','(

)()(
exp),(

(15)

s is the total number of speckle granule, R is the size of the speckle granule and

),( kk yx are the central positions of each speckle granule with a random distribution,

0
kI is the random peak intensity of each speckle granule from the normal distribution.

The displacement functions, ),( yxu and ),( yxv in )','( yxg are from analytical

functions in eq.(14). Figure 7 (a) and (b) show example of the synthetic patterns for

undeformed surfaces in ZOI and its histogram. The saturation problems of images can

be checked by the histogram. The gray level of images is encoded on a 16-bit depth

(0-65535 level) and the resolution of images is 0.04 mm per pixel.

(a) (b)

Figure 7 (a) Synthetic pattern of an undeformed image (s=2000, R=3, image size=

206206 pixels,) (b) Histogram of gray levels on an undeformed image.
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2.3 Q4-Digital image correlation (Q4-DIC)

The Q4-DIC technique (Besnard et al., 2006) is based on two images of

specimen surfaces which are captured from digital cameras. The first image or

reference image is in the undeformed stages. The second image or deform image is in

the loading stages. Both images are scalar functions of spatial coordinates that

represent the gray levels at each pixel. The reference images and deform images are

called )(xf and )(xg . The conservation of optical flow (Horn and Schunck, 1981)

can be expressed as

)]([)( xuxx  fg (16)

where )(xu is displacement of specimen surfaces. Let f and g be differentiable, and

the displacement small enough, then Taylor expansion of f up to first order can be

introduced to form residuals or errors as

)()()()( xxuxx ffgR  (17)

In equation (17), bilinear quadrilaterals of finite element shape functions

(Reddy, 2005) are introduced to approximate displacements:

ΦUu(x)  (18)

where matrix Φ contains four element shape functions ),,,( 4321  and matrix

U contains eight nodal displacements ),,...,,( 4411 VUVU . For local coordinate on a

square [0, 1]2, the four element shape functions are )1)(1( yx  , )1( yx  , )1( xy 

and xy .

The zone of interest (ZOI) domain is defined as 2 that is divided into a

small elemental domain e . Then, e and least-square method requires the
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integration of square residuals over e to be minimized with respect to unknown

coefficients









e

dR 02

U
. (19)

Figure 8 (a) and (b) illustrates how to divide ZOI into elements and one element is

divided into subsets s .

Minimizing eq.(19) in least square senses leads to systems of linear equation

 
 ee

dfgd )(TT kUkk . (20)

where vector k is
81

4411 ,,,,
























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y
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f

y

f

x

f
  . The reference image

gradients in x and y direction are
x

f




and

y

f




respectively, that determine from

grayscale interpolation of each pixel.

Equation (20) may be written in a compact form as

eee FUK  (21)

The element matrices eK and eF that can be assembled to form a global stiffness

matrix K and force vector F as in finite element problems. The global stiffness matrix

K is symmetric, square and sparse. Ill condition can be occurred if reference image

gradients are small.

Both fast fourier transform (FFT) and bi-cubic spline have been studied to

reconstruct images for sub-pixel interpolation. The advantages of FFT are rapid
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computation and providing smooth C for interpolated functions. On the other hand,

fourier transform can creates undesired oscillation for image edges and sharp

differences of image gradients. The computation of bicubic spline is rather time-

consuming but high accuracy can be obtained from this interpolation. In this work,

bicubic splines are provided sub-pixel accuracy for DIC algorithm.

To construct bi-cubic spline in undeformed images and deform images,

interpolation functions are used in an element. The bicubic spline functions on a

square local coordinate  221,21 can be written in polynomial forms (Lancaster

and S ̆Alkauskas, 1986):
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where ija and jib , are spline coefficients that need to determine. For example, ija of

)~,~(1 yxf can be computed by solving linear system equation:

CbA  (23)

where vector b size 161 contains spline coefficients Taaaa ],...,,,[ 33201000 and

vector C size 161 contains gray values and its gradients )~~,~,~,(
2
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in four

node positions )2/1,2/1(  , )2/1,2/1(  , )2/1,2/1( and )2/1,2/1( . Finite

Differences is helpful to calculate gradients )~~,~,~(
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for each pixel. The

matrix A size 1616 contains coefficients by substituting node positions into x~ and

y~ of eq.(2.10).
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Performing integration of eq.(20) cannot be evaluated directly because one

element consists of many subsets s of spline functions. The local coordinates of

elements are substituted by local coordinates of spline functions that have the centers

at spline squares. Therefore, area integrals of an element in right hand and left hand

of eq.(20) can be written with the change of variables (Zill and Wright, 2011) to

reduce integration terms as follows:
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(24)

where i is numbers of spline functions from 1 to n in an element and J is 22

Jacobian matrix.

Figure 8 (a) ZOI domain  consisting of many element domains, (b) one elemental

domain e consisting of many subsets s of spline functions.
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2.4 Finite element methods

The governing equation and boundary condition for orthotropic plane linear

elasticity problems (Burnett, 1987; Reddy, 2005) are summarized below.

fσ  in  (25)

Duu  on D (26)

Ntnσ  on N (27)

Assume that )2(  ddR is a bounded polygon. σ and f denote the symmetric

Cauchy stress tensor and the body force.  is a divergence operator. Du is the

prescribed displacement on Dirichlet boundary, D and Nt is the prescribed

traction vector on Neumann boundary, N . The constitutive equations ( ε:cσ  )

for finite element models uses orthotropic stiffness elastic materials. Formulation

plane elastic problem using eq. (25), (26) and (27) with constitutive equation obtains

stiffness matrix , force matrix and displacement matrix. The picture in figure 9 (a) is

2127 triangular elements of finite element mesh with 1116 nodes and figure 9 (b) is

boundary condition for finite element models. Finite element strains from ZOI use for

optimization with DIC strains in the next section. The ZOI are studied for the errors

and convergences of the current set-up of DIC and MNET.
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Figure 9 (a) FEM mesh (b) FEM boundary condition and ZOI (size = 0.00825 m2).

The analytical solution in eq.(14) is based on an infinite plate while the FEM

solution is based on finite plate. Before doing further analysis, the discrepancy

between the analytical model and the FEM model must be verified by using relative

errors in L2-norm of displacements to ensure minimum bias (Akin, 2005). The

relative errors in L2-norm can be defined as



 




i

exact
i

i

FEM
i

exact
i

FEM

FEMexact

U

UU

U

UU

2

2

0

0

)(

)(

(28)

where i is number of FEM nodes. exact
iU and FEM

iU are the analytical displacements

and FEM displacements. The various FEM models that have different mesh

configuration and mesh sizes are compared to the analytical model for resemblance.

Finally, the FEM mesh configuration in fig. 9(a) is selected with minimum bias and

the relative errors in L2-norm for this mesh configuration is equal to 0.0049 (or

0.49%) for displacements in x-direction and 0.0146 (or 1.46%) for displacements in

y-direction.

ZOI

y

x
v = 0

u = 0 T

(a) (b)
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2.5 Optimization in inverse methods

The identification of material parameters is based on a Gauss-Newton

optimization method (Björck, 1996). When least square method is formed a residual

function )(R in eq.(29), it measures the differences of DIC strain and FEM strain. In

the residual function, the different strains of n triangular elements of FEM are added

together and they are linearised by Taylor expansion around four unknown

parameters 221211 ,,( sss and )66s .Finally, residual function is subsequently minimized

with respect to four unknowns. The least square residual function can be expressed as

 
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222 ))(())(())(()(  (29)

where finite element strains are FEM
x , FEM

y and FEM
xy and DIC strains are DIC

x ,

DIC
y and DIC

xy . The unknown vector ]),,,[( 66221211 sssss  is to be identified by

minimizing residual function,

0
)(






js

sR
(30)

where j is 11, 12, 22 and 66. Then, there are four equations to be solved.

The Taylor expansion is
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which FEM
y and FEM

xy can be formulated as same as FEM
x . The term )( k

jj ss  is the

difference between the initial value k
js at point k and its new estimate js .Finally,

updated parameters can be obtained by solving
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 )()( 1 kFEMDIC
ss    tt AAA (32)

where s is a column vector of the updated parameter ( 221211 ,, sss  and )66s ,

A is sensitivity matrix containing strain gradients,

DIC
 is a column vector of DIC strains ( DIC

x , DIC
y and DIC

xy ),

FEM
 is a column vector of FEM strains ( FEM

x , FEM
y and FEM

xy ) at iteration k,

k
s is the four compliance coefficients.

The sensitivity matrix A can be derived from the constitutive equation for

orthotropic plane stress:
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For isotropic plane stress, 1211 ss  . In this work, both isotropic constitutive

equations and orthotropic constitutive equations are studied to identify isotropic

material properties that are generated from analytical solution.

The DIC Strains ( DIC
x , DIC

y and DIC
xy ) are computed from quadrilateral

interpolation generating displacements at triangular nodes of FEM as figure 10. Next,

strains can be calculated by differentiating displacement triangular shape functions.

3
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
 (34)

The displacements ( 21 ,uu and 3u ) in eq.(34) are computed from Q4 elements:

nnmmjjii
DIC uyxuyxuyxuyxyxuu ),(),(),(),(),( 11111111111   (35)

The values of DIC
y and DIC

xy also are calculated the same procedures as DIC
x .
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Figure 10 Computing DIC strains from Q4 elements and triangular elements.

The decision to stop iterations uses percent relative errors defined as
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
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ss
e 66,22,12,11j (36)

where k
js is the compliance coefficient for the present iteration and js is the

compliance coefficient for the previous iteration. When all relative errors ( je ) are

less than 0.01 %, the iterations will be terminated.

3. Optical flow and discontinuous finite element formulation

Where the problems with discontinuous displacements are involved such

material cracks and sliding interfaces, the continuous bases of optical flow face with

difficulty to detect discontinuous displacements. For recent advances in

computational mechanics, an extended digital image correlation (X-DIC) is

introduced using partition of unity method to solve the discontinuous problems. For

X-DIC, the study domain  is separated by the support of the discontinuity  into

two parts  and  . In this section, an alternative approach based on optical flows

and discontinuous finite element methods is introduced to solve discontinuity

problems.
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3.1 1-D of continuous finite element methods for optical flows

The conservation of optical flow in 2-D presented by eq.(16) can be reduced

to one dimension as

))(()( xuxfxg  (37)

where the function )(xf represents grey values in the reference image and the

function )(xg represents grey values in the deform image. The function )(xu is a

displacement function. Next, the Taylor expansion of ))(( xuxf  can be introduced

into eq.(37) and the residual function can be formed as
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)()( xg
x

xf
xuxfR 


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 (38)

In equation (38), one-dimensional linear shape functions (Reddy, 2005) are

introduced to approximate displacements

jjii UUxu  )( (39)

where element shape functions are )1( xi  and xj  . The nodal displacements

are iU and jU . In least square method, seeking minimum square residuals requires
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where vector U is ],[ ji UU . Minimizing eq.(39) in least square senses leads to

systems of linear equation
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that

determine from grayscale interpolation of each pixel.

Equation (20) may be written in a compact form as

eee FUK  (42)

The element matrices eK and eF that can be assembled to form a global stiffness

matrix K and force vector F as in finite element problems. The global stiffness matrix

K is symmetric, square and sparse. Ill condition can be occurred if reference image

gradients are small.

To construct hermite spline in undeformed images and deform images,

interpolation functions are used in an element. The hermite spline functions on local

coordinate can be written in polynomial forms (Lancaster and S ̆Alkauskas, 1986):
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where ia and ib are spline coefficients that need to determine. For example, ia of

)~(1 xf can be computed by solving linear system equation:

CbA  (44)
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where vector b size 41 contains spline coefficients Taaaa ],,,[ 3210 and vector C

size 41 contains gray values and its gradients )~,(
x

f
f



in two node positions

2/1~ x and 2/1~ x . Finite Differences is helpful to calculate gradients )~(
x

f




for

each pixel. The matrix A size 44contains coefficients by substituting node positions

into x~ and y~ of eq.(42).

Performing integration of eq.(40) cannot be evaluated directly because one

element consists of many subsets s of spline functions. The local coordinates of

elements are substituted by local coordinates of spline functions that have the centers

at spline squares. Therefore, area integrals of an element in right hand and left hand

of eq.(40) can be written with the change of variables (Zill and Wright, 2011) to

reduce integration terms as follows:
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where i is numbers of spline functions from 1 to n in an element.

3.2 1-D of discontinuous finite element methods for optical flows

To illustration the basic ideas of the discontinuous least square finite element

method, the derivation follows in the book (Li, 2010). Least square methods from

eq.(39) can be expressed as

0



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






 xRd

R

U
(46)
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Let
U

W





R
, then eq.(39) can be rewritten as

 



0)( dxgf

x

f
UW . (47)

Performing integration by parts two times of eq.(46), a discontinuous element

formulation can be constructed by weakly imposed boundary conditions across

element boundary. Then, eq.(46) is written with terms of a jump across the element

boundary,
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The integration terms in eq.(48) requires change of variable and summation of spline

function as in eq.(45). The numerical simulation based on the separation movement of

two objects is illustrated in figure 11.

Figure 11 Separation movement of two objects and their displacements.
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RESULTS AND DISCUSSIONS

1. Study DIC algorithm

The synthetic images of speckle patterns are created from equation (12). The

number of speckle granules s = 500 and the sizes of speckle granule R = 4 are

applied to equation (12). The random peak intensity of each speckle granule ( 0
kI ) that

has a range between 0 and 255. For rigid body translation, there is no strain so that all

strain values ( xu , yu , xv and yv ) should be zero. A series of synthetic speckle

images shown as figure 12 is generated by the computer program with the

displacements ( 0u and 0v ) raging from 0 to 2 pixel, corresponding to a shift of 0.1

pixels between two consecutive images. Figure 12 (a) and (b) are undeformed and

deformed synthetic images that have the image sizes of 250250 pixels. The

displacements are calculated at the center subsets that have the sizes 4141 pixels.

Figure 12 Synthetic speckle patterns of (a) undeformed image (b) deformed image

with 0,2,2 00  yxyx uvvuvu .

The accuracy of DIC may be evaluated by comparing the resultant vectors of

pre-imposed displacements ( simd ) and the resultant vectors of measured

displacements ( DICd ). The percentage displacement errors can be defined as

(a) undeformed image (b) deformed image
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100% 



sim

DICsim

d

dd
error (49)

where 2
0

2
0 vud sim  and 22 vudDIC  . The displacements 0u and 0v are the

component vectors in x and y directions of the pre-imposed displacement vectors

( simd ).The displacements u and v are the component vectors in x and y directions of

the measured displacement vectors ( DICd ). In figure 13, 21 points of percentage

displacement errors are plotted against the pre-imposed displacements ( simd ). In this

study, the sub-pixel algorithm is N-R algorithm. The percentage errors of DIC using

sub-pixel algorithm (%error1) is less than errors of simple search algorithms

(%error2).
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Figure 13 Percentage errors of DIC measurements, %error1 (no sub-pixel), %error2

(with sub-pixel).
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Next, a simple search algorithm of DIC is applied to measure deflection of an

experiment of cantilever beam. The elastic theory of cantilever beam is utilized to

evaluate accuracy of the algorithm (Timoshenko and Goodier, 1969). In figure 14, a

steel cantilever beam that is subjected to a force 30 N caused bending moment at the

beam tip. The beam has dimension 160124 mm (Lbh). u and w displacements

in x and z directions can be obtained from analytical equations:

xz
EI

M
w

yxz
EI

M
u

y

y



 )]([
2

222 

(50)

where the modulus of elasticity ( E ) an Poisson’s ratio ( ) are 200 GPa and 0.3,

respectively. yI is moment of initia that is 6.410-11 m4. x , y and z are the

positions on the cantilever beam. In this experiment, displacements are measured in

the middle of the beam height ( 0x ), the middle of the beam width ( 2/by  ) and

six positions on the beam length ( z = 10, 11, 12, 13, 14 and 15 cm). The image

resolution that is calculated from camera resolution and object length is 26.3 pixel /

m.

Figure 14 Deformation of cantilever beam (a) measurement positions (b) image of

undeformed beam (c) image of deformed beam.
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The analytical displacements from equation (49) are compared with simple

search methods of DIC. Figure 14(a) displays the measurement position on the

cantilever beam. Figure 14(b) and figure 14(c) display the undeformed image and the

deformed image that captured by a digital camera. The undeformed images or

template images corresponding to measurement positions have the image sizes

14191 pixels. The cross-correlation coefficients are computed to find the best

matching of template images and undeformed image. The ZOI sizes for searching are

151331 pixels. Table 1 is the displacement results of DIC measurements compared

with displacement values from elastic theory. For this setup, the difference between

DIC measurements and elastic theory of beam bending is in the rages of 0.08-0.2 mm.

Table 1 Comparison of theory displacements and measured displacements.

Displacement u , (mm) Displacement w , (mm)

Distance on

z-axis , (cm) Theory DIC Difference Theory DIC Difference

15 4.0165 4.1777 -0.1612 0 0.1140 -0.1140
14 3.6729 3.7333 -0.0604 0 0.1520 -0.1520
13 3.1667 3.3777 -0.2110 0 0.1520 -0.1520
12 2.6979 2.9333 -0.2354 0 0.1520 -0.1520
11 2.2667 2.4444 -0.1777 0 0.1520 -0.1520
10 1.8729 1.9555 -0.0826 0 0.1520 -0.1520

2. Identification of elastic material properties using MNET and DIC

The analytical solutions in eq.(14) generate displacements, u(x, y) and

v(x, y), to create speckle images using eq. (15). The pairs of artificial images,

undeformed images and deformed images, are measured for displacements by Q4-

DIC. The sizes of ZOI are 206206 pixels that are divided into 29 elements and 900

nodes with subset 88 pixels per element. The selections of ZOI sizes and number of

elements depend on a trade-off between CPU time and measurement resolution. The

DIC displacements from ZOI in figure 9(b) are examined for errors. For
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displacements in x-direction, the error criterion of each ZOI are relative errors in the

L2-norm defined as
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where n is number of DIC nodes on ZOI. exact
nU and DIC

nU are the analytical

displacements and DIC displacements in x-axis of each node. The relative errors in

the L2-norm for displacements in y-direction,

0

0

exact

DICexact

V

VV 
, can be calculated the

same procedures as the relative errors in the L2-norm for displacements in x-direction.

The relative errors and the percent relative errors in L2-norm are summarized in

table 2.

Figure 15 (a) and (b) are u and v displacements from analytical solutions on

ZOI. The results of DIC measurements are figure 15 (c) and (d) that show a good

agreement with analytical displacements. However, there are some high errors of u

and v displacements that are close to x and y axis. One cause of errors is from

nonlinear displacements that are hardly measured by DIC. The DIC displacements

contain some numerical noises that affect DIC strain calculation. In this work, noisy

strains are applied directly to identify elastic constants.

Table 2 Relative errors in L2-norm of U and V displacements on ZOI.

0

0

exact

DICexact

U

UU 

0

0

exact

DICexact

V

VV 

Relative errors in L2-norm 0.0258 (2.58%) 0.0594 (5.94%)
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(a) uexact (b) vexact

(c) uDIC (d) vDIC

Figure 15 DIC x-y analytical displacement (a), (b) and x-y DIC displacement (c),

(d) on ZOI.
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(a) exact
x (b) FEM

x

(c) exact
y (d) FEM

y

(e) exact
xy (f) FEM

xy

Figure 16 Analytical strains (a), (c), (e) and FEM strains (b), (d), (f)
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In optimization routine, the DIC strains and FEM strains are compared

iteratively by using least square methods to find the best matches of four compliance

coefficients. Ten pairs of artificial images, undeformed images and deformed images,

are measured for displacements by Q4-DIC. The convergences of updated

compliance coefficients are achieved about 5th iteration for isotropic models and 9th

for orthotropic models. The corrupted noisy strains from DIC strains are

reconstructed by FEM for the whole specimens in figure 16 (b, d and f). The relative

errors between analytical strains in figure 16 (a, c and e) and finite element strains in

figure 16 (b, d and f) can be observed for model validation purposes.

Two material models that are isotropic models and orthotropic models are

studied for identification accuracy of elastic coefficients. The imposed coefficients of

polycarbonate materials from analytical solution act as a baseline to quantify errors of

these identification procedures. For isotropic parameters in table 3, Young’s modulus

)(E , Poisson ratio )( and shear modulus )(G from virtual experiments are compared

with imposed values. For orthotropic parameters in table 4, there are also some

unbalance values of xE and yE .

Table 3 Elastic coefficients using isotropic model.

E (GPa)  G (GPa)

Initial guess 1.00 0.5000 -

Exact value 2.40 0.4500 0.82759

Average 2.46 0.4651 0.83899

Standard deviation 0.0135 0.0037 0.00246

Percentage error (%) 3.25 2.38 1.35
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Table 4 Elastic coefficients using orthotropic model.

xE (GPa) yE (GPa) xy xyG (GPa)

Initial guess 1.00 1.00 0.5000 1.00000

Exact value 2.40 2.40 0.4500 0.82759

Average 2.46 2.19 0.4594 0.82758

Standard deviation 0.0129 0.1597 0.0073 0.01646

Percentage error (%) 2.46 8.83 2.08 0.00036

2.1 Discussion

Even though actual experiments to identify material properties are not

performed on this work, analytical solution simulate actual experiments very well. To

improve accuracy of the identification methods, sources of errors should be

discussed. For DIC methods, displacement errors are evaluated by relative errors in

L2-norm as in table 2. The causes of DIC displacement errors are from numerical

errors such as truncation errors of optical flow, interpolation errors of bicubic spline

and interpolation errors of Q4 shape functions. Quality of speckle images such as

speckle patterns and speckle sizes can also affect DIC errors. In figure 15, the

analytical displacements reflect the inherent errors that are in DIC displacements. The

steep displacement gradients along x and y axis of the plate that are difficult to

measure by optical flow DIC cause irregular distribution of DIC displacements. The

DIC strains that are computed by DIC displacements in eq. (34) are dominated by

numerical errors or noises. Some studies use analytical solutions to smooth out these

noises known as integrated approach (4). For this study, the noisy DIC strains that can

be also smoothed out by MNET are represented by FEM strains as in figure 16 (b),

(d), and (f). The distribution of FEM strains in fig. 16 almost resembles the

distribution of exact strains.
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Not only DIC measurements but also MNET play an important role to identify

material properties. A benefit of using compliance coefficients instead of Young’s

modulus and Poisson’s ratio in MNET is to reduce computational terms of strain

gradients in sensitivity matrix A . However, this new method should be observed for

identification errors because of little studies in the literatures. First, the noisy DIC

strains can be the inputs for MNET to obtain material parameters. After that, the

interconnection errors of DIC errors and MNET errors can be observed through the

percentage errors of the Young’s modulus, shear modulus and Poisson’s ratio as in

table 3 and 4. The interconnection errors of DIC errors and MNET errors are how

MNET errors interact with DIC errors.

The errors in measurements can be divided into two categories that are

systematic errors and random errors. The systematic errors are the average of many

measurements that differs from the exact value. The percentage errors of the Young’s

modulus, shear modulus and Poisson’s ratio as in table 3 and 4 can be considered as

systematic errors of this simulation and the average values of the Young’s modulus,

shear modulus and Poisson’s ratio are the accuracy of overall measurement systems.

To improve accuracy, the systematic errors should be minimized. The proper

selections of displacement shape functions, intensity interpolations and FEM models

can reduce systematic errors.

The different speckle patterns and different speckle sizes for each simulation

introduce random errors for DIC. The uncertainty of DIC errors influences the

variation of identification material parameters which are measured by standard

deviation in table 3 and 4. Since optimization algorithm and FEM models do not

introduce variation in the results for this simulation, they would not affect the

standard deviation of material parameters in table 3 and 4. Intuitively, minimizing

random errors depends on selections of speckle patterns and sizes.

The interaction of DIC errors and MNET errors may affect Young’s modulus

in table 4. For example, the unsymmetrical values of affect percentage errors of

Young’s modulus xE and yE in table 4 may have influences from relative L2-norm
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errors of FEM model errors in section 2.4 and DIC errors in table 2. The DIC

displacement error in y-direction (V) is more than the DIC displacement error in x-

direction (U). The FEM displacement error in y-direction (V) is more than the FEM

displacement error in x-direction (U). The Young’s modulus error in y-direction ( yE )

is more than The Young’s modulus error in x-direction ( xE ). Before using DIC and

FEM model to study orthotropic material properties, the unsymmetrical errors of x-

direction errors and y-direction errors should be minimized for better accuracy. The

Young’s modulus xE should equal to yE .

The limitation of computer simulation is how to apply the results from

computer simulation into actual experiments. The speckle patterns and sizes should

be controlled the same as speckle images in simulation. The camera noises and

lighting noises that do not consider in simulation affect the experimental results. To

optimize the methods, parameters of DIC and MNET should be examined both in

experiments and in simulation.

3. Optical flow and discontinuous finite element formulation

Before measuring displacements by DIC, 1-D image intensity are created

from eq.(12) with 0u =-1 for node 1 to 6 and 0u = 1 for node 7 to 11. The size of the

speckle granule ( R ) is equal to 6 and the total number of speckle granule (s) is equal

to 500 with 103 pixel for image sizes. Figure 17 shows measured displacements of

two objects that are moved apart from each other as in figure 11. The measured

displacements from optical flow based on continuous finite element formulation (U-

FEM) have small errors in the node number 1 to node number 5 and the node

number 7 to 11. Likewise, the measured displacements from optical flow based on

discontinuous finite element formulation (U-DFEM) have small errors in the same

node number as continuous finite element method. However, while there is the

separation of two objects at the middle (node number 6 and 7), U-DFEM

displacement is more close to U-Exact than U-FEM.
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Figure 17 Measured displacements of optical flow based on continuous finite

element (U-FEM), discontinuous finite element (U-DFEM) compared

with exact displacement (U-Exact).

In figure 18, first absolute error (error of U-FEM) is computed from exact

displacement (U-Exact) and continuous finite element (U-FEM). Other absolute error

(error of U-DFEM) is computed from exact displacement (U-Exact) and

discontinuous finite element (U-DFEM). The absolute errors define as

DICexact UUError  (52)

where exactU is exact displacement (U-Exact) in figure 7 and DICU can be

displacements from continuous finite element (U-FEM) or displacements from

discontinuous finite element (U-DFEM). The absolute errors of U-DFEM of node

number 5 and 6 are small than U-FEM. Even through other absolute errors of U-

DFEM at other nodes are higher than U-FEM, they are in acceptable accuracy.

However, the accuracy of both methods, FEM and DFEM, depends on speckle

patterns. If different speckle patterns are created, accuracy might be different.
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Figure 18 Absolute displacement errors of optical flow based on continuous finite

element (Error of U-FEM), discontinuous finite element (Error of U-

DFEM).
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CONCLUSIONS AND RECOMMENDATIONS

1. Study of DIC algorithms

From the rigid body motion tests using synthetic images and imposed

displacements, simple search methods in section 1.1 face difficulty to detect

displacements that is less than one pixels because correlation coefficients are

calculated at the pixel. This can be concluded that accuracy of the simple search

algorithms is pixel accuracy. To capture displacements less than one pixel, subpixel

algorithms such as N-R algorithms should be useful with minimum errors comparing

to the simple search algorithms.

Next, using simple search methods and the cantilever beam to demonstrate

DIC measurements can ensure the measurement accuracy. The DIC displacements

compared with analytical solutions have a good agreements and acceptable accuracy.

However, the lower accuracy in Z direction causes from small displacements that are

difficult to measure by simple search methods. To increase accuracy, sub-pixel

algorithms and high magnification of lens should be employed for DIC

measurements.

2. Numerical experiments to identify elastic properties of materials

The computer simulation has been demonstrated to determined elastic

parameters of materials using DIC and MNET algorithms. The optical flow DIC

based on bicubic spline and Q4 shape function is developed and MNET is modified

by using compliance coefficients. Then, the analytical solution of a plate with central

hole helps to study DIC errors and MNET errors during development phases. The

accuracy and precision of identification of material parameters can be approximated

by systematic errors and random errors.

In this study, it has been shown that noisy DIC strains can be smoothed out by

MNET algorithms. The results of smoothing noisy DIC strains by MNET are FEM
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strains and elastic properties of materials. The percentage errors of identified elastic

parameters infer the interconnection errors of DIC errors and MNET errors and

systematic errors. The standard deviations of identified elastic parameters which have

influences from DIC infer random errors.

The relative errors in L2-norm measure magnitude of DIC displacement errors

in x and y direction. The relative errors in L2-norm of x-y displacement errors show

asymmetry of DIC errors and FEM model errors that imply asymmetry of Young’s

modulus errors in orthotropic models. The causes of DIC displacement errors are

from DIC numerical errors and quality of speckle patterns. This result should be

studied for more details in future research.

The steep displacement gradients along x and y axis of the plate that cause

irregular distribution of DIC displacements are difficult to measure by optical flow

DIC. To improve accuracy of DIC measurements, high order of displacement shape

function might be suitable to capture these steep displacement gradients.

3. Optical flow and discontinuous finite element formulation

The accuracy of optical flow based on DFEM formulation have better results

at discontinuity of two objects than FEM formulation. However, If different speckle

patterns are created, accuracy might be different. The accuracy depends on speckle

size and patterns. If there are some numerical approximation errors in case of small

subset sizes, DFEM trends to have more oscillation of results than FEM. For higher

subset size, DFEM trends to have less oscillation of results than FEM.
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Appendix A

MATLAB codes for 1. study of DIC algorithms
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The examples of MATLAB programs using in the first section of this

dissertation, study of DIC algorithms, consists of three programs. First, a MATLAB

script file (or M-file), ranspec.m, is written to generate speckle patterns using

equation (12).

% M-file to generate random speckle pattern

close all

clear all

clc

s = 500; % Number of speckle granule

R = 4; % Size of the speckle granule

is = 250; % Square image sizes (pixel × pixel)

I1=zeros(is,is);

I2=zeros(is,is);

uo=0;ux=0;uy=0; % Displacements and their gradients in x-direction

vo=0;vx=0;vy=0; % Displacements and their gradients in y-direction

%1.creat image

for k=1:1:s

I = randint(1,1,[0,255]); % Random peak intensity of each speckle granule

xk=randint(1,1,[1,is]); % Random x-position of circle centers in the images

yk=randint(1,1,[1,is]); % Random y-position of circle centers in the images

for x = 1:1:is

for y = 1:1:is

IU(y,x) = I*exp(-((x-xk)^2)/R^2-((y-yk)^2)/R^2);

ID(y,x) = I*exp(-((x-xk-uo-ux*x-uy*y)^2)/R^2-((y-yk-vo-vx*x-vy*y)^2)/R^2);

end

M-file name: ranspec.m
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end

I1=I1+IU; % Summation of undeformed image

I2=I2+ID; % Summation of deformed image

end

save('undeform','I1')

save('deform','I2')

Second, a MATLAB script file (or M-file), DIC.m, is written to measured

displacements using simple search methods.

%Simple search methods for DIC measurement

clear all

close all

clc

% Acquire image from file

load undeform

load deform

tic

IU=I1;

ID=I2;

% Create subset-template at center of undeformed image

I=IU(1+191:101+191,1+191:101+191);

% Calculate normalized correlation

for n=1:1:540

for m=1:1:380

cd(m,n) = corr2(I,ID(m:(m+100),n:(n+100))); % Correlation

end

M-file name: DIC.m
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end

[max_c,imax]=max(abs(cd(:)));

[x,y]=ind2sub(size(cd),imax(1)); %Determine x and y positions

uo=x-191; % Calculating displacements in x-direction

vo=y-191; % Calculating displacements in y-direction

toc

Finally, a MATLAB script file (or M-file), NR.m, is written to measured sub-pixel

displacements using N-R algorithm.

% DIC Newton Raphson algorithm

clear all

clc

load undeform; % Acquire undeformed image from a file

load spcoeff % Acquire spline coefficients from a file

f=I1(2:22,2:22);

P1=0;P2=0;P3=0;P4=0;P5=0;P6=0;

P7=0;P8=0;P9=0;P10=0;P11=0;P12=0; % Initial parameters

for m=1:1:10 % Number of iteration

y=0;x=0;e=1;l=2;

for j=1:1:21

k=2;

for i=1:1:21

dx=(x-11);

dy=(y-11);

xx=x+P1+P3*dx+P4*dy+(P7*dx^2)/2+(P8*dy^2)/2+P9*dx*dy;

yy=y+P2+P5*dx+P6*dy+(P10*dx^2)/2+(P11*dy^2)/2+P12*dx*dy;

M-file name: NR.m
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s=[1,yy,yy^2,yy^3,xx,xx*yy,xx*yy^2,xx*yy^3,xx^2,xx^2*yy,xx^2*yy^2,xx^2*yy^3,

xx^3,xx^3*yy,xx^3*yy^2,xx^3*yy^3];

g(j,i)=s*b(:,e);

clear s;

agP1=[b(5,e), b(6,e), b(7,e), b(8,e), 2*b(9,e), 2*b(10,e), 2*b(11,e), 2*b(12,e),

3*b(13,e), 3*b(14,e), 3*b(15,e), 3*b(16,e)];

s=[1; yy; yy^2; yy^3; xx; xx*yy; xx*yy^2; xx*yy^3; xx^2; xx^2*yy; xx^2*yy^2;

xx^2*yy^3];

dgP1(j,i)=agP1*s; clear agP1 s;

agP2=[b(2,e), 2*b(3,e), 3*b(4,e), b(6,e), 2*b(7,e), 3*b(8,e), b(10,e), 2*b(11,e),

3*b(12,e), b(14,e), 2*b(15,e), 3*b(16,e)];

s=[1; yy; yy^2; xx; xx*yy; xx*yy^2; xx^2; xx^2*yy; xx^2*yy^2; xx^3; xx^3*yy;

xx^3*yy^2];

dgP2(j,i)=agP2*s;

clear agP2 s;

dgP3(j,i)=dgP1(j,i)*dx; dgP4(j,i)=dgP1(j,i)*dy;

dgP5(j,i)=dgP2(j,i)*dx; dgP6(j,i)=dgP2(j,i)*dy;

dgP7(j,i)=(dgP1(j,i)*dx^2)/2; dgP8(j,i)=(dgP1(j,i)*dy^2)/2;

dgP9(j,i)=dgP1(j,i)*dx*dy; dgP10(j,i)=(dgP2(j,i)*dx^2)/2;

dgP11(j,i)=(dgP2(j,i)*dy^2)/2; dgP12(j,i)=dgP2(j,i)*dx*dy;

x=x+1;

if (i==k)

e=e+1;

k=k+1;

end

end

if (j==l)

e=e+1;

l=l+1;

else

e=e-20;

end
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y=y+1;

x=0;

end

% Find gradient of residual function in eq. (10)

dcP1=0; dcP2=0; dcP3=0; dcP4=0; dcP5=0; dcP6=0; dcP7=0; dcP8=0; dcP9=0;

dcP10=0; dcP11=0; dcP12=0;

for j=1:1:21

for i=1:1:21

dcP1=((f(j,i)-g(j,i))*dgP1(j,i))+dcP1;

dcP2=((f(j,i)-g(j,i))*dgP2(j,i))+dcP2;

dcP3=((f(j,i)-g(j,i))*dgP3(j,i))+dcP3;

dcP4=((f(j,i)-g(j,i))*dgP4(j,i))+dcP4;

dcP5=((f(j,i)-g(j,i))*dgP5(j,i))+dcP5;

dcP6=((f(j,i)-g(j,i))*dgP6(j,i))+dcP6;

dcP7=((f(j,i)-g(j,i))*dgP7(j,i))+dcP7;

dcP8=((f(j,i)-g(j,i))*dgP8(j,i))+dcP8;

dcP9=((f(j,i)-g(j,i))*dgP9(j,i))+dcP9;

dcP10=((f(j,i)-g(j,i))*dgP10(j,i))+dcP10;

dcP11=((f(j,i)-g(j,i))*dgP11(j,i))+dcP11;

dcP12=((f(j,i)-g(j,i))*dgP12(j,i))+dcP12;

end

end

dcP=[dcP1;dcP2;dcP3;dcP4;dcP5;dcP6;dcP7;dcP8;dcP9;dcP10;dcP11;dcP12];

clear dcP1 dcP2 dcP3 dcP4 dcP5 dcP6 dcP7 dcP8 dcP9 dcP10 dcP11 dcP12;

% Find Hessian matrix

ddcP=zeros(12,12);

for j=1:1:21

for i=1:1:21

dummy=[dgP1(j,i)*dgP1(j,i), dgP2(j,i)*dgP1(j,i), dgP3(j,i)*dgP1(j,i),

dgP4(j,i)*dgP1(j,i), dgP5(j,i)*dgP1(j,i), dgP6(j,i)*dgP1(j,i), dgP7(j,i)*dgP1(j,i),
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dgP8(j,i)*dgP1(j,i), dgP9(j,i)*dgP1(j,i), dgP10(j,i)*dgP1(j,i), dgP11(j,i)*dgP1(j,i),

dgP12(j,i)*dgP1(j,i);

.

.

.

dgP1(j,i)*dgP12(j,i), dgP2(j,i)*dgP12(j,i), dgP3(j,i)*dgP12(j,i),

dgP4(j,i)*dgP12(j,i), dgP5(j,i)*dgP12(j,i), dgP6(j,i)*dgP12(j,i),

dgP7(j,i)*dgP12(j,i), dgP8(j,i)*dgP12(j,i), dgP9(j,i)*dgP12(j,i),

dgP10(j,i)*dgP12(j,i), dgP11(j,i)*dgP12(j,i), dgP12(j,i)*dgP12(j,i)];

ddcP=ddcP+dummy ;

end

end

dddcP=ddcP\dcP; % Calculating displacements for each iteration

Pnew(:,m)=[P1;P2;P3;P4;P5;P6;P7;P8;P9;P10;P11;P12]+dddcP;

P1=Pnew(1,m);P2=Pnew(2,m);P3=Pnew(3,m);P4=Pnew(4,m);P5=Pnew(5,m);P6=Pn

ew(6,m);P7=Pnew(7,m);P8=Pnew(8,m);P9=Pnew(9,m);P10=Pnew(10,m);P11=Pnew

(11,m);P12=Pnew(12,m); % Updating Displacements and their

gradients

end
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Appendix B

MATLAB codes for 2. identification of elastic material properties using MNET and

Q4 DIC
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In this section, the numerical experiments to find material properties are

initiated in computer simulations. A MATLAB script file (or M-file), exact.m, is

written to generate displacements which are from analytical solution of a plate with a

hole for each pixel position. The displacement values for each position are kept in

MATLAB data file (or MAT-file), displacement.mat. Next, the speckle patterns are

generated from ranspec.m using displacement values from displacement.mat. The

16 bits grey values of undeformed and deformed images are kept in MAT-file,

undeform.mat and deform.mat. The spline.m reads grey value data from MAT-file

to compute bicubic spline coefficients. Finally, assemble.m calculates displacements

using the Q4-DIC algorithm. The u and v displacements are saved in disnum.mat.

% Generating displacements from exact solution

clear all

x=linspace(0.0023,0.01055,206); % ZOI width on x-axis

y=linspace(0.00825,0,206); % ZOI height on y-axis

mu=0.45; % Poisson’s ratio

E=2.4*10^9; % Young’s modulus (Pa)

a=0.002; % Radius of a central hole

T=2*10^6; % Traction Force

s=T;

for j=1:1:206

for i=1:1:206

r=sqrt(x(i)^2+y(j)^2); % Transform radius in x-y coordinate to polar

coordinate

theta=atan(y(j)/x(i)); % Transform angle in x-y coordinate to polar

coordinate

angle(j,i)=theta;

M-file name: exact.m
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ur(j,i)=(T*r*cos(2*theta)/(2*E))*((1+mu)+4*(a^2/r^2)-

(1+mu)*(a^4/r^4))+(T*r/(2*E))*((1-mu)+(1+mu)*(a^2/r^2));

ut(j,i)=(-T*r*sin(2*theta)/(2*E))*((1+mu)+(2*(1-mu)*(a^2/r^2))+(1+mu)*(a^4/r^4));

u(j,i)=ur(j,i)*cos(theta)-ut(j,i)*sin(theta);

v(j,i)=ur(j,i)*sin(theta)+ut(j,i)*cos(theta);

if(x(i)==0)

u(j,i)=0;

end

if (r<=0.002)

u(j,i)=0;

v(j,i)=0;

end

end

end

save('displacement', 'u','v') % Writing displacements (u and v) to a file

% Generate random speckle

clear all

clc

s = 3000; % Number of speckle granule

R = 3; % Size of the speckle granule

is = 206; % Image size (pixel × pixel)

I1 = zeros(is,is); % Gray values of undeformed images

I2 = zeros(is,is); % Gray values of deformed images

load displacement % Read displacement values from the file

u=24970*u; % Changing displacement units to pixel using 24,970 metre per

pixel

M-file name: ranspec.m



66

v=24970*v; % Changing displacement units to pixel using 24,970 metre per

pixel

for k=1:1:s

I = normrnd(8000,1000); % Random peak intensity of each speckle granule

xk=randint(1,1,[1,is]); % Random x-position of circle centers in the

images

yk=randint(1,1,[1,is]); % Random y-position of circle centers in the

images

for x = 1:1:is

for y = 1:1:is

IU(x,y) = I*exp(-((x-xk)^2)/R1^2-((y-yk)^2)/R2^2);

ID(x,y) = I*exp(-((x-xk-u(x,y))^2)/R1^2-((y-yk-v(x,y))^2)/R2^2);

end

end

I1=I1+IU; % Summation undeformed image

I2=I2+ID; % Summation deformed image

end

save('undeform','I1')

save('deform','I2')

% Bicubic spline interpolation

load undeform

load deform

f=(I1(1:206,1:206));

g=(I2(1:206,1:206));

tic

% df/dx slope

M-file name: spline.m
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e=1;

for i=1:204

for j=1:204

fx(i,j)=(f(i+e,j+1+e)-f(i+e,j-1+e))/2;

end

end

% df/dy slope

e=1;

for i=1:204

for j=1:204

fy(i,j)=(f(i+1+e,j+e)-f(i-1+e,j+e))/2;

end

end

% d2f/dxdy cross

e=1;

for i=1:204

for j=1:204

fxy(i,j)=((f(i+1+e,j+1+e)-f(i+1+e,j-1+e))-(f(i-1+e,j+1+e)-f(i-1+e,j-1+e)))/4;

end

end

% Determine spline coefficient

i=1;j=1;s=203;e=1;

x1=-1/2;y1=-1/2;

x2=1/2;y2=-1/2;

x3=-1/2;y3=1/2;

x4=1/2;y4=1/2;

h=waitbar(0,'compute undeform spline f');

for m=1:41209

C=[1,y1,y1^2,y1^3,x1,x1*y1,x1*y1^2,x1*y1^3,x1^2,x1^2*y1,x1^2*y1^2,x1^2*y1^

3,x1^3,x1^3*y1,x1^3*y1^2,x1^3*y1^3;

.

.
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.

0,0,0,0,0,1,2*y4,3*y4^2,0,2*x4,4*x4*y4,6*x4*y4^2,0,3*x4^2,6*x4^2*y4,9*x4^2*y

4^2];

f1=[f(i+e,j+e);f(i+e,j+1+e);f(i+1+e,j+e);f(i+1+e,j+1+e);fx(i,j);fx(i,j+1);fx(i+1,j);fx(i+

1,j+1);fy(i,j);fy(i,j+1);fy(i+1,j);fy(i+1,j+1);fxy(i,j);fxy(i,j+1);fxy(i+1,j);fxy(i+1,j+1)];

a(:,m)=inv(C)*f1;

if(m==s)

i=i+1;

j=1;

s=s+203;

else

j=j+1;

end

waitbar(m/41209)

end

close(h)

clear fx fy fxy

%dg/dx slope

e=1;

for i=1:204

for j=1:204

gx(i,j)=(g(i+e,j+1+e)-g(i+e,j-1+e))/2;

end

end

% dg/dy slope

for i=1:204

for j=1:204

gy(i,j)=(g(i+1+e,j+e)-g(i-1+e,j+e))/2;

end

end

% d2g/dxdy cross
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e=1;

for i=1:204

for j=1:204

gxy(i,j)=((g(i+1+e,j+1+e)-g(i+1+e,j-1+e))-(g(i-1+e,j+1+e)-g(i-1+e,j-1+e)))/4;

end

end

% Determine spline coefficient

i=1;j=1;s=203;e=1;

x1=-1/2;y1=-1/2;

x2=1/2;y2=-1/2;

x3=-1/2;y3=1/2;

x4=1/2;y4=1/2;

h=waitbar(0,'compute deform spline g');

for m=1:41209

C=[1,y1,y1^2,y1^3,x1,x1*y1,x1*y1^2,x1*y1^3,x1^2,x1^2*y1,x1^2*y1^2,x1^2*y1^

3,x1^3,x1^3*y1,x1^3*y1^2,x1^3*y1^3;

.

.

.

0,0,0,0,0,1,2*y4,3*y4^2,0,2*x4,4*x4*y4,6*x4*y4^2,0,3*x4^2,6*x4^2*y4,9*x4^2*y

4^2];

g1=[g(i+e,j+e);g(i+e,j+1+e);g(i+1+e,j+e);g(i+1+e,j+1+e);gx(i,j);gx(i,j+1);gx(i+1,j);g

x(i+1,j+1);gy(i,j);gy(i,j+1);gy(i+1,j);gy(i+1,j+1);gxy(i,j);gxy(i,j+1);gxy(i+1,j);gxy(i+

1,j+1)];

b(:,m)=inv(C)*g1;

if(m==s)

i=i+1;

j=1;

s=s+203;

else

j=j+1;
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end

waitbar(m/41209)

end

close(h)

save ('spcoeff','a','b')

toc

%Assembly stiffness matrix

clear all

clc

close all

load spcoeff

% Calculating stiffness matrix and force matrix of optical flow

h=waitbar(0,'calculating k & f');

tic

kk=zeros(8,8,841);

ff=zeros(8,1,841);

e=1;d=29;

for ii=1:841

x=0;

y=0;

sx=x+0.5;

sy=y+0.5;

for j=1:7

for i=1:7

kk(1:8,1:8,ii) = kk(1:8,1:8,ii) + k(a(:,e),sx,sy);

ff(1:8,1,ii) = ff(1:8,1,ii) + f(a(:,e),b(:,e),sx,sy);

x=i/7;

M-file name: assemble.m
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sx=x+0.5;

e=e+1;

end

x=0;

sx=x+0.5;

y=j/7;

sy=y+0.5;

e=e+196;

end

if(ii==d)

e=e-196;

d=d+29;

else

e=e-1414;

end

waitbar(ii/841)

end

close(h)

% Number node for each element

j=1;i=0;k=29;

for e=1:841

t(1,j)=e+i;

t(2,j)=e+1+i;

t(3,j)=e+30+i;

t(4,j)=e+31+i;

j=j+1;

if e==k

i=i+1;

k=k+29;

end

end

% Stiffness matrix assembly
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t=t';

kuv=sparse(1800,1800);

h=waitbar(0,'Assemble k');

for e=1:841

r=1;

for i=1:8

if(i==1|i==3|i==5|i==7)

c=1;

for j=1:8

if(j==1|j==3|j==5|j==7)

kuv((t(e,r)+(t(e,r)-1)),(t(e,c)+(t(e,c)-1)))=kuv((t(e,r)+(t(e,r)-1)),(t(e,c)+(t(e,c)-

1)))+kk(i,j,e);

end

if(j==2|j==4|j==6|j==8)

kuv((t(e,r)+(t(e,r)-1)),(t(e,c)+t(e,c)))=kuv((t(e,r)+(t(e,r)-

1)),(t(e,c)+t(e,c)))+kk(i,j,e);

c=c+1;

end

end

end

if(i==2|i==4|i==6|i==8)

c=1;

for j=1:8

if(j==1|j==3|j==5|j==7)

kuv((t(e,r)+t(e,r)),(t(e,c)+(t(e,c)-1)))=kuv((t(e,r)+t(e,r)),(t(e,c)+(t(e,c)-

1)))+kk(i,j,e);

end

if(j==2|j==4|j==6|j==8)

kuv((t(e,r)+t(e,r)),(t(e,c)+t(e,c)))=kuv((t(e,r)+t(e,r)),(t(e,c)+t(e,c)))+kk(i,j,e);

c=c+1;

end
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end

r=r+1;

end

end

waitbar(e/841)

end

close(h)

% Force matrix assembly

fuv=sparse(1800,1);

h=waitbar(0,'Assemble f');

for e=1:841

r=1;

for i=1:8

if(i==1|i==3|i==5|i==7)

fuv((t(e,r)+(t(e,r)-1)),1)=fuv(t(e,r)+((t(e,r)-1)),1)+ff(i,1,e);

r=r+1;

end

end

r=1;

for i=1:8

if(i==2|i==4|i==6|i==8)

fuv((t(e,r)+t(e,r)),1)=fuv((t(e,r)+t(e,r)),1)+ff(i,1,e);

r=r+1;

end

end

waitbar(e/841)

end

close(h)

% Displacement calculation

uv=kuv\fuv;

m=1;

for i=1:30
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for j=1:30

u(i,j)=uv(m);

m=m+2;

end

end

m=2;

for i=1:30

for j=1:30

v(i,j)=uv(m);

m=m+2;

end

end

save('disnum','u','v')

toc

The triangular finite element mesh is created by partial differential equation

toolbox (PDE-toolbox).The node positions, node numbers and element numbers are

exported to geo.mat in p and t matrices. To determine selected elements on a square

ZOI, select.m is written by using data from geo.mat. For selected procedures, three

node positions of each element should be in ZOI after that element numbers can be

identified. The selected element numbers are kept in sel.mat. The DIC

displacements from quadrilateral elements are interpolated to each node of FEM

triangular elements. Subsequently, strains at the centroid of triangular elements can

be determined by differentiating displacement functions using DICFEMdis.m.

.

% Selecting FEM elements on ZOI

clear all

clc

M-file name: select.m
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load geo

for i=1:2127

posx(1:3,i)=[p(t(i,1),1);p(t(i,2),1);p(t(i,3),1)]; %x position of triangle elements

posy(1:3,i)=[p(t(i,1),2);p(t(i,2),2);p(t(i,3),2)]; %y position of triangle elements

end

i=1;

for ee=1:2127

if (posx(1,ee) >= 0.0023402)&&(posx(1,ee)<=0.01051)

if (posx(2,ee) >= 0.0023402)&&(posx(2,ee)<=0.01051)

if (posx(3,ee) >= 0.0023402)&&(posx(3,ee)<=0.01051)

if (posy(1,ee) >=0.001)&&(posy(1,ee)<=0.0082098)

if (posy(2,ee) >=0.001)&&(posy(2,ee)<=0.0082098)

if (posy(3,ee) >=0.001 )&&(posy(3,ee)<=0.0082098)

e(:,i)=ee;

i=i+1;

end

end

end

end

end

end

end

save('sel','e');

% DIC displacement interpolation and DIC strain calculation of triangular

elements

clear all

clc

load geo % Node position

M-file name: DICFEMdis.m
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load disnum % DIC displacement

load sel % Selected FEM element in ZOI

% Collecting position of triangle element node

[m,n]=size(e);

for i=1:n

posx(1:3,i)=[p(t(e(1,i),1),1);p(t(e(1,i),2),1);p(t(e(1,i),3),1)];

posy(1:3,i)=[p(t(e(1,i),1),2);p(t(e(1,i),2),2);p(t(e(1,i),3),2)];

end

% Interpolation of DIC-displacements to triangle element node

uu=-v/24970;

vv=-u/24970;

x=linspace(0.0023402,0.01051,30); %Zone 1

y=linspace(0.0082098,4.0244e-005,30); %zone 1

for ee=1:n

for node=1:3

m=1;

for j=1:29

n=1;

for i=1:29

if (posx(node,ee) >= x(i))&&(posx(node,ee)<=x(i+1))

if (posy(node,ee)>= y(j+1))&&(posy(node,ee)<=y(j))

u1=[uu(m,n);uu(m,n+1);uu(m+1,n);uu(m+1,n+1)];

v1=[vv(m,n);vv(m,n+1);vv(m+1,n);vv(m+1,n+1)];

b=[1,x(i),y(j),x(i)*y(j);

1,x(i+1),y(j),x(i+1)*y(j);

1,x(i),y(j+1),x(i)*y(j+1);

1,x(i+1),y(j+1),x(i+1)*y(j+1)];

a=inv(b)*u1;

c=inv(b)*v1;

ut(node,ee)=a(1)+a(2)*posx(node,ee)+a(3)*posy(node,ee)+a(4)*posx(node,ee)*posy(

node,ee);
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vt(node,ee)=c(1)+c(2)*posx(node,ee)+c(3)*posy(node,ee)+c(4)*posx(node,ee)*posy(

node,ee);

end

end

n=n+1;

end

m=m+1;

end

end

end

% DIC strain calculation of each element

clear a b c i j m n node uu vv u v u1 v1 x y

[m,n]=size(e);

sta=zeros(3,n);

for ee=1:n

x=posx(:,ee);

y=posy(:,ee);

u=ut(:,ee);

v=vt(:,ee);

a=[1,x(1),y(1);

1,x(2),y(2);

1,x(3),y(3)];

area=det(a);

b1=y(2)-y(3);

b2=y(3)-y(1);

b3=y(1)-y(2);

c1=x(3)-x(2);

c2=x(1)-x(3);

c3=x(2)-x(1);

sta(1,ee)=(b1*u(1)+b2*u(2)+b3*u(3))/area;

sta(2,ee)=(c1*v(1)+c2*v(2)+c3*v(3))/area;

sta(3,ee)=(c1*u(1)+b1*v(1)+c2*u(2)+b2*v(2)+c3*u(3)+b3*v(3))/area;
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end

[m,n]=size(e);

sx=zeros(1,2127);

sy=zeros(1,2127);

sxy=zeros(1,2127);

for i=1:1:n

sx(e(i))=sta(1,i);

sy(e(i))=sta(2,i);

sxy(e(i))=sta(3,i);

end

save('straindata','sx','sy','sxy')

The M-file, main3iso.m, is written for quantifying isotropic property of

materials. In the first part of main3iso.m, MATLAB codes are written for finite

element methods formulated in section 2.4. In the second part of main3iso.m,

MATLAB codes are written for optimization in inverse methods formulated in

section 2.5. Moreover, the M-file, main3it.m, is written for quantifying orthotropic

property of materials in order to compare accuracy with main3iso.m and theory.

% Finding material parameters using FEM and MNET using isotropic

parameters

clc

load geo % Node positions and element information

E=1*10^9; % Initial Young’s modulus

G=E/2/(1+0.5); % Initial shear modulus

v=0.5; % Poisson’s ratio

c11=E/(1-2*v);

c22=c11;

c66=G;

M-file name: main3iso.m
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c12=v12*c22;

D=[c11,c12,0;

c12,c22,0;

0,0,c66];

th=0.001;

ss=[1/E;-v/E;1/G]; % Compliance cofficients

clear E v G c11 c12 c22 c66;

er=[1;1;1];

er1=1;

i=1;

while (er1 > 0) % Decision to stop iteration

kuv=assem(t,p,D,th); % FEM stiffness calculation

[m,n]=size(t);

s=max(max(t));

s=s*2;

f=zeros(s,1); % FEM Force matrix

f(3,1)=2.009685129;

f(33,1)=4.017766583;

f(35,1)=4.013549074;

f(37,1)=4.006240334;

f(39,1)=3.995083767;

f(41,1)=3.979731955;

f(43,1)=3.960717658;

f(45,1)=3.939895109;

f(47,1)=3.920513778;

f(49,1)=3.906575838;

f(5,1)=1.950740778;

% Boundary condition each node u & v = 0

b = [6 8 52 54 56 58 60 62 64 66 388 440

466 512 514 522 594 758 874 876 880 1328

1334 1336 1346 1720 1722 1724 1 9 67 69 71 73
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75 77 79 81 83 389 407 411 467 595 597

753 755 871 881 1329 1331 1337 1727 1731 1733];

[h,g]=size(b);

kuv(b,:)=[];

kuv(:,b)=[];

f(b,:)=[];

% Solving systems of linear equation

d=kuv\f;

u=zeros(1116,1);

v=zeros(1116,1);

n=1;

% Rearrange displacement calculation into matrix for post-processing

for e1=1:2232

if(e1==6| e1==8 | . . . |e1==1731 | e1==1733)

d1(e1,:)=0;

else

d1(e1,:)=d(n,:);

n=n+1;

end

end

n=1;

for e1=1:1116

u(e1,:)=d1(n,:);

n=n+2;

end

n=2;

for e1=1:1116

v(e1,:)=d1(n,:);

n=n+2;

end

ste=stress(t,p,D,th,d1); % FEM stress calculation

sta=strain(t,p,th,d1); % FEM strain calculation
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% Identification of constitutive parameters

load straindata

b=zeros(3,1);

A=zeros(3,3);

tx=ste(1,:);

ty=ste(2,:);

txy=ste(3,:);

load sel

[e1,e2]=size(e);

m=e;

% Calculating updated compliance coefficient in equation (32)

for j=1:e2

A(1,1)=tx(m(j))^2+ty(m(j))^2+A(1,1);

A(1,2)=2*tx(m(j))*ty(m(j))+A(1,2);

A(2,1)=2*tx(m(j))*ty(m(j))+A(2,1);

A(2,2)=tx(m(j))^2+ty(m(j))^2+A(2,2);

A(3,3)=txy(m(j))^2+A(3,3);

b(1,1)=(sx(m(j))-sta(1,m(j)))*tx(m(j))+(sy(m(j))-sta(2,m(j)))*ty(m(j))+b(1,1);

b(2,1)=(sx(m(j))-sta(1,m(j)))*ty(m(j))+(sy(m(j))-sta(2,m(j)))*tx(m(j))+b(2,1);

b(3,1)=(sxy(m(j))-sta(3,m(j)))*txy(m(j))+b(3,1);

end

sd=inv(A)*b;

ss=ss+sd;

er=100*[abs(sd(1)/ss(1));abs(sd(2)/ss(2));abs(sd(3)/ss(3))];

dd=[ss(1),ss(2),0;

ss(2),ss(1),0;

0,0,ss(3)];

D=inv(dd);

c11(i)=D(1,1);

c12(i)=D(1,2);

c22(i)=D(2,2);

c66(i)=D(3,3);
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if (er(1)<0.01 && er(2)<0.01 && er(3)<0.01)

er1=-1;

end

i=i+1;

end

% Finding material parameters using FEM and MNET using isotropic

parameters

clc

load geo

E1=1*10^9;

E2=1*10^9;

%G=E1/2/(1+0.5);

G=1000*10^6;

v12=0.5;

v21=0.5;

c11=E1/(1-v12*v21);

c22=E2/(1-v12*v21);

c66=G;

c12=v12*c22;

D=[c11,c12,0;

c12,c22,0;

0,0,c66];

th=0.001;

ss=[1/E1;-v12/E2;1/E2;1/G];

clear E1 E2 v11 v12 G c11 c12 c22 c66;

er=[1;1;1;1];

M-file name: main3it.m
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er1=1;

i=1;

while (er1 > 0)

kuv=assem(t,p,D,th); % FEM stiffness calculation

[m,n]=size(t);

s=max(max(t));

s=s*2;

f=zeros(s,1); % FEM force matrix

f(3,1)=2.009685129;

f(33,1)=4.017766583;

f(35,1)=4.013549074;

f(37,1)=4.006240334;

f(39,1)=3.995083767;

f(41,1)=3.979731955;

f(43,1)=3.960717658;

f(45,1)=3.939895109;

f(47,1)=3.920513778;

f(49,1)=3.906575838;

f(5,1)=1.950740778;

b=[6 8 52 54 56 58 60 62 64 66 388 440

466 512 514 522 594 758 874 876 880 1328

1334 1336 1346 1720 1722 1724 1 9 67 69 71 73

75 77 79 81 83 389 407 411 467 595 597

753 755 871 881 1329 1331 1337 1727 1731 1733]; %

Boundary condition

[h,g]=size(b);

kuv(b,:)=[];

kuv(:,b)=[];

f(b,:)=[];

% Solving system linear eq.

d=kuv\f;

u=zeros(1116,1);



84

v=zeros(1116,1);

n=1;

for e1=1:2232 %node*2

if(e1==6| e1==8 | . . . | e1==1731 | e1==1733)

d1(e1,:)=0;

else

d1(e1,:)=d(n,:);

n=n+1;

end

end

n=1;

for e1=1:1116

u(e1,:)=d1(n,:);

n=n+2;

end

n=2;

for e1=1:1116

v(e1,:)=d1(n,:);

n=n+2;

end

ste=stress(t,p,D,th,d1); % FEM stress calculation

sta=strain(t,p,th,d1); % FEM strain calculation

% Identification of constitutive parameters

load straindata

b=zeros(4,1);

A=zeros(4,4);

tx=ste(1,:);

ty=ste(2,:);

txy=ste(3,:);

load sel

[e1,e2]=size(e);

m=e;
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for j=1:e2

A(1,1)=tx(m(j))^2+A(1,1);

A(1,2)=tx(m(j))*ty(m(j))+A(1,2);

A(2,1)=(tx(m(j))*ty(m(j)))+A(2,1);

A(2,2)=(tx(m(j))^2+ty(m(j))^2)+A(2,2);

A(2,3)=(tx(m(j))*ty(m(j)))+A(2,3);

A(3,2)=(tx(m(j))*ty(m(j)))+A(3,2);

A(3,3)=ty(m(j))^2+A(3,3);

A(4,4)=txy(m(j))^2+A(4,4);

b(1,1)=(sx(m(j))-sta(1,m(j)))*tx(m(j))+b(1,1);

b(2,1)=(sx(m(j))-sta(1,m(j)))*ty(m(j))+(sy(m(j))-sta(2,m(j)))*tx(m(j))+b(2,1);

b(3,1)=(sy(m(j))-sta(2,m(j)))*ty(m(j))+b(3,1);

b(4,1)=(sxy(m(j))-sta(3,m(j)))*txy(m(j))+b(4,1);

end

sd=inv(A)*b;

ss=ss+sd;

er=100*[abs(sd(1)/ss(1));abs(sd(2)/ss(2));abs(sd(3)/ss(3));abs(sd(4)/ss(4))];

dd=[ss(1),ss(2),0;

ss(2),ss(3),0;

0,0,ss(4)];

D=inv(dd);

c11(i)=D(1,1);

c12(i)=D(1,2);

c22(i)=D(2,2);

c66(i)=D(3,3);

if (er(1)<0.01 && er(2)<0.01 && er(3)<0.01 && er(4)<0.01)

er1=-1;

end

i=i+1;

end
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