สารบัญ

บทคัดย่อ	ก	
สารบัญ		
สารบัญรูป		
สารบัญตาราง		
บทที่ 1 บทน้ำ		
1.1 ที่มาและความสำคัญของงานวิจัย	1	
1.2 วัตถุประสงค์ของงานวิจัย	3	
1.3 ประโยชน์ที่คาดว่าจะได้รับ	3	
1.4 ขอบเขตงานวิจัย	3	
1.5 ลำดับการนำเสนองานวิจัย	3	
บทที่ 2 ทฤษฎีและงานวิจัยที่เกี่ยวข้อง		
2.1 เซลล์เชื้อเพลิง	4	
2.1.1 องค์ประกอบสำคัญของเซลล์เชื้อเพลิง	4	
2.1.2 ชนิดของเซลล์เชื้อเพลิง	6	
2.1.3 เซลล์เชื้อเพลิงแบบเยื่อแลกเปลี่ยนโปรตอน	9	
2.1.4 เยื่อแลกเปลี่ยนโปรตอน	10	
2.2 กระบวนการสังเคราะห์เส้นใยนาโน	12	
2.3 กระบวนการอิเล็กโตรสปินนิง	14	
2.3 ระบบกำเนิดพลาสมาแบบการเหนี่ยวนำ	16	
2.4 ศึกษาสภาพการเปียก	17	
2.5 ตรวจสอบสมบัติของพื้นผิวด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด	17	
2.6 งานวิจัยที่เกี่ยวข้อง	18	
บทที่ 3 วิธีการทดลอง	23	
3.1 อุปกรณ์การทดลอง	23	
3.2 สารเคมีที่ใช้ในการทดลอง	24	
3.3 เครื่องมือที่ใช้ในงานวิเคราะห์	24	

สารบัญ (ต่อ)

3.4 ขั้นตอนการทดลอง	25
3.4.1 กระบวนการเตรียมสารละลาย PVdF	25
3.4.2 การสังเคราะห์เส้นใยนาโน PVdF ด้วยกระบวนการอิเล็กโตรสปินนิง	26
3.5 ตรวจสอบสมบัติของเส้นใยนาโน PVdF	27
3.5.1 ตรวจสอบสมบัติของพื้นผิวด้วยเครื่อง SEM	27
3.5.2 ศึกษาสภาพการเปียกของเส้นใยด้วยเครื่องตรวจสอบมุมสัมผัส	27
3.5.3 การคำนวณเปอร์เซ็นต์การอุ้มน้ำ	28
บทที่ 4 ผลการทดลองและอภิปรายผล	29
4.1 ผลของความเข้มข้นของสารละลาย PVdF	29
4.1.1 การตรวจสอบสภาพพื้นผิวด้วยเครื่อง SEM	29
4.1.2 การตรวจสอบสภาพการเปียกของพื้นผิวเส้นใยด้วย	
เครื่องตรวจสอบมุมสัมผัส	32
4.1.3 คำนวณเปอร์เซ็นต์การอุ้มน้ำ	32
4.2 ผลของความแรงดันไฟฟ้า	
4.2.1 การตรวจสอบสภาพพื้นผิวด้วยเครื่อง SEM	33
4.2.2 การตรวจสอบสภาพการเปียกของพื้นผิวเส้นใยด้วย	
เครื่องตรวจสอบมุมสัมผัส	35
4.2.3 คำนวณเปอร์เซ็นต์การอุ้มน้ำ	35
บทที่ 5 สรุปผลการทดลองและข้อเสนอแนะ	
5.1 สรุปผลการทดลอง	36
5.1.1 ผลของความเข้มข้นของสารละลาย PVdF	36
5.1.2 ผลของความแรงดันไฟฟ้า	36
5.2 ข้อเสนอแนะ	36
บรรณานุกรม	37
ภาคผนวก	39
ภาคผนวก ก ข้อมูลเส้นใยนาโน PVdF ที่ได้จากการสังเคราะห์	
ด้วยกระบวนการอิเล็กโตรสปินนิง	40
ภาคผนวก ข การใช้เครื่องอิเล็กโตรสปินนิง	55

สารบัญรูป

รูปที่ 2.1 องค์ประกอบสำคัญของเซลล์เชื้อเพลิง	4
รู้ปที่ 2.2 แผนภาพแสดงองค์ประกอบของเซลล์เชื้อเพลิง	9
รูปที่ 2.3 โครงสร้างโมเลกุล PVdF	11
รูปที่ 2.4 การสังเคราะห์เส้นใยนาโนด้วยกระบวนการ Drawing	12
รูปที่ 2.5 การสังเคราะห์เส้นใยนาโนด้วยกระบวนการ Temlate Synthesis	13
รู้ปที่ 2.6 แผนภาพแสดงองค์ประกอบของเครื่องอิเล็กโตรสปินนิง	15
รูปที่ 2.7 สนามแม่เหล็กและสนามไฟฟ้าที่เกิดขึ้นรอบขดลวดที่วางในบริเวณที่เกิดพลาสมา	16
รูปที่ 2.8 แผนภาพแสดงมุมสัมผัสระหว่างของเหลวกับผิววัสดุ	17
รูปที่ 2.9 ประสิทธิภาพการทำงานของแผ่นแยกขั้วแบตเตอรี่	
PVdF – 542 และ PVdF – 543 ที่อุณภูมิสูง	19
รูปที่ 2.10 EPM ที่แรงดันไฟฟ้าแตกต่างกัน (a) 8kV (b) 10 kV (c) 12 kV และ (d) 15 kV	19
รูปที่ 2.11 EPM ที่อุณหภูมิ 160 ℃ เป็นเวลา 2 ชั่วโมง	20
รูปที่ 2.12 การรั่วซึมของเชื้อเพลิงเมทานอลระหว่างขั้วแอโนดถึงขั้วแคโทด	20
รูปที่ 2.13 ภาพถ่าย SEM ของเยื่อ TPU - co - PVdF (A) อัตราส่วน 80 : 20 (B)	
อัตราส่วน 50 : 50 (C) อัตราส่วน 20 : 80	21
รูปที่ 3.1 เครื่องอิเล็กโตรสปินนิง1. แผงควบคุมเครื่อง 2. แหล่งจ่ายแรงดันไฟฟ้า	
3. เครื่องควบคุมอัตราการไหล 4. หลอดฉีดยาชนิดแก้วพร้อมเข็มโลหะ	23
รูปที่ 3.2 กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด	24
รูปที่ 3.3 เครื่องตรวจสอบมุมสัมผัส	24
รูปที่ 3.4 ตัวอย่างการวัดขนาดเส้นผ่านศูนย์กลางของเส้นใยด้วยโปแกรม ImageJ	27
รูปที่ 3.5 การวัดมุมสัมผัสด้วยโปรแกรม Dropimage Standard	27
รูปที่ 4.1 ภาพถ่าย SEM ของเส้นใยนาโน PVdF ที่แรงดันไฟฟ้า 10 kV และความเข้มข้น	
(ก) 7 %w (ข) 9 %w(ค) 11 %w (ง) 13 %w และ (จ) 15 %w	30
รูปที่ 4.2 กราฟความสัมพันธ์ระหว่างความเข้มข้นกับขนาดของเส้นผ่านศูนย์กลางเฉลี่ย	
ของเส้นใยนาโน PVdF ที่แรงดันไฟฟ้า 10 kV	31
รูปที่ 4.3 ภาพถ่าย SEM ของเส้นใยนาโน PVdF ความเข้มข้น 11% ที่แรงดันไฟฟ้า	
(ก) 10 kV (ข) 12 kV (ค) 14 kV (ง) 16 kV และ (จ) 18 kV	33
รูปที่ 4.4 กราฟความสัมพันธ์ระหว่างแรงดันไฟฟ้ากับขนาดของเส้นผ่านศูนย์กลางเฉลี่ย	
ของเส้นใยนาโน PVdF ที่แรงดันไฟฟ้าที่ความเข้มข้น 11 %w	34

สารบัญตาราง

ตารางที่ :	2.1 เปรียบเทียบการประยุกต์ใช้งานเซลล์เชื้อเพลิง	8
ตารางที่ 2	2.2 แสดงข้อดีและข้อเสียของกระบวนการสังเคราะห์เส้นใยนาโน	14
ตารางที่ :	2.3 แสดงคุณสมบัติของเส้นใยนาโน PVdF	18
ตารางที่ :	3.1 แสดงความเข้มข้นของ PVdF ที่แตกต่างกัน	25
ตารางที่ :	3.2 แสดงความเข้มข้นและแรงดันไฟฟ้าในการสังเคราะห์เส้นใย PVdF	26
ตารางที่ (4.1 แสดงค่ามุมสัมผัสที่แรงดันไฟฟ้า 10 kV และความเข้มข้นระหว่าง 7 – 15 %w	32
ตารางที่ (4.2 แสดงผลที่ได้จากการคำนวณเปอร์เซ้นต์การอุ้มน้ำที่แรงดันไฟฟ้า 10 kV	
	และความเข้มข้นระหว่าง 11 – 15 %w	32
ตารางที่ (4.3 แสดงค่ามุมสัมผัสที่ความเข้มข้น 11% และแรงดันไฟฟ้าระหว่าง 10 – 18 kV	35
ตารางที่	4.4 แสดงผลที่ได้จากการคำนวณเปอร์เซ็นต์การอุ้มน้ำที่ความเข้มข้น 11%	
	และแรงดันไฟฟ้าระหว่าง 10 – 18 kV	35