CHAPTER III
MAIN RESULTS

In this chapter, we study the existence and uniqueness of semilinear
impulsive periodic systems, and semilinear impulsive periodic systems with pa-
rameter perturbation. The first section we introduce basic notation and basic
assumptions,. In the second section, we study properties of impulsive evolu-
tion operators, existence and uniqueness of mild solution. Finally in the third
section, we study the existence and uniqueness of Tj-periodic solutions for semi-

linear impulsive periodic systems with parameter perturbation.

3.1 Notations

Let £(X) be the space of bounded linear operators in the Banach space

X, and let I := [0, Tp] be a closed bounded interval of the real line

Definition 3.1.1 A sequence, (7%) is said to be an impulsive moment if 0 =

T<TI<TH<T3<...<Tx<...,and 7, — o0 as k — o0.

We now introduce the piecewise continuous function spaces. Let X be a
Banach space and 0 < T < oo.

(1) PC([0,00),X) = { z:[0,00) — X| z is continuous at t € [0, Tp], t #
Tk, T is continuous from left and the right limit x(7,")exists att = 7, Vk € N}.

(2) PC([0,00), X) = {z € PC([0,0), X)| £ € PC([0,00),X)}

(3) PCr,([0,00),X) = {z € PC([0,00), X)| z(t) = z(t + Tp), Vt > 0}.

3.2 Semilinear Impulsive Periodic Systems

We consider the following semilinear impulsive periodic systems

z(t) = A@)z(t) + f(t,2(t),  t#,
A.I‘(f) = BA,J?(t), In— Tk,

(3.2.1)
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where Az(ry) = z(7}) — «(r;) for all k € N. Futhermore we suppose that
A(t),t € [0,Ty] is a closed densely defined linear unbounded operator on X ,
satisfying the following assumptions (A1), (A2) and (A3) :
Assumption (A1) ;
(ALY Ouomdy o i surtet | < EE = S0 8 e 0, &% and
there exists a positive integer ¢ such that 74, = 7. + T, for all k€ N.
(Al.2) By € L(X) such that By,, = By for all k € N and there exists

constant hi(p) > 0 such that

1Br(z) = Be(y)llx < hi(p)llz - yllx,

forall k€ N and all z,y € X such that ||z|,, |lyll, < p.
(A1.3)f : [0,00)x X — X is an operator such that f(t+Tp,z) = f(t,z) and
t — f(t,z) is strongly measurable. For every p > 0, there exist constants

Ki(p), Ka(p) > 0 such that

(& 2)ll < Ki(p)

and £, 2) = f(E,Y)llx < Kap)llz =yl
forallt > 0 and all z,y € X such that |z|,, |ylly < p
Assumption (A2) ;

(A2.1) The domain D(A(t)) = D is independent of ¢t and dense in X for
t € [0, Tp)-

(A2.2) For t > 0 the resolvent R(A, A(t)) = (Al — A(t))~! exists for all A € C
with Re(\) < 0, and there is a constant M of A and ¢ such that

IR, Al < MA+ AT

for all Re(\) < 0.

(A2.3) There exists constants L > 0 and 0 < a < 1 such that
I(A®) — A(s)ATH(T)lleexy < Lt — 5|

for t, s, 7 € [0, Ty).
Assumption (A3) ;
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(A3.1) There exists Ty > 0 such that A(t + Tp) = A(¢t) for all t € [0, Ty).
(A3.2) For all t > 0, the resolvent R(\, A(t)) is compact.

3.2.1 Impulsive Evolution Operator

Lemma 3.2.1 Let assumption (A2) hold. The Cauchy problem
z(t) + A(t)z(t) =0, te€ (0,Tp] with  z(0) =z (43.2)

has a unique evolution system {U(t,s)|0 < s < t < Tp} in X satisfying the
following properties :

(1)L, s). € L(X), Tor® €554 < To

) UL, r)U(r;8) =U(t,8)for 0<s<r<t <Ty, r#7';

(3)U(., )z € C(A,X), forz e X,A={(t,s) € [0,To] x [0,Tp]|0 <s<t <
To} ;

(4) for 0 < s <t <Tp,U(t,s): X —» D and t — U(t,s) is strongly differen-
tiable in'X . The derivative (—C%)U (t,s) € L(X) and it is strongly continuous

on 0 < s <t < Ty, moreover,

%U(t,s) = A(t)U(t, s) for 0 < siEN @ s T,

©
t—s

0
I5;U ¢ s)llecy = IAMDUE, 9)llex) <
AU (L, s)A(s) Hlexy <S¢ for 0<s<t< Ty,

(5) for everyv € D andt € (0,Ty],U(t, s)v is differentiable with respect to s

om0<s<t<T

%U(t, B 0 sy

And , for each zo € X, the Cauchy problem (8.2.2) has a unique classical

solution = € C*([0, Tp], X) given by

(Y = LR O, t € 10,7y
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-Lemma 3.2.2 Let assumption (A2) and (A8) hold. Then evolution system and

{U(t,s)]0 < s <t< Ty} in X also satisfying the following two properties :
(1) Ut +Ty,s+Tp) =U(t,s), for0<s<t<Tp;

(2) U(t,s) is compact operator for 0 <s <t < Ty.

In order to construct an impulsive evolution operator and investigate its
properties.

First consider the following Cauchy problem :

x(t) = A(t)l‘(t), t e [O,T()], t 7é Tk,
AIE(Tk) = ka(Tk), t:Tk, kZ 1,2,'-- , O (323)
z(0) 2= %4

For every zo € X, D is an invariant subspace of By, using Lemma 3.2.1, step
by step one can verify that the Cauchy problem (3.2.3) has a unique classical
solution'z € PC'([0,Ty], X) represented by z(t) = S(¢,0)zo, where S(.,.) :
A — X given by

U(ta 3), Tk-1 S S S t S Tk,
U(t,T_.F)(I-l—Bk)U(Tk,S), Tk_1_<_8<7'k<t§7'k+1,

SO vty | [T a+ By | €+ B, Y

s<Tj<t

! Ti-1 xSk < $EY7. < b < Tpi1-

The operator S(t,s) ((t,s) € A) is called impulsive evolution operator.

Lemma 3.2.3 Let assumption (Al.1), (A1.2), (A2) and (A3) hold. The
impulsive evolution operator S(t,s) has the following properties :

(1) S(t,s) € L(X), for0<s<t<Tp;

(2) for 0<s<t<T,,S(t+To,s+Ty) =S5(t,5s);

(8) for 0 <t < Tp, S(t+ Tp,0) = S(¢,0)S(T5,0)

(4) S(t,s) is compact operator , for 0 < s <t < Ty.
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Proof. By (1) of Lemma 3.2.1 and assumption (A1.1), (A1.2), S(t,s) € L(X),
for 0 < s <t <Tp. By (1) of Lemma 3.2.2 and assumption (Al.1) , (A1.2) ,
S(t+To,s+Tp) = S(t,s) , for 0 < s <t <Tp By (2) of Lemma 3.2.1 , (1)
of Lemma 3.2.2 and assumption (A1.1) , (A1.2) , S(t + Tp,0) = S(¢t,0)S(Tp, 0).

By (2) of Lemma 3.2.2 and assumption (A1.1) , (A1.2) , one can obtain that

S(t, s) is compact operator , for 0 < s < t < Tj,

3.2.2. Definitions of Solutions

Definition 3.2.4 For every zp € X and f € Ll([O,oo),X) , the function

z € PC([0,00), X) given by

t
z(t) = S(t,0)zo +/ S(t,s)f(s,z(s))ds (3.2.5)
0
for all ¢ € [0,Tp)] , is said to be a mild solution of system (3.2.1).

Definition 3.2.5 A function z € PC([0,00), X) is said to be a periodic mild
solution of system (3.2.1) if it is a mild solution and there exists Ty > 0 such

that z(t + Tp) = z(¢t) for all ¢ > 0.

Definition 3.2.6 A function z € PC([0,00),X) is said to be a T,-periodic
mild solution of system (3.2.1) if it is a mild solution and z(t + Ty) = z(t) for

all t > 0.

3.2.3 Existence and Uniqueness of Periodic Mild Solutions

Consider the following impulsive system |,

z(t) = A(b)z(t) + f(t,z(t)), te€[0,To), t#m,
Az(ti) = Brx(7y), t=7, k=1,2,-,0 (32.6)

z(0) = o,



24

where A(t) is a closed densely defined linear unbounded operator on X, and
f:]0,00) x X — X. By mild solution of (3.2.6), we shall mean that a function

z € PC([0,Ty), X) satisfies the following integral equation ;
t

o (t)'S8(%, 0)zo +/ S(t, s)f(s,z(s))ds.
0

Theorem 3.2.7 Suppose A(t),t € [0,Tp] is a closed densely defined linear un-
bounded operator on X. If assumption (A1) hold, then system (8.2.6) has a

unique mild solution = € C([0,Tp), X).

Proof. Firstly, we consider the following general differential equation without

impulse

£(t) = A@)z(t) + ft,z(t), t>0 (3.2.7)

Define a closed ball
B(zo,1) = {z € C([0, 71}, X)|l|z(t) — z(0)llx <1,0 <t < Th}
where T, will be chosen later. Define a map @ on B(zg, 1) by

(@=)() = 5(t,0)a0 + [ — 7

and let M = sup |[|S(t,s)|lzx)-
t€(0,To)
Using assumption (A1.3), one can verify that @ : B(zo, 1) — B(zo,1).

We have
t
1(Qz)(t) — zollx < [IS(¢,0)z0 — Zollx +/0 IS(t, $)llconll f (s, z(s))l| xds
S ”S(t, 0).’E0 == .’L'()“x + MK] ([))t
Since S(t, s) is the strongly continuous, there exists 7 > 0 such that

1
|S(t,0)zo — Zol|x < 3 for all ¢ € [0,7'].
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Now, let 0 < 7" < m. Set T7 = min{r’, 7"}, we have
“(Ql’)(t) = ZE()”X <1, forall t e [O,Tll]

This mean that (Qz)(t) € B(zo, 1). Hence, Q : B(zg, 1) — B(zo, 1).

Let z,y € B(xo,1). Using assumption (A1.3), we have

[(Qx)(t) — (Qu)(t)llx S/O I_IS(t, s)coollf(s,z(s)) = f(s,y(s))l|xds
< MKy (p)tllz —yllx.

Now, let 0 < T} < , then

K7
1Q2)(®) — (@) ®)llx < 2l — yllx.

This means that the map @ is contraction map.

We shall choose Ty = min{T},T}'} > 0 (small enough) such that @ is a contrac-
tion map on B(zg,1). By contraction map principle, there exists a unique fixed
point, this implies that (3.2.7) has a unique mild solution on [0, 73].

Suppose z(.) is a mild solution of (3.2.7), then we have
t
@) @)llx < IS, 0)llcexllzollx +/0 IS(E, $)lleoxll £ (s, 2(s)) 1 xds

< M|zl x + MK (p)t.

By Gronwall inequality, we have obtain
[(@)(®)llx < Ml|zollx + MKy (p)t = M.

That is, there exists a constant M = M||zo|x + MK;(p)t > 0 such that
lz(t)||x < M for all t € [0, Tp]. Then we can prove the global existence of the

mild solution of system (3.2.7) on [0, Tg]. O

Theorem 3.2.8 Suppose A(t),t € [0,To] be a closed densely defined linear
unbounded operator on X. If assumptions (A1) hold, then system (3.2.1) has a

unique mild solution x € PC([0,Tp], X).
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Proof. For t € [0, 7], Theorem 3.2.7 implies that system
z(t) = A(t)z(t) + f(t,z(t)), 0<t<m, z(0)= o,
has a mild solution on [; = [0,77] which satisfies

z1(t) = S(t,0)xo + /LS(t, s)f(s,z1(s))ds, t€[0,7].

Now, define

I (Tl) = S(Tl, O).’Eo =+ / S(T}, S)f(S, l'](S))dS,
0
so that x;(-) is left continuous at 7. Next, on Iy = (71, 73], consider system
z(t) = A(t)z(t) + f(t,z(t), m<t<m, zi(rf])=U+ B)zi(n),

Since z; € X, we can use Theorem 3.2.7 again to get a mild solution on (71, 73]

which satisfying

zo(t) = S(t, )zi(77F) + /tS(t,s)f(s,:cg(s))ds.

Now, define xo(72) accordingly so that x,(-) is left continuous at 7. It is
easy to see that Theorem 3.2.7 can be applied to interval (77, 73] to verify that
zo(12) € X. Repeat the procedure above, use step-by-step approach on intervals

I = (1k—1, ), £ =3,4,...,0 (=1 t@B&lS mildSeilitions
t
2(®) = St re-)oua(ri) + [ S9)f(s,2u(s))ds.

for t € (7k—1,7%] and define z(7) accordingly with z,(-) left continuous at
7 and zx(7x) € X, k = 1,2,...,0. Thus we obtain z € PC([0,Tp],X) is a
mild solution of system (3.2.1) and given by

z1(t), B < .,

x(t) =
Ik(t), Ty <t < Tk, k’=2,3,...,0’.
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Next, by mathematical induction we can show that (3.2.5) is satisfied on [0, Tp).
First, (3.2.5) is satisfied on [0, 7). If (3.2.5) is satisfied on (7x—1,7%], then for

t € (Tky Tht1),
o(6) = zun(t) = Slt.r)onls) + [ St (s g (s)es
= S(t,7)({ + Bg)z(mx) + /T: S(t,s)f(s,xk+1(8))ds
= S(t,7)(I+ By [S(Tk,O)xg s /0 | s f(s,x(s))ds]

+ / B (v B

= S(t,O):vo-F/Tk S(t,s)f(s,a:(s))ds+/tS(t,s)f(s,x(s))ds
= 6'(15,0):1:04—/0 S(t, s)f(s,z(s))ds.

Thus (3.2.5) is also true on (7x, Tk+1]. Therefore (3.2.5) is true on [0, Tp).
Next, we want to show that a mild solution is unique on PC([0, Tp], X).
Suppose that z, y are mild solutions of system (3.2.1) on PC([0, T}, X). Then

by Theorem 3.2.7, we have
=(t) —y(@)llx < /0 IS, )l 2oy 1 £ (5, 2(8)) = f (5, 9(s))ll xds

t
< MEa(p) [ llals) = y(s)l s
0
It follows from Gronwall Lemma, we obtain ||z(t)—y(t)|| =0 for all t € [0, Tp].

That is, = = y. Therefore, system (3.2.1) has a unique mild solution. This

completes the proof. O

To be able to apply the method in Pazy . we also need the following

lemma.

Lemma 3.2.9 Consider the nonhomogeneous initial value problem

#(t) = A(t)z(t) + f(t,z(t), t>0 (3.2.8)
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If f € L'([0,00), X), then for every zo € X the initial value problem

(8.2.8) has a unique solution which satisfies

t
z(t) = S(t,0)zo +/ S(t,s)f(s,z(s))ds, 0<t<To.
0
We consider the following system,

i(t) = A(t)z(t) + f(t,z(t), t>0

(3.2.9)
11(0) = T,
and we suppose that it has a global mild solution z(t).
We also consider the following system,
i(t) = A@)y(t) + ft,z), t>0
i0) = ABYO + 1(t,3(0) = i
y(0) =z(0)
By Lemma 3.2.9, system (3.2.10) has a unique mild solution y(t).
Let P:C(X,X)— X be the Poincare mapping, defined by
f To
Pz = y(To) = S(To, 0)zo + S(t,s)f(s,z(s))ds.
0
Finally, we consider the following system,
z(t) = A(t)z(t) + f(t,z(t)), t>0
(®) = At)z(t) + £t 5(2) -

=P,

which by Lemma 3.2.9 also has a unique mild solution z(t).

We are now in a position to state and prove the basic tool for the proof

existence of periodic mild solution.

Theorem 3.2.10 System (3.2.9) has a Ty-periodic mild solution if and only if

the mapping P has a fized point.

Proof. Let z be a Tj-periodic mild solution of system (3.2.9). Then z is clearly
a Tp-periodic mild solution of system (3.2.10). Since z is Tp-periodic mild
solution, z(0) = z(7Tj). Therefore z(0) = z(Ty) = Px, where z satisfy (3.2.11)

and so Px = z. Conversely, let x be a fixed point of P. By definition, z satisfies
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(3.2.10) and since z(0) = y(0). By Lemma 3.2.9 , show that z(t) = y(¢t) and
hence z(Ty) = y(Tp). Since Pz = z, it follows from (3.2.11) that z(0) =
Pz = y(Ty) = z(Tp). That is, z(0) = z(Tp). The function %(t) := z(t + Tp)
is also a mild solution of (3.2.9). Since f is Ty-periodic, ¥ (t) = @(t + Tp) =
At + To)z(t + To) + f(t + To,z(t + Tp)) = A(t)¥(t) + f(t,¥(t)). Therefore
z(t) = z(t + Tp) for all ¢ > 0. ie., system (3.2.9) has a Tp-periodic mild

solution. This completes the proof. O

3.3 Semilinear Impulsive Periodic Systems with

Parameter Perturbations

We consider the semilinear impulsive periodic system with parameter

perturbations as the following

£(t) = A(t)z(t) + f(t,z(t)) + p(t, 2(t),£), t # T,
Az(t) = Brx(t) + ek + qr(z(t), £), t =

(3.3.1)

where Axz(r) = z(rt) — z(r,) for all k € N. In addition to assumptions
(A1), we introduce the following assumption
Assumption (A4) ;

(A4.1) ¢, € X and ¢jy, = ¢ for all k € N,

0
(A4.2) The Fréchet derivative Ep f(t,z) exists in [0,00) x X. For each

y € X, tm— gf(t,x)y is strongly measurable, z — g;f(t,x)y is
z

continuous. For every p > 0, there exists a constant K3(p) > 0 such that

< Ks(p)

L(X)

0
H%f(f’ “C)

forall ¢t >0 and all z € X such that ||z|, < p.

(A4.3) p:[0,00) x S, x A — X is measuable for ¢ such that p(t + Ty, z,€) =
p(t,z,€) and g, : S, X A — X such that gxi,(z,€) = qi(z,€), where A =
(=£,6),(E>0)and S, = {z € PC([0,00), X)|||lz|[pc < p} and there exists a
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nonnegative function w such that

g a(6) = 8= 0

and for any t > 0,z,y € S, and £ € A such that

”p(t’ Z, é) T p(t, y)é)“x < w(&)”x 3 y”x

and llgx(z, €) —qk%/,f)llx S w(@)llz —yllx-
(A4.4) The Fréchet derivative %Bk(a:) exists in  X. For every p >0,

there exists a constant hg(p) > 0 such that

0]

< hi(p)

L£(X)

forall t>0, k€N andall z € X such that |z], < p.

3.3.1 Definitions of Solutions

Definition 3.3.1 A function z € PC([0,00), X) is said to be a mild solution
of impulsive system (3.3.1) with initial condition z(0) = zo € X if z is given

by

o) = S(t,0)a+ " 5(t, )1 (s 2(s)) + o (EREGE), £)]ds
+ > St m)lek + gr(z(m), )]

O< <t

(3.3.2)

Definition 3.3.2 A function z € PC([0,00), X) is said to be a periodic mild
solution of system (3.3.1) if it is a mild solution and there exists Ty > 0 such

that z(t +Tp) = z(¢) for all ¢t > 0.

Definition 3.3.3 A function z € PC([0,00), X) is said to be a Ty-periodic
mild solution of system (3.3.1) if it is a mild solution and z(t + Tp) = z(t) for

all ¢t > 0.
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3.3.2 Existence and Uniqueness of Mild Solutions

At first, we consider the following reference system

T(t) = At)z(t) + f(t,z(t)), t# 7,

(3.3.3)
A.’E(t) = ka(t), A Ty

and assume that T, (t) is a To— periodic mild solution of the reference system

(3.3.3) which satisfies

Ty () = S(t,0)zo +/(; S(t,s)f(s,z(s))ds. (3.3.4)

Next, we consider the following variation system

B(t) = A(t)z(t)+ %f(t,:CTo t)Nz(t), t#m,

Az(t) = £ Bular, (0)a(t), t=m,

(3.3.5)

and assume that the variation system (3.3.5) has only trivial solution.

Theorem 3.3.4 Let assumption (A1) and (A4) holds. Suppose z1,(t) be a

To-periodic mild solution of the reference system (8.8.8) satisfies

po= sup |lzg ()|
t€(0,To]
Assume that
1. system (8.8.5) has only trivial solution,

2. let £>0 and e, € (0,p — po) such that n <1 with

y - M([KQ(EO) + K3(e0)]To + [hw(co) + Auleo)]o + [Tp + o] sup w(§)>

£€(0.€]
where
M= Sup IIS(t’S)llg(x)’
0<s<t<Ty
_ 0
hi(eo) = sup  ||==Bx(z, (7) + y())||
keN, |lyll<eo || OF X
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3. the following inequality is valid

sup
t€(0,To), l€|<€

5(t,0)z0 + /O 5(t,9)p(s, 2, (), €)]ds

+ ) St m)lek + a2y, (72), )]

0<, <Ty

ol pn)

X

Then for any constant p > py > 0, there exists a sufficiently small E 0

such that for every fized & € [0, E] system (3.8.1) has a unique Ty-periodic mild

solution mgo (t) satisfying

25, (t) — 2, (1) <eo  forall t>0 (3.3.6)
R4 él_l}g 33;0 (t) =z, (2) uniformly on t.

Proof. Let z(t) =z, (t) +y(t), then we can change system (3.3.1) into

§0) = ADU(E) + 511,22, ()WL) + 001, 5(0) + DLt 23y (1) + (), ), ¢ 7

(3.3.7)
Ay(t) = %Bk(irn, ()y(t) + or(y(2)) + ek + qu(z4, (t) + y(t), £), t =1,
where |
O{t,Y(8)) = £t (8) + y(6) — (6,72, (8)) = = (8,27, (1)
(3.3.8)
OuY(t)) = Belar, (6)+y(1)) = Belary (1)) ~ 2 Belar, (£)y(1)
Let PCp ([0,To); X) := {x € PC([0, To); X) | z(0) = z(Tp) }
with norm
2]l pe,, = sup [lz(¢)]lx-
O te[0,Ty)
Let us define
B .= 8(80) = {y = PCTO([OvTﬂ];X) , ”y”PCTO < €o } (339)
and an operator 2: B — PC, ([0,Tp]; X) such that
Q)0 1= 50,0020+ [ 5(0,9)[ols,u(s) + pls, 2 (5) + (), )] s
’ (3.3.10)

+ Z S(t, 7)ok (y(7e)) + ek + a4, () + (1), €)]-

0<m. <t
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If y e B, then

H%HPCT0 i +prcT0
< HxTolIPCT0 ia HyHPCTO
< Po+ e
= =

From equation (3.3.10), we have

Uz, )(0) = S(t0)z0+ | S(t,9)[pls, 7 (5), )] ds
: (3.3.11)
+ > St e)lek + arl(zg, (1), ).

0<7 <t

For any z, T, € B, then we have
1€2(z) — Q(zy)ll Py,
3 /t IS )l cx, llo(s,y(s)) + p(s, T4, (5) + y(s), ) — (s, T, (), &)l ds
0

+ > IS Tl 2oy Now (7)) + Qe () + y(7r), &) = a2, (76), €) || x

0<1i<t

< [ 15 M (l[f(t,xTo<s> +0) = Flt,31,(9) = (7, (5))y

HIp(5, 21, (5) +¥(5),€) = P(s5, 21, (5), E) ) ds
+ D0 IS ( B(zr, () + 1) = Bt (1)) ~ - Bul (r)y |

H9k(r, (76) + 4(72), ) = qu(a, (70), )l x)

< [ 1869 (Ilf(t,xTo(s) #4) = f(t 2 O+ | 216 2 5l

X

Hlp(s, 27, (5) + (), ) = pls, 7, (5),€) ) s

+ ) IS ) (N Bi(@y, () + y) = Bi(wy, (1)l

0< <t

0

= Bul(zg, (7))

+3:U

+ llaw(zz, (74) + y(7). £) = aulz, (1), ©)llx )

X

< M([Kz(&)) + K3(eo0) + w(€)]To + [heleo) + hu(eo) + w(ﬁ)]U) |z =z, | Per, -
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Let us choose E> 0 and €y € (0,p— po) such that n <1 with

7= M([K2(50> + K3(0)]To + [i(eo) + hi(€0)lo + [Ty + o] sup. w(g)§33.12)
£€[0,€]

So |IQ($) — Q(:CTO)“PCTO : 77”*7; — T ”PCTO (3313)
It follows from (3.3.11), (3.3.13) and assumption (3) that

19()lper, < 11(2) — Uzg)llPor, + 11924l per,
< nllz — zg llpey, +€0(1 —n)
< neo +€o(1—n) =&
from which we know that Q(z) € B, then Q : B — B is a contraction
mapping. Therefore, there exists a unique fixed point y;(t) € B. From the fact

that y;(¢) is a solution of system (3.3.7), we know xETO (t) =z, () +u(t) is

a Tp- periodic mild solution of (3.3.1) and satisfies

125, () = 27, (O = I (t)]] < eo.

So we have %in% xéTO =z (t) uniformly on t.

This completes the proof. O





