CHAPTER 11
MATHEMATICAL PRELIMINARIES

In this chapter, we review the theoretical background from functional
analysis, real analysis which will be used throughout this thesis. Most theories
are without prooves which can be found in the standard textbooks (see Ahmed

(1991), Erwin Kreyszig (1978) and Pazy (1983) for example).

2.1 Elements of Functional Analysis

2.1.1 Normed Linear Spaces

Definition 2.1.1 Let X be a vector space over field F, (where F = R or C).

A function || - || : X — R is said to be a norm on X if it satisfies :
(NThlle]| 20 pmior allsg. ™
(N2) |z|"=al~ 20, fer all el i
(N3) |laz| = |af||lz]l, « €F, forallz € X

(N4) ||z +yl| < [lzll + llyll, for all z,y € X

Definition 2.1.2 A sequence {z,} in a normed space (X, | -||) is said to be

a Cauchy sequence if for every € > 0 there exists N = N(g) > 0 such that

|zm — zn|| <&, forall m,n > N.

Definition 2.1.3 A normed linear space X is said to be complete if every

Cauchy sequence in X converges (that is, has a limit which is an element of X).

Definition 2.1.4 A normed linear space X is said to be a Banach space if it is

complete.

2.1.2 Linear operators



Definition 2.1.5 Let X and Y be vector spaces. A linear operator or a linear
map T from X into Y is a function T : X — Y such that

(i) T(x+y)=T(z)+T(y) forall z,y€ X,

(ii) T(az) =aT(z) forall x € X and «a € F.
Definition 2.1.6 Let X and Y be normed linear spaces and T : X — Y a

linear operator. Then T is said to be bounded if there exists M > 0 such that
| Tz||y < Mljz||lx forallz e X.
Theorem 2.1.7 Let X and Y be normed linear spaces and T : X — Y a linear
operator. Then the following statement are equivalent :
(i) T is continuous at 0, the zero vector in X,
(ii) T us continuous on X,
(iii) T is bounded on X.

Let X and Y be normed spaces. Consider the set £(X,Y) consisting
of all bounded linear operator from X to Y. L£(X,Y) becomes a normed linear
space if we define vector operations in a natural way and define the operator

norm |||, = sup ||Tz||,. If X =Y, we simply write £(X). Moreover,

llzll x <1
we have the following theorem.

Theorem 2.1.8 If X is a normed linear space and Y is a Banach space, then

L(X,Y) is a Banach space.

Lemma 2.1.9 IfT: X - Y and S : Y — Z are bounded linear operators, then

ST : X — Z is also a bounded linear operator. Moreover,
ISTI < [ISIHITY)-

Theorem 2.1.10 (Uniform Boundedness Principle). Let X and Y be Banach

spaces and T C L(X,Y). Then,

sup |Tz||, <oo, Yz € X implies that sup||T||, ., < co.
TeT ST \



ot

2.1.3 Closed Operators

Definition 2.1.11 Let X and Y be normed linear spaces and T : X — Y

a function. The graph of T', denote by G(T'), is defined by

C(T) SeflS Lol . Y

If T is linear, it is easy to verify that G(T) is a linear subspace of

X xY. We say that the map 7' : X — Y has a closed graph or T is a closed
operator if G(T') is a closed subspace of X x Y.

The following lemma gives a characterization of the closedness of a linear

operator in terms of sequences.

Lemma 2.1.12 Let X and Y be normed linear spaces and T : X — Y a
linear operator. Then T has a closed graph if and only if for every sequence

{z,} n X, if ©, >z and Tz, — vy, then y=Tx.

Theorem 2.1.13 (Closed Graph Theorem). Suppose that X and Y are
Banach spaces and T : X — Y a linear operator. Then T 1is bounded if and

only if T has a closed graph.

Definition 2.1.14 Let X be a Banach space, Y a subspace(not necessarily
closed) of X and let A: D(A) C X — X be a linear operator in X. The

subspace Y of X is an invariant subspace of A if A: D(A)NY —Y.

2.1.4 Compact Linear Operators

First, we recall the following facts from topology.

Definition 2.1.15 A subset M of a topological space X is compact if every

open cover of M contains a finite subcover.



Definition 2.1.16 Let X and Y be normed spaces. An operator A: X — Y is
called a compact linear operator ( or completely continuous linear operator) if A

is linear and if for every bounded subset M of X, the image A(M) is relatively

compact, that is, the closure A(M) is compact.

Definition 2.1.17 (e-net, total boundedness). Let B be a subset of a metric
space X and € > 0 be given. A set M, C X is called an e-net for B if for
every point z € B there is a point of M, at a distance from z less than e.
The set B is said to be totally bounded if for every € > O there is a finite e—net
M. C X for B, where "finite” means that M, is a finite set (that is, consists of

finitely many points).
Lemma 2.1.18 Let B be a subset of a metric space X.

1. If B is relatively compact, then B is totally bounded.
2. If B is totally bounded and X is complete, then B 1is relatively compact.

3. If B is totally bounded, then for every e > 0 it has a finite e—net M. C B.

Theorem 2.1.19 Let T : X — X be a compact linear operator and S : X — X

a bounded linear operator on a normed space X. Then T'S and ST are compact.

The following fixed point theorems are the main tools in the proof of the
existence of periodic mild solutions for linear and semilinear periodic systems

with impulses.

Definition 2.1.20 Let X be a Banach space and let A : X — X be an operator

(not necessarily linear). A fized point of A is a point € X such that
i — .
In other words, a fixed point of A is solution of the equation

Ar =z, £ € X.



Definition 2.1.21 Let X be a Banach space and let A : X — X be an operator.

The operator A is called Lipschitz continuous (or, briefly, A is Lipschitz) if
|Az — Ayl < Lilz -y
for some constant L and all z,y € X. If 0 < L < 1 is called a contraction.

Theorem 2.1.22 (The Contraction Mapping Theorem). Let X be a Banach

space and let A: X — X be a contraction. Then the equation
A=

has a unique solution in X, i.e., A has a unique fized point x. Further, this fived

point may be obtained by the method of successive approzimations as follow:

#o € Xwarbitrdry, z, = A%y 1(n > 1)5z="1lim z,

n—oo

Corollary 2.1.23 Let X, be a closed subset of the Banach space X and assume
that A maps X, into itself and is a contraction on Xo. The equation A = x

has a unique solution x € X.

Theorem 2.1.24 (Schauder Fized Point Theorem). Let G be a compact convex

subset in a Banach space B and let T be a continuous mapping of G into itself.

Then T has a fized point.

Corollary 2.1.25 Let G be a compact convexr subset in a Banach space B
and let T be a continuous mapping of G into itself such that the image T'G is

relatively compact. Then T has a fized point.

Corollary 2.1.26 Let G be a compact convex subset in a Banach space B and
let T be a continuous mapping of G such that TG C G . Then,T has at least a

fized point in G.



Theorem 2.1.27 (Leray-Schauder Fized Point Theorem). Let G be a compact

mapping of a Banach space B into itself and suppose there exists a constant M

such that

|zllg < M
for all x € B and X € [0,1] satisfying x = AGx. Then G has a fized point.

The proof can be found in Gilbarg and Trudinger (1977).

Theorem 2.1.28 (Arzela-Ascoli). Let X and Y be Banach spaces, G C X be

compact and F C C(G,Y). Suppose that
1. for each z € G, the set {F(x)| F € F} is relatively compact in Y.
2. F s uniformly bounded, i.e.,

sup [|F(z)]|, < oo.
FeF,zeG

3. F 1is equicontinuous, i.e., for any € > 0, there exists § = 6(g) > 0 such

that
| F(z) — F(y)ll, <e, when ever ||z —y||, <6, FeF, z,yeq.
Then there exists a sequence {Fy} C F and F, € C(G,Y) such that
Jim {|F — Follo,y, =0
where C(G,Y) denotes the supremum norm.

The proof can be found in Xunjing Li and Jiongmin Yong (1995).

2.1.5 Spectral Properties of Compact Linear Operaters



In this section, we consider spectral properties of a compact linear oper-

ator T': X — X on a normed space X. For this purpose we use the operator
Lt Lol (AeC) (2.1.1)
where [ is the identity operator on X.

Definition 2.1.29 Let X be a complex Banach space and let T': D(T) ¢ X —
X be a linear, not necessarily bounded operator. The resolvent set p(T) of T is
the set of all complex numbers A for which T — A/ is invertible, i.e., (T — AI)~1
is a bounded linear operator in X, that is, the resolvent set p(T') of T is given
by

p(T)={XeC:(T-I)"eL(X)}]

I is the identity operator on X. When X € p(T), R(\,T) = (T — AI)™! is

called the resolvent operator of T at ).

Theorem 2.1.30 The set of eigenvalues of a compact linear operator T : X —
X on a normed space X is countable (perhaps finite or even empty), and the

only possible point of accumulation is A\ = 0.

Theorem 2.1.31 Let T : X — X be a compact linear operator on a normed
space X. Then for every A # 0 the null space N(Ty) of Tx = T — M is finite

dimensional.

Theorem 2.1.32 Let T : X — X be a compact linear operator on a normed

space X. Then for every A # 0 the range of Tx = T — M is closed.

2.2 Integration Theory

In this section, we review some basic concept of measurable functions
and Bochner integral for Banach space valued functions. We then state some

standard convergence theorems for integrals. For details and proofs we refer to
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Zeidler (1990), unless we state otherwise.
2.2.1 Measurable Functions

Let M C R™ be a measurable set and X a Banach space.

Definition 2.2.1 1. A function f : M — X is called a step function if there
exist finitely many pairwise disjoint measurable subsets M; of M such that

|M;| < oo for all 7 and element a; of X such that

a;, if =€ M,
f(z) =

0, otherwise.

That is, f is constant on each set M.

2. The integral of a step function is defined to be

/M fdz = Z |M;|a..

3. A function f i+ M — X is called (strongly) measurable if there exists a

sequence {f,} of step functions f,, : M — X such that

lim f,(x) = f(z) for almost all z € M.

n—0o0

4. (Measurable functions via substitution). Let X, U be real and separable
Banach spaces, M C R"™ be measurable, f: M xU — X andu: M — U.

Set
F(z) = f(z,u(z)).
If the function v : M — U is measurable, then the function F' : M — X

is also measurable provided that f satisfies the Caratheodory condition :
(i) z — f(x,u) is measurable on M for all u € U.

(ii) u — f(z,u) is continuous on U for almost all x € M.
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2.2.2 Bochner Integral

Definition 2.2.2 A function f : Q — X is called simple if there exist z1,z,,..., 2, €

X and Fy,E,,...,E, € M such that

f(I) = inXE, (I)’

where X, is the characteristic function of a measurable set E; and the set E;

are pairwise disjoint with union §2.

Definition 2.2.3 A function f:Q — X is called Bochner wntegrable if Q is
measurable and there exists a sequence {f,} of simple functions i Q= X

such that

1. f(z) = lim f,(z) for almostall z €,

n—oo

2. given € >0, there exists ny =ng(e) € N such that
/ | fm(2) = fu(z)|lydx < e forall m,n> no(g).
Q

Theorem 2.2.4 A strongly measurable function f:Q — X s Bochner inte-

grable if and only if/Q | f(z)]ldz < oo.

Theorem 2.2.5 If B € £L(X) and the integral f exists, then the integral of

Bf exists and
/ Bf(z)dz =B | f(z)dz.
Ja Q

Theorem 2.2.6 (Majorant criterion). Let f:Q — X be measurable. If there
exists g : 8 — R such that | f(z)|l, < g(z) for almost all z € Q and

/ g(x)dx exists, then f is integrable and
Q

Lo

< / 1£ (@)l de < / o(z)dz.
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2.2.3 Fréchet Derivative

Definition 2.2.7 A function f defined on an open subset D of a normed space
X with values in a normed space Y is Fréchet differentiable at x € D if there

exists a bounded linear operator df(z) € L(X,Y) such that if
p(z, h) = f(z + h) = f(z) - 0f(x)h, (z,z+he D),

then
lo(z, )|«

lim —————2 = (.

=0 Rl

The operator 0f(x) is called the Fréchet differential or Fréchet derivative
of f at z. Obviously, Fréchet differentiability implies continuity. The mean value

theorem holds for Fréchet differentiable maps : we need it in the form

1f(2) = F@l < llz =yl §p 10 ()l .y,

(I the segment joining = and y) valid for D convex. The Fréchet differentiable

is of course the calculus differential if X = R™.

2.3 Differential Equations on Banach Spaces

In this section, we introduce the concept and results on semigroups of
operators via differential equations on Banach spaces which are abstract formu-
lation of initial value problem for partial differential equations. For more details

and proofs, we refer to Fattorini (1999).

2.3.1 The Homogeneous Initial Value Problem

Let X be a Banach space and let A(t) : D(A(t)) C X — X be a given

operator. Consider the differential equation on X given by

i(t) = A(t)z(t), t>0 (2.3.1)
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Definition 2.3.1 The Cauchy problem (2.3.1) is said to have a classical solution

if for each given z, € D(A(t)) there exists a function z € C([0,00), X)

satisfying the following properties :
(i) z € C([0, 00), X) N C((0, 00), X),

(ii) z(t) € D(A(¢t)) for all t > 0,

(iii) (2.3.1) is satisfied, i.e.,

Theorem 2.3.2 Let D(A(t)) = X,p(A(t)) # 0. Then (2.3.1) has a unique
classical solution x(t) which is continuously differentiable on [0,00), for every
wnitial value zo € D(A(t)) if and only if A(t),t € [0,To] is a closed densely

defined linear unbounded operator on X.

2.3.2 The Inhomogeneous Initial Value Prpbiemytional Research Council of Thailand

Consider the inhomogeneous initial value problem | grecord No. cvoe.. EAZLSU -----------

Call NO. vaeerrermsrtniisesnisstsasiisn

(2.3.2)

x(t) = A(t)z(t) + f(2), i >
z(0) =x9, € X
where A(t),t € [0.Tp] is a closed densely defined linear unbounded operator on

X and fe L]l ([0,00),X).

loc

Definition 2.3.3 A function z : [0,7) — X is a (classical) solution of (2.3.2)
on [0, T) if z is continuous on [0, T"), continuously differentiable on (0, T'), z(t) €

D(A(t)) for 0 < t < T and (2.3.2) is satisfied on [0, T").

Theorem 2.3.4 (Ezistence and Uniqueness). Let A(t),t € [0,To] is a closed

densely defined linear unbounded operator on X. If f € L'([0,T], X) then for
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every xo € X the initial value problem (2.3.2) has at most one solution. If it
has a solution, this solution is given by
t
2 U (70 e +/ Ult,s)f(s)ds, 0<t<T. 17.3.3)
0
Definition 2.3.5 A function z € C([0, 7], X) is said to be a mild solution of
(2.3.2) corresponding to the initial state zo € X and the input f € L'([0, T}, X)
if z is given by (2.3.3).
The definition of the mild solution of (2.3.2) coincides when f = 0 with
the definition of U(t,0)zo as the mild solution of the corresponding homoge-

neous equation. It is therefore clear that not every mild solution of (2.3.2) is a

(classical) solution even in the case f = 0.

Theorem 2.3.6 Let A(t),t € [0,To] is a closed densely defined linear unbounded

operator on X, let f € L'([0,T], X) be continuous on (0,T) and let
t
) = / sy £(5)ds w D18 o ¥
0

The initial value problem (2.8.2) has a solution x on [0,T) for every zo €
D(A(t)) if one of the following conditions is satisfied;
(i) v(t) is continuously differentiable on (0,T).

(i) v(t) € D(A(t)) for 0 <t < T and A(t)v(t) is continuous on (0,T).

Corollary 2.3.7 Let A(t),t € [0,Ty] is a closed densely defined linear un-
bounded operator on X, f(s) is continuously differentiable on [0,T) then the

initial value problem (2.3.2) has a solution u on [0,T) for every xo € D(A(t)).

Corollary 2.3.8 Let A(t),t € [0,To] is a closed densely defined linear un-
bounded operator on X and f € LY([0,T],X) be continuous on (0,T). If

f(s) € D(A(t)), then the initial value problem (2.8.2) has a solution on [0,T).
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2.3.3 Semilinear Initial Value Problem and Perturbations

Theory.

Consider the semilinear initial value problem

P(t) = A@W)z(t) + f(t,2(t),  z(s) =, (2.3.4)

where A(t),t € [0,Tp] is a closed densely defined linear unbounded operator on
X and f:[0,00) x X — X. The assumption on A(t) is that the initial value

problem for the linear equation

i(t) = A(t)z(?) (2.3.5)

is well posed in 0 < ¢ < T, as defined in Fattorini (1999), pp 207. Below, S(t, s)
denotes the solution operator of (2.3.5), defined and strongly continuous in the

triangle 0 < s <t < T.

Define a solution of (2.3.4) as a solution of the integral equation
1
(T B(L s )T +/ T, T LiRr 7 ) )dT. (2.3.6)

We summarize in this section the necessary existence-uniqueness theory
of (2.3.4). Result will be proved under two hypotheses on f(¢, ). The second

hypothesis is stronger than the first.

Hypothesis 1. f(t,z) is strongly measurable in ¢ for fixed z. For every ¢ > 0
there exists K (-,c) € L'(0,T) such that

If(E2)|l < K(te) (0<t<T,|zf| <c) (2.3.7)

Hypothesis II. f(t,x) is strongly measurable in ¢ for fixed z. For every ¢ > 0
there exists K(-,¢), L(-,¢) € L*(0,T) such that (2.17) holds and

1£(t2) = ft, )l < Lt Ol —all (0 <t <T|all, 2]l < o). (2.3.8)

Theorem 2.3.9 Assume Hypothesis II holds in 0 < t < T. Then the integral

equation

(8} = Clt)+ / S(t. 7)f (r.z(r))dr (2.3.9)
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has a unique solution in some interval s < t < T', where s < T" <k

Theorem 2.3.10 Let x,(-) (respectively, z,(-)) be solution of (2.8.9) in s <
t < T with ((t) = Gi(t). (respectively, with ((t) = (a(t)). Let ¢ be a bound for

lz1 (O, llz2(®)]] in s <t <T'. Then

l22() =220l < swp 160 = alexp (M [ L7, ar) (s st <)

S

In particular, if z,(-) (respectively, z,(-)) is solution of (2.3.6) with

¢ = ¢ (respectively, with ¢ = (;), then
lz1(t) = 22 ()] < MI|C1 = Goll exp (M/ L(r.)dr) (s <t<T).(23.10)

Lemma 2.3.11 Let x(t) be a solution of (2.3.9) in an interval [s,T"). Assume

that
lsll <c (s<t<T) (2.3.11)
Then x(-) can be extended to an interval [s, T") with T" > T’ (that is, a solution
of (2.3.9) coinciding with z(-) in s <t < T' exists in [0,T"] ).
Corollary 2.3.12 The solution z(-) of (2.3.9) exists in s < t < T or in an
interval [s,T,n), Ty < T and
sup ||z(t)]| < oo. (2.3.12)
Corollary 2.3.13 Assume that there exists K(-) € L'(0,T) such that
If& o)l < K@)A+|lzl)) (0<t<T,ze€X) (2.3.13)
Then (2.3.11) holds in every interval where the solution z(t) of (2.3.9) ezists
accordingly, x(t) exists in s <t < T.

The following theorem is one of the main tools in the proof of the ex-
istence of periodic mild solutions for the semilinear impulsive periodic systems
with parameter perturbations discussed in this thesis. Its proof can be found in

Fattorini (1999), pp.213.
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Theorem 2.3.14 Let the Cauchy problem for (2.3.5) be well posed in s <t < T
and let {B(t),0 <t < T} be a family of bounded linear operators in X such
that (a) for each x € X,t — B(t)x is strongly measurable, (b) there exists
a(-) € LY0,T) such that

IBOI<alt) (0<t<T). (2.3.14)
Then the Cauchy problem for
z(t) = (A(t) + B(t))u(t) (R3,15)

is well posed in 0 < t < T, solution of (2.8.15) with x(s) = ( understood as

solutions of the integral equation
.
z(t) = S(t, s)¢ +/ S(t, 7)B(t)u(r)dr (2.3.16)

If U(t,s) be the solution operator of (2.3.15), solutions of the inhomogeneous

equation
#(t) = (A(t) + B(t))z(t) + f(t), x(s) = (2.3.17)
with f(-) € L'(0,T), understood as solutions of the integral equation
z(t) = S(t, s)¢ + / t S(t, 7)B(r)(z(r) + f(r))dr, (2.3.18)

can be expressed by the variation of constants formula

&)= LIt aJ +/ U(t,7)f(r)dr. (2.3.19)

2.4 Gronwall’s Lemma

Theorem 2.4.1 Fort >ty let a nonnegative piecewise continuous function x(t)

satisfy
x(t) <c+ / v(s)x(s)ds + Z bnx(Ty)

v to to<Tn<l
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where ¢ > 0,b, > 0,v(s) > 0,z(t) has discontinuous points of the first kind at

Tn. Then we have

0t ) S°C H (1+ bn)emp</tv(s)ds>.

to<Tn<t to





