

ปัจจุบันภาวะโลกร้อน (global warming) หรือสภาวะภูมิอากาศเปลี่ยนแปลง (climate change) กำลังเป็นปัจจัยที่วิกฤตระดับนานาชาติ การทำนาข้าวในพื้นที่ชลประทานจัดได้ว่าเป็นแหล่งปลดปล่อยก๊าซมีเทน ซึ่งเป็นก๊าซเรือนกระจกที่มีส่วนทำให้โลกร้อน การเตรียมดินในการผลิตข้าวมี เช่น การใส่ปุ๋ยหมักฟางข้าว การไก่กลบตอชัง ไกแปรและทำเทือก มีอิทธิพลต่อผลผลิตข้าว การสลายตัวของตอชังและอินทรีย์ตอในดิน การปลดปล่อยก๊าซเรือนกระจกจากนาข้าว และการสะสมอินทรีย์คาร์บอนในนาข้าว จึงจัดทำการทดลองในนาดินร่วนเนี้ยบปนทราย วางแผนการทดลองแบบ split plot in CRD มีการไม่ใส่ปุ๋ยหมักฟางข้าวและการใส่ปุ๋ยหมักฟางข้าว (C/N 26) อัตรา 350 กก./ไร่ เป็น main plot และ มีการไก 3 แบบเป็น sub plot ได้แก่ 1) ไกพลิกหน้าดิน (ไกกลบตอชัง 1,500 กก./ไร่) 2) ไกพลิกหน้าดินตามด้วยไกแปร 3) ไกพลิกหน้าดินตามด้วยไกแปรและทำเทือก รวม 6 ตัวรับฯ ละ 3 ชั้้า

ผลการทดลองพบว่าการไกกลบตอชัง ไกแปรและทำเทือกทำให้ความหนาแน่นรวมของดินสูงกว่าการไกกลบตอชัง การไกเตรียมดินส่งผลให้มีจำนวนต้นข้าวต่อพื้นที่เพิ่มขึ้น แต่ไม่มีผลต่อผลผลิตข้าว การไกมีผลต่อพลวัตของอินทรีย์คาร์บอนในดิน โดยที่การไกกลบตอชังเพียงอย่างเดียวทำให้ปริมาณอินทรีย์คาร์บอนในดินสูงกว่าการไกหลายครั้งและทำเทือก คาร์บอนทั้งหมดในดินมีปริมาณลดลงตามจำนวนครั้งของการไกที่เพิ่มขึ้น การทำเทือกส่งผลให้ค่าคาร์บอนที่ละลายน้ำในดิน 14.7 – 16.3 กรัม/ ตร.เมตร สูงกว่าการไกน้อยครั้ง 4.0 – 6.4 กรัม/ ตร.เมตร และมีแนวโน้มลดลงตามเวลาตลอดฤดูปลูก ในขณะที่การใส่ปุ๋ยหมักฟางข้าวไม่มีผลต่อคาร์บอนที่ละลายน้ำในดิน ความหนาแน่นของชากร่องรอยเพิ่มขึ้นหลังไกกลบตอชัง 571.3 กรัม/ ตร.เมตร จำนวนครั้งของการไกที่เพิ่มขึ้นทำให้ปริมาณชากร่องรอยน้อยลง โดยที่การทำเทือกให้น้ำหนักแห้งชากร่องรอยในช่วง 332.7 – 435.7 กรัม/ ตร.เมตร ส่วนน้ำหนักแห้งของรากข้าวเพิ่มขึ้นตลอดฤดูปลูก อินทรีย์คาร์บอนในดินจะสลายตัวจะปลดปล่อยธาตุอาหารพืชในโตรเจน ฟอสฟอรัส โพเทสเซียม กำมะถัน แคลเซียม และแมกนีเซียมที่ และธาตุอาหารพืชอื่นๆ การไกกลบตอชังตามด้วยไกแปรและทำเทือกส่งผลให้มีการปล่อยก๊าซมีเทนทั้งหมดตลอดฤดูปลูก 794 – 990 กรัม CH_4 / ตร.เมตร เพิ่มขึ้น 633 – 642 % เมื่อเทียบกับการไกกลบตอชังเพียงอย่างเดียว ส่วนการใส่ปุ๋ยหมักฟางข้าวร่วมกับการไกทั้ง 3 ตัวรับส่งผลให้มีการปล่อยก๊าซมีเทนทั้งหมดตลอดฤดูปลูก 135 – 990 กรัม CH_4 / ตร.เมตร เพิ่มขึ้น 25 – 61 % เมื่อเทียบกับที่ไม่ได้ใส่ปุ๋ยหมักฟางข้าว การใส่ปุ๋ยหมักฟางข้าวในอัตรา 350 กก./ไร่ ทำให้ผลผลิตเพิ่มขึ้น 19 – 27 % เมื่อเทียบกับการไม่ใส่ปุ๋ยหมักฟางข้าว การใส่ปุ๋ยหมักฟางข้าวร่วมกับการไกกลบตอชังตามด้วยไกแปรและทำเทือกส่งผลให้มีการปล่อยก๊าซมีเทนต่ำกว่าผลผลิตของข้าว 2,519 – 2,680 กรัม CH_4 / กก. ผลผลิตซึ่งสูงกว่าของการไกกลบตอชัง 391 – 395 กรัม CH_4 / กก. ดังนั้นการลดการไกพรวนและการไม่ทำเทือกนอกจากจะช่วยลดการปล่อยก๊าซมีเทนจากนาข้าวแล้วยังไม่มีผลกระทบต่อผลผลิตข้าว และยังส่งเสริมการสะสมอินทรีย์คาร์บอนในดินนา

Global warming and climate change have imposed inter-governmentally a crucial concern. Irrigated rice is an important source of methane emission which is a greenhouse gas contributing global warming. In rice cultivation practices; effects of soil preparation, i.e., adding rice straw compost, incorporating rice stubble, land harrowing and puddling on rice grain, on decomposition of stubble and organic matter in soil, greenhouse gas emission and soil carbon sequestration are well known. A field experiment on sandy clay loam soil was planned as split plot in CRD. Main plots were without and with rice straw compost (C/N 26) at a rate of 350 kg/rai. Subplots were 1) land ploughing, incorporation of rice stubble, 1500 kg/rai, 2) incorporation of rice stubble followed with harrowing, and 3) incorporation of rice stubble, harrowing and followed with puddling. Total were 6 treatments, 3 replicates were performed.

It was found that soil preparation led to more number of rice plants per unit area, but it had no effect on grain yield. Ploughing influenced carbon dynamics in soil. Sole incorporation of rice stubble left higher content of soil organic carbon (SOC) than many ploughings and puddlings. Puddling gave dissolved organic carbon (DOC) of 14.7-16.3 g/m² higher than few ploughing. Organic residue density of 571.3 g/m² (0.15 m) had increased in soil after rice stubble incorporation. More ploughings caused a decrease in content of organic residues. Puddling gave dry-weight of organic residues, 332.7 - 435.7 g/m². Root dry weight increased throughout the growth period. During decomposition of organic matter, plant nutrients: nitrogen, phosphorus, potassium, sulfur, calcium and magnesium released into the soil. Considering ploughing effect, rice stubble incorporation, harrowing and puddling gave total methane emission ranged from 794 - 990 gCH₄/m², which increased by 633 - 642 % compared with sole rice stubble incorporation. Combine effect of rice straw compost and ploughing showed an induce of total methane emission, 135 - 990 gCH₄/m², which increased by 25 - 61 % compared with no rice straw compost. Application of rice straw compost of 350 kg/rai increased rice yield by 19-27 % compared with no application. Application of rice straw compost together with rice stubble incorporation, harrowing and then puddling gave high total methane emission per unit grain, ranged from 2,519 - 2,680 gCH₄/kg grain, significantly higher than that of sole rice stubble incorporation, 391-395 gCH₄/kg grain. Experimental results indicated that reduced ploughing as well as no puddling in paddy cultivation can mitigate methane emission from paddy field, while give no impact on grain yield and induces carbon sequestration in soil.