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A FORMAL FRAMEWORK FOR WORM DAMAGE MITIGATION 

IN ENTERPRISE NETWORKS 

       

INTRODUCTION 

 
Computer Worms

 

The pervasive use of networked computing in almost all aspects of knowledge 

economy raises concerns about network security and the potential damage due to 

intrusion. The cost of attacks on networked computers over the past five years has been 

estimated to be in the billions of dollars (Russell and Mackie, 2001). Attackers utilize 

many forms of intrusion via computer networks; currently, worms are an important 

vector with the potential for widespread damage, as illustrated by infamous worms such 

as Code Red, Nimda, Slammer, Blaster, and Sasser.  

 

Worms are pieces of executable code or programs that can automatically 

replicate themselves on machines by exploiting vulnerable services. The first Morris 

worm (Eichin and Rochlis, 1989) in 1988 that spread by exploiting vulnerabilities in 

hosts running variants of BSD UNIX demonstrated that a worm can rapidly infect a 

large number of disperse systems. 

 

In the last few years, a dramatic increase in worm outbreaks occurred, including 

Code Red, Code Red II, Nimda, and Slammer. Code Red infected hosts running 

Microsoft Internet Information Server by exploiting an .ida vulnerability (Moore and 

Shannon, 2002). The next version of Code Red, Code Red II, proved even more 

dangerous than the original as Code Red II was not memory resident; therefore, 

rebooting of an infected machine did not halt the worm. Analyses of Code Red are in 

(Moore and Shannon, 2002; Moore et al., 2003).  

 

Nimda used multiple mechanisms for infection: from client to client via email, 

from client to client via open network shares, and from web server to client via 
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browsing of compromised web sites (CERT/CC, 2001). In 2003, Slammer rapidly 

spread across the Internet by exploiting a buffer overflow vulnerability in Microsoft’s 

SQL Server or Microsoft SQL Server Desktop Engine (CERT/CC, 2003a). It is 

regarded as the fastest worm in the history. 

 

Recent worms such as Blaster and Sasser infect vast numbers of desktop 

computers in enterprise networks, exploiting vulnerabilities in the default configuration 

of desktop operating systems. This differs from the behavior of Code Red and 

Slammer, which exploited holes in optional components of servers. Blaster used a 

vulnerability in Microsoft's DCOM RPC interface, enabling a remote attacker execute 

arbitrary code with local system privileges or to cause a denial of service condition 

(CERT/CC, 2003b).  

 

Sasser exploits a LSA buffer overflow bug. Similar to Blaster, it uses a public 

exploit for the LSA vulnerability in order to obtain a system level command shell on its 

victims (eEye Digital Security, 2004). The worm propagates by FTP download and 

then executes a copy of the worm executable from a basic FTP service installed on the 

attacking system. Blaster and Sasser are regarded as the trend of attacks that produce 

great damage for enterprise network today.  

 

There are three broad strategies (Moore et al., 2003) for limiting attacks by 

worms: prevention, treatment, and containment. Prevention is how to reduce the size of 

the vulnerable population. Secure design in software engineering and application of 

good security practices in network administration are forms of prevention (Necula, 

1997; Cowan et al., 1998; Wagner et al., 2000).  

 

Treatment includes measures to detect and eradicate worms: intrusion detection 

systems (Cheung et al., 1999; Toth and Kruegel, 2002; Williamson, 2002), antivirus, 

and system update are examples of tools for treatment. Containment (Kephart and 

White, 1993; Moore et al., 2003; Eustice et al., 2004) is exemplified by content 

filtering and address blacklisting, analyzes and then blocks intrusive communications.  
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However, none of these strategies are effective and rapid enough to adequately 

mitigate worm propagation. Therefore, it is extremely important for organizations to 

better understand the behavior of worm infections in order to assess their vulnerability 

and adopt a strategy to minimize the damage due to worm attacks.  

 

The ultimate goal for handling with worm problem is to detect, contain, and 

eradicate worm from a network. For a new worm, it is very hard, mostly impossible, to 

handle the event without worm knowledge. Therefore, with all available information 

the prediction and mitigation of worm damage are needed.  

 

This research proposes a formal framework to mitigate the damage due to worm 

infection in enterprise networks. The framework includes analyzing the effect of 

parameters influencing worm infection, predicting the number of infected nodes, and 

optimizing a key parameter to reduce the damage.  

 

Little is known about the effect of host and network configuration factors 

influencing worm infection in enterprise networks. The worm infection depends upon 

several factors. However, there is no exact answer to the question of which factors are 

influential for infection significantly. The factors which are extracted from host and 

network configuration are analyzed to answer this question. 

 

Prediction of the number of infected nodes is performed by developing 

measurements of different factors and then fusing them by a fuzzy decision process. 

The optimization of a key parameter to minimize the worm damage is performed by 

automatic parameter tuning using a fuzzy controller that employs rules incorporating 

qualitative knowledge of the effect of the parameter.  

 

Fuzzy logic (Zadeh, 1994) is used for prediction and optimization in this 

problem because the measures are uncertain and imprecise, and human experts have 

intuition or knowledge of the effects of characteristics of parameters that relate to worm 

attacks. 
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Research Objectives 

 

The objectives of this study are: 

 

1.  To discover the significant factors influencing worm infection in enterprise 

networks. 

2.  To design and develop a novel approach for predicting worm damage in 

enterprise networks. 

3.  To  study an effect of a key parameter for mitigating worm damage in 

enterprise networks. 

 

Scopes of Research 

 

The scopes of this research are: 

 

1.  The proposed framework handles with unknown scanning worms of which 

they target to infect desktop computers in enterprise networks. 

2.  The framework is applied to desktop computers that comprise the majority of 

hosts in the enterprise networks. 
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LITERATURE REVIEW 

 
Worm Taxonomy 

  

The general behavior of worms (Ellis, 2003; Kenzle and Elder, 2003; Weaver et 

al., 2003; Wegner et al., 2003) includes three processes: scanning, exploiting, and 

propagating. The scanning is the process of finding and targeting vulnerable hosts to 

attack. The worms automatically execute and exploit hosts via vulnerable services or 

system bugs. This process may destroy host resources or degrade system performance. 

The propagation is then activated to transfer codes to other hosts that are new targets. 

These three processes are shown in Figure 1. 

 

 
 

Figure 1  The general behaviour of computer worms. 

 

In this research, we distinguish between worms and viruses in that the latter 

infect otherwise non-mobile files and therefore require some sort of user action to abet 

their propagation. In order to understand and countermeasure with the worm threat, it is 

potentially necessary to understand the worm types, payloads, and attackers. Weaver et 
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al. (2003) propose the taxonomy of computer worms based on several factors: target 

discovery, carrier, activation, payloads, and motivations. 

 

Target discovery represents the mechanism by which a wom discovers new 

target to infect. The carrier is the mechanism that the worm uses to transmit onto the 

target. Activation is the way by which the worm operates and performs some actions on 

the target. Payloads are the additional codes that the attacker may use to accomplish the 

goal. Finally, worm attacks can be grouped by the motivation of different attackers. The 

taxonomy elements are shown in Figure 2. 

 

 
 

Figure 2  Worm taxonomy elements. 

 

1.  Target Discovery

 

Worms must first discover that a machine exists before infecting the host. There 

are a number of methods for discovering a new target for infection: scanning, external 

target lists, pre-generated target lists, internal target lists, and passive monitoring. 

Worms can also use a combination of these methods to discover hosts. 

 

Scanning is the process of address identification for vulnerable hosts. Two 

simple strategies of scanning are sequential and random scanning. Sequential scanning 

performs scanning through address block using an order of address set. Random 
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scanning, on the other hand, works on finding an address randomly. The speed of 

scanning relies on the density of vulnerable hosts, the design of scanner, and the ability 

of gateway to handle the communication. 

 

Pre-generated target list is the methodology for finding a new target host. The 

attacker can obtain a target list in advance, creating a “hitlist” of probable victims 

(Staniford et al., 2002). A small hitlist worm can accelerate a worm, while a complete 

hitlist can create a “flash worm” that can infect all targets rapidly. There is no evidence 

to confirm the availability of hitlist worm in the wild today. 

 

Externally generated target list is performed by the “metaserver”. The 

metaserver maintains lists of servers that are currently active. For example, the 

Gamespy (Weaver et al., 2003) is the server that maintains a list of servers for several 

different games. This technique could be used to speed the worm spread for attacking 

web servers, for example, by using Google as a metaserver in order to find other web 

servers to attack. Fortunately, this method is not seen in the wild. 

 

Internal target list is done by the list of host application. Some applications 

maintain the list of server for configuration. The internal target list may generate 

“topological worms”, which search for local information to find new victims. For 

instance, the Morris worm used topological techniques including /etc/hosts and other 

source files to find new victims. 

 

Passive worms do not actively search for new victims. They wait for potential 

victims to contact them or monitor user behavior to discover new targets. Contagion 

worm (Staniford et al., 2002) is the example of passive worm that monitors the traffic 

to search for new victims. 
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2.  Carriers

 

Worms use different carrier methods to propagate from machine to machine. 

The distribution mechanisms are: self-carried, second channel, and embedded. A worm 

can either actively spread itself, or it can be carried along as normal communication. 

 

A worm propagates itself as part of the infection process. This methodology 

appears in self-activating scanning or topological worms. Some passive worms, such as 

CRclean (Kern, 2001), also use self-carried propagation. The next worm type based on 

carrier is a worm that uses second channel to complete the infection. For example, 

Blaster requires a second channel for communication. It uses TFTP to transfer code to 

the next machine. 

 

An embedded worm propagates itself by embedding the code onto a part of 

normal communication. Therefore, the intrusion detection or monitoring tool cannot 

detect the anomalous behavior from network traffic. The contagion method is an 

example of a passive worm that uses embedded propagation. 

 

3.  Activation

 

A worm can be activated by several means: human activation, human activity-

based activation, scheduled process activation, and self-activation. Some worms can 

arrange to be activated nearly immediately whereas others may wait days or weeks to 

be activated. This relies on the design of worm program. 

 

Human activation is the slowest method for running the worm program. This 

approach can be performed by social engineering that is the common technique to 

convince a user to execute the code. However, in this research, a malcode that is 

activated by human is not regarded as a worm.  

 

Human activity-based activation can be used to activate a worm. This approach 

activates the execution when the user performs some activities that the worm is 
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configured to be triggered. Scheduled process activation allows some worms to activate 

their executions by scheduling the time to run. 

 

Self-activation can be used in the very fast worms. The activation is initiated by 

exploiting the vulnerabilities in services. This intends to spread as fast as possible. 

Code Red is the well-known example of self-activation worm in the Internet.  

 

4.  Payloads

 

A worm can carry routines or parts of codes (payloads) to perform some 

specific operation on hosts during execution. Different worms contain a variety of 

payloads. These are examples of payloads have been seen in the wild (Weaver et al., 

2003): nonfunctional, internet remote control, spam-relays, HTML-proxies, Internet-

DOS, data collection, access for sale, data damage, physical-world remote control, 

physical-world DOS, physical-world reconnaissance, physical-world damage, and 

worm maintenance. 

 

Nonfunctional payload worm contains nonexistent payload. Internet remote 

control opens a privilege backdooor on victim machines to control remotely. Spam-

relay worm creates an open-mail relay for use by spammers. HTML-proxy worm can 

redirect web requests to randomly selected proxy machines. Internet DOS is a well-

known payload for high damaging. Data collection worms retrieve and collect sensitive 

data of hosts during propagations. 

 

Access for sale payload allows remote access to specific victim machines for 

paying customers. Data damage payload erases or modifies data of victim machines. 

Physical-world remote control payload can affect non-Internet devices such as 

supervisory control and data acquisition (SCADA) system. In addition, Physical-world 

DOS payload performs the denial of service in system such as 911 dial emergency 

service. 
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Physical-world reconnaissance payload conducts reconnaissance for non-

Internet based attacks such as to scan telephone numbers for answering modems. 

Physical-world damage worm infects computers and destroys some physical object in 

machines. Finally, worm maintenance payload helps the update mechanism for other 

worms. 

 

5.  Motivations

 

It is very important to understand the motivation of those who launch the 

attacks. Worm creators and attackers develop and release malcode by some motivations 

and objectives: experimental curiosity, pride and power, commercial advantage, 

extortion and criminal gain, random protest, political protest, terrorism, and cyber 

warfare. 

 

IloveYou (CERT/CC, 2000) is the example of worm with the experimental 

curiosity motivation. For pride and power motivation, some attackers desire to acquire 

power and show off the knowledge and ability to infect others. Commercial advantage 

is the important motivation for disrupting many companies that rely on Internet-based 

transactions. To search for credit-card information is the example of extortion and 

criminal gain motivation.  

 

Random protest is the motivation to disrupt networks and infrastructure. In 

addition, political protest motivates attackers to publicize a specific message relating to 

politic objective. The objective of terrorism worm makes high impact to the nation in a 

large scale. Finally, cyber warfare is the motivation for performing the war on Internet 

infrastructure among countries or organizations. 
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Worm Models 

 

In order to defend against future worms, we need to understand various 

properties of worms: the propagation pattern during the lifetime of worms, the impact 

of patching, the awareness and human countermeasures, the impact of network traffic 

and topology, etc. 

 

Wang et al. (2000) investigated several factors influencing worm infection: 

system topology, node immunity, temporal effects, propagation selection, multiple 

infections, and stochastic effects. This simulation study considered hierarchical and 

cluster topologies with the selective immunizations of hosts. Both topologies support 

critical infrastructure that contrasts with the fully connected, open nature of the 

Internet.  

 

Ellis (2003) describes an analytical framework for worm infection in relational 

description and attack expression. The four conditions for infection are targeting, 

vulnerability, visibility, and infectability, which are used to calculate the set of 

infectable hosts.  

 

An accurate Internet worm model provides insight into worm behavior. It aids 

in identifying the weakness in the worm spreading chain and provides accurate 

prediction for the purpose of damage assessment for a new worm threat. Several studies 

attempt to estimate the damage and predict the spread of worms. There are several 

approaches to model the spread of worms in networks, principally the Epidemiological 

model (Kephart and White, 1991; Kephart and White, 1993), the two-factor worm 

model (Zou et al., 2002), and the Analytical Active Worm Propagation (AAWP) model 

(Chen et al., 2003).  

 

The Epidemiological model is a simple model that explains the spread of 

computer viruses by employing biological epidemiology. The number of infected hosts 

depends on vulnerability density and infection rate. In this model, the infection initially 

grows exponentially until the majority of hosts are infected, then the incidence slows 
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toward a zero infection rate. The Epidemiological model can be described by the 

following equation. 

 

( ) ( ) ( )[ ]tJNtJ
dt

tdJ
−= β  (1) 

 

Where J(t) is the number of infected hosts at time t. N is the size of population, 

and  β is the infection rate. At beginning, t = 0, J(0) hosts are infectious and the other N 

= J(0) hosts are all susceptible. Let a(t) = J(t)/N be the fraction of the population that is 

infectious at time t. The number of infected hosts shows in Figure 3. 

 

 
 

Figure 3  Classical simple epidemiological model. 

 

The two-factor worm model describes the behavior of worm based on two 

factors: the dynamic countermeasure by ISPs and users, and a slowed down worm 

infection rate. This model explains observed data for Code Red and the decrease in 

scanning attempts during the last several hours before it ceased propagation. The two-

factor worm model can be described by the following equation. 
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( ) ( ) ( ) ( ) ( )[ ] ( ) ( )
dt

tdRtItQtItRNt
dt

tdI
−−−−= β  (2) 

 

Where S(t) is the number of susceptible hosts at time t. I(t) is the number of 

infectious hosts at time t. R(t) is the number of removed hosts from the infectious 

population at time t. Q(t) is the number of of removed hosts from susceptible 

population at time t. N is the total number of hosts under consideration, N = I(t) + R(t) + 

Q(t) + S(t). β(t) is the infection rate at time t. The two-factor worm model shows in 

Figure 4. 

 
 

Figure 4  Two-factor worm model. 

 

The AAWP model extends the model of worms that employ random scanning to 

cover local subnet scanning worms. Parameters in this model include the number of 

vulnerable machines, size of hitlists, scanning rate, death rate, and patching rate.  

AAWP better models the behavior of Code Red II than previous models. The AAWP 

model can be described by the following equation.  
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( ) ( )[ ]
⎥
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⎟
⎠
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isn

i
i

ii nNpnpdn 321 2
11111  (3) 

 

Where i ≥ 1 and n0 = h. n is the number of infected machines. N is the number 

of vulnerable machines, h is the size of hitlists, s is the scanning rate, d is the death rate 

and p is the patching rate. From the equation, as the size of hitlist increases, it takes the 

worms less time to spread. In addition, as the patching rate grows, the spread of active 

worms slows down. Figure 5 shows the effect of histlists size for the AAWP model. 

 
 

Figure 5  The AAWP model. 

 

Unlike the above models, our approach does not require observing variables 

during attacks. Therefore, it can be used to predict worm damage before the attack 

occurs. The model does not rely on attack type and configuration of the worm program.  
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Such factors are: (1) scanning rate in the Epidemiological and the AAWP 

models and (2) size of hitlists in the AAWP model. In addition, our prediction does not 

depend on human factors that are hard to simulate in the real world: (1) patching rate in 

the AAWP model and (2) dynamic countermeasures by ISPs and users in the two-factor 

worm model.  

 

Fuzzy Decision and Control 

 

The basic idea of fuzzy decision is to develop the measurements of different 

factors, and to predict the worm damage by obtaining and fusing the values from these 

different measurements. There are many ways for information fusion, but in this 

problem, fuzzy decision must be better than other methods, because the measures are 

uncertain and imprecise, and human experts can have some intuition or knowledge on 

the characteristics of measures that relate to worm behavior (Jang, 1997). 

 

Two important tasks of fuzzy decision that is often difficult and time consuming 

are the determination of membership functions and the derivation of production rules. 

Traditionally experts can perform these but it is not always the most suitable method. 

Several techniques, such as inductive reasoning (Kim and Russell, 1989; Kim and 

Russell, 1993; Kim, 1997), neural networks, and genetic algorithms, have been used to 

generate membership functions and production rules.  

 

In perform rule generation; a “table-lookup” scheme for a numerical input-

output pair was suggested (Wang, 1997). This extracts a rule for each input-output pair, 

however, determines the partitions of the domain interval and membership functions in 

an ad hoc manner. Artificial intelligence (AI) and neural networks have also been 

applied to extract rules from numerical data; however, they require that the number of 

divisions in the input variable be defined in advance (Lin and Lee, 1991).  

 

In inductive reasoning, as long as the data is not dynamic the method will 

produce good results (Ross, 1997). Inductive reasoning method uses the entire data set 

to formulate membership functions and production rules and, if the data is not large, 
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this method is computationally inexpensive. Compared to neural networks and genetic 

algorithms, inductive reasoning has an advantage in the fact that the method may not 

require a convergence analysis, which in the case of neuron networks and genetic 

algorithms is computationally very expensive. 

 

Membership functions and production rules can be accommodated by using the 

essential characteristic of inductive reasoning. The induction is performed by the 

entropy minimization principle. The main idea behind membership function and 

production rule generation is the entropy principle. Analog values of a parameter in the 

sample data can be clustered.  

 

Optimal division of the analog space will yield fuzzy terms for each parameter; 

the partition point (the entropy minimum point) will decide the range of the 

membership functions. Using the same method, but with binary parameter values, fuzzy 

production rules can be drawn. Rule extraction is performed over each individual fuzzy 

term. The main purpose of entropy minimization in information theory is to determine 

the gain or loss of information in a given data set. This information quantity compares 

the contents of available data to some prior state of expectation.  

 

In general, the more probable the event is, the lesser the information content is 

if and when the event occurs. In other words, when information gain is minimized, we 

reach an optimal point. A quantity of information is defined as proportional to the 

negative of the logarithm of probability.  

 

Entropy is defined as the expected value of information. The entropy of a set of 

possible outcomes of a trial in which one and only one outcome is true is expressed as 

the summation of the products of all probabilities and their logarithms. Therefore, the 

expected value of the information to be gained by observing xi can be expressed as 

follows (with Pi = P(xi)): 

 

( ) ( ) ( )[ ]iiiiii PPPPkxxS −−+−= 1ln1ln~,  (4) 
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The entropy of all the samples (N) is expressed by: 

 

( ) ([ ]∑
=

−−+−=
N

i
iiii PPPPkS

1
1ln1ln )  (5) 

 

This entropy is smallest when the amount of information that we can expect to 

gain from further observation is least. Therefore, given all available information, it is 

possible to cluster using the minimum entropy principle. In entropy minimum state, all 

of the information has been extracted from the available sample data. This observation 

is very important to the algorithmic approach: when samples are the only source of 

information, maximum extraction of information is essential for a process. Therefore, 

the entropy principle is a useful tool for optimal clustering in classification problems.  

 

To adjust the parameter for minimizing worm damage, we employ the concept 

of fuzzy feedback control. In control theory, there has been much interest in using 

control methods for adjusting parameters. Some examples are the control of 

performance metric (Ogata, 1997), queue length in Lotus Note (Parekh et al., 2002), 

and buffer length in Internet routers (Misra et al., 2000). All of these methodologies 

require the knowledge of constructing functions to control parameters.  

 

The fuzzy control paradigm is based on interpolative and approximate reasoning 

(Phillips and Harbor, 1996). It is a generally model-free paradigm. This method uses 

fuzzy rules to encode knowledge, thereby avoiding difficulties with skills-intensive 

consideration such as the worm signature construction, the worm detailed design.  

 

Alternatively, artificial neural networks are based on analogical learning and try 

to learn the nonlinear decision surface through adaptive and converging techniques. 

However, this method requires high data availability of inputs and outputs, and the 

consideration of performance criteria in convergence analysis. 
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MATERIALS AND METHODS 

 

Materials 

  

1.  Enterprise Networks

 

The enterprise network consists of a class C heterogeneous IP network 

subdivided into three wired subnets and one wireless subnet. The equipments for the 

configuration are as follows. 

 - 1 Router 

 - 6 Fast Ethernet switches 

 - 2 IEEE 802.11b wireless access points 

  

2.  Desktop Computers

 

The enterprise network consists of 200 computer hosts running mixture 

operating systems as follows. 

            - Windows NT operating system 

  - Windows 2000 operating system 

    - Windows XP operating system 

  - Solaris operating system 

  - Linux operating system 

  

3.  Control Stations

 

The control stations consist of the attacker, analytical, and monitoring stations 

as follows. 

      - 1 Attacker with W32.Blaster.Worm 

- 1 Attacker with W32.Blaster.B.Worm 

- 1 Attacker with W32.Sasser.Worm 

- 1 Attacker with W32.Sasser.B.Worm 

 - 1 Analytical host with MATLAB 
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- 4 Protocol analyzers 

- 1 Monitoring host 

  

Methods 

 

The aim of the framework is to analyze the factors influencing worm infection, 

to predict the number of infected nodes, and to mitigate the damage due to worm 

infection in enterprise networks. The framework is mainly composed of three parts: 

factor analysis, damage prediction, and parameter tuning. Factor analysis performs the 

analysis of parameters that influence worm infection. Damage prediction is in charge of 

predicting the number of infected nodes due to worm attacks. Parameter tuning 

optimizes a key factor to mitigate the damage. The framework is shown in Figure 6.  

 

 
 

Figure 6  A framework for worm damage mitigation. 

 

In this framework, we initially study the enterprise network, scanning worm, 

worm damage, and network full infection time. The enterprise network is the 

heterogeneous IP network consisting of a number of subnetworks. The scanning worm 

assumption is that worms target to exploit vulnerabilities of desktop computers that 

comprise the majority of hosts in the enterprise network. The scanning worms require 

no user intervention for their execution.  



 
20

The term worm damage is defined as the number of infected hosts in the 

enterprise network. Finally, the network full infection time is the time point at which 

the number of infected hosts is saturate. In other words, when the increasing rate of 

infection is zero, we reach the time of network full infection.  

 

1.  Factor Analysis

 

The general behavior of worms includes three processes: scanning, attacking, 

and propagating. Parameters that relate to these three processes are defined: openness, 

homogeneity, and trust (Sanguanpong and Kanlayasiri, 2003; Kanlayasiri et al., 2004).  

The concept behind this idea is to define parameters that support the general worm 

processes. Openness describes the quantity of hosts that can be scanned; homogeneity 

defines the area of infection – the more hosts with the same vulnerability, the more 

number of infected hosts.  

 

Finally, trust determines relations among hosts that worms use for propagation. 

Three factors are extracted from the host and network configuration: openness (O), 

homogeneity (H), and trust (T). The worm damage (D) can be given as a function of 

these factors: 

 

( )THOD ,,Γ=  (6) 

 

1.1  Openness 

 

       Openness describes the vulnerability of enterprise networks to scanning by 

worms. Typically, machines that are hidden from scanning by worms are safer than 

visible ones. The visibility can be configured by Network Address Translation (NAT) 

or firewall technology.  Openness can be measured by the ratio of the number of hosts 

that can be scanned by any host to the total number of hosts by: 
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n

e
O j

jS∑
=

)(ξ

 (7) 

 

where ej is the collection of hosts on subnetwork  j, sξ  is a function that selects 

hosts in ej that can be connected to via TCP, UDP or ICMP from outside the network j, 

and n is total number of hosts on the network.  For example the network E shown in 

Figure 7, if the gateway G1 configures NAT for the network E3 then the enterprise 

network E has O = 0.66. 

 

1.2  Homogeneity 

 

       Homogeneity measures the density of hosts that can be attacked by a worm. 

When a worm attacks a host, it will exploit other hosts through the same vulnerability. 

In this study, we assume that the operating system, rather than application software, 

represents the mode of vulnerability. Therefore, H is defined as the homogeneity of 

operating system by hosts on the network: 

 

)(max1 kn
n

H
Kk∈

=  (8) 

 

where K is a set of operating system types on the network, n(k) is the number of 

hosts running operating system k, and n is total number of hosts on the network. For the 

example network E shown in Figure 7, b operating system has the maximum number of 

hosts, H = 0.53. 

 

1.3  Trust 

 

       Trust is a relationship between a trustor and a trustee. The trustor allows the 

trustee to use, manipulate its resources, or influence the trustor’s decision to use 

resources or services provided by the trustee. The trust relationship can be represented 

by a directed graph.  
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We use a nondeterministic finite-state automaton M to describe the trust 

relationship of desktop computers in the enterprise network, where M = (Q, P, f, q0, F) 

consists of a set Q of states, an input alphabet P, a transition function f between states Q 

which depends on the input, a starting state q0, and a subset F of Q consisting of the 

final states.  

 

The set of states Q is a group of machines in enterprise network. The function f 

represents the propagation of a worm. q0 is the starting node that the worm first exploits 

and F contains a set of possible attacked nodes. The input for function f is assumed to 

be a constant. Then, T can be calculated by: 
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(9) 

 

where n(F | qo = i) and n are the number of elements in the set F with the 

starting node i and the number of elements in the set Q, respectively. In Figure 7 

illustrates the calculation of trust. Using the equation, T = 0.71. Again, Figure 8 and 

Table 1, the directed graph of nodes illustrates the example of trust relationship of 

enterprise network. Using the equation, T = 0.17.  

 

 
 

Figure 7  Extracted parameters of enterprise network. 
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Figure 8  An automaton represents trust. 

 

Table 1  The number of possible infected nodes 

 

 
Start node (qo) 

 

 
Possible infected nodes (F) 

 

 
Number of possible 
infected nodes, n(F) 

 
 

N1 
 

N2
 

N3
 

N4
 

N5
 

N6
 

N7
 

 
{N1, N2, N3, N4, N5, N6, N7} 

 
{N1, N2, N3, N4, N5, N6, N7} 

 
{N3, N5, N6} 

 
{N1, N2, N3, N4, N5, N6, N7} 

 
{N3, N5, N6} 

 
{N3, N5, N6} 

 
{N1, N2, N3, N4, N5, N6, N7} 

 
7 
 
7 
 
3 
 
7 
 
3 
 
3 
 
7 
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2.  Damage Prediction

 

The prediction uses fuzzy rule-based system to construct the decision surface. In 

fuzzy decision system, three steps are performed: fuzzification, inference, and 

defuzzification. The fuzzy rule-based system is shown in Figure 9. 

 

 

Input Output

Fuzzification Defuzzification
Membership function

Rule Base

Figure 9  Fuzzy rule-based system. 

 

The fuzzy sets for inputs and output are as follows. 

 

- Input: evaluation factors (O, H, T)  

   Fuzzy set: {Low, Middle, High} 

- Output: worm damage (D) 

   Fuzzy set: {Normal, Critical} 

 

The exact partitioning of input and output spaces depends upon membership 

functions. Triangular shapes specify the membership functions of inputs by inductive 

reasoning. The damage threshold, which is defined by an organization, divides the 

output into two classes. Expert knowledge is used to generate production rules.  

 

For fuzzy inference, we use the minimum correlation method, which truncates 

the consequent fuzzy region at the truth of the premise. The centroid defuzzification 

method is adopted to yield the expected value of the solution fuzzy region.  
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2.1 Fuzzification 

 

              Membership functions can be accommodated by using the essential 

characteristic of inductive reasoning. The induction is performed by the entropy 

minimization principle. A key goal of entropy minimization analysis is to determine the 

quantity of information in a given data set. The entropy of a probability distribution is a 

measure of the uncertainty of the distribution.  

 

      To employ the entropy minimization for generating membership functions 

of inputs, it is based on a partitioning or analog screening. It draws a threshold line 

between two classes of sample data as in Figure 10. This classifies the samples while 

minimizing the entropy for an optimum partitioning. We select a threshold value x in 

the range between x1 and x2. This divides the range into two regions, [x1, x] and [x, x2] 

or p and q, respectively.  

 

 
 

Figure 10  Basic concept of entropy minimization. 

 

The entropy for a given value of x is 

 

( ) ( ) ( ) ( ) ( )xSxqxSxpxS qp +=
 

(10) 

 

where 
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( ) ( ) ( ) ( ) ( )[ ]xpxpxpxpxS p 2211 lnln +−=
 (11) 

( ) ( ) ( ) ( ) ( )[ ]xqxqxqxqxSq 2211 lnln +−=
 (12) 

 

and where  

pk(x) and qk(x) are the conditional probabilities that the class k sample is in the 

region [x1, x1+x] and [x1+x, x2], respectively. 

p(x) and q(x) are probabilities that all samples are in the region [x1, x1+x] and 

[x1+x, x2], respectively. 

p(x) + q(x) = 1  

We calculate entropy estimates of pk(x), qk(x), p(x), and q(x), as follows: 

 

( ) ( ) ( ) ( ) ( )[ ]xpxpxpxpxS p 2211 lnln +−=
 (13) 

( ) ( ) ( ) ( ) ( )[ ]xqxqxqxqxSq 2211 lnln +−=
 (14) 

( ) ( ) ( ) ( ) ( )[ ]xpxpxpxpxS p 2211 lnln +−=
 (15) 

( ) ( ) ( ) ( ) ( )[ ]xqxqxqxqxSq 2211 lnln +−=
 (16) 

 

where  

nk(x) is the number of class k samples in [x1, x1+x] 

n(x) is the total number of samples in [x1, x1+x] 

Nk(x)is the number of class k samples in [x1+x, x2] 

N(x) is the total number of samples in [x1+x, x2] 

n is the total number of samples in [x1, x2] 

 

The value of x in the interval [x1, x2] that gives the minimum entropy is chosen 

as the optimum threshold value.  This x divides the interval [x1, x2] into two sub-

intervals. In the next sequence we conduct the segmentation again, on each of the sub-

intervals; this process will determine secondary threshold values.  
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The same procedure is applied to calculate these secondary threshold values. 

Fuzzy sets of inputs are defined by triangular shapes with these optimum threshold 

values. The membership functions of inputs and output are displayed in Figure 11. 

 

 
 

Figure 11  The membership functions of inputs and output for damage  

                         prediction. 

 

2.2  Inference 

 

       A rule base is a set of production rules that are expressed as follows. 

       - Rule 1: If (x1 is A1
1) and (x2 is A1

2) and ... and (xw is A1
w),  

then y is B1

      - Rule 2: If (x1 is A2
1) and (x2 is A2

2) and ... and (xw is A2
w),  

then y is B2
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. 

. 

. 
 

      - Rule  z: If (x1 is Az
1) and (x2 is Az

2) and ... and (xw is Az
w),  

then y is Bz

 

      Here, xj (1 ≤ j ≤ w) are input variables, y is an output variable, and Ai
j and Bi 

(1 ≤ i ≤ z) are fuzzy sets that are characterized by membership functions. The numbers 

of input and output variables are three and one, respectively. Total 27 production rules 

are generated by expert experiences. The rules are shown in Figure 12. 

 

 
 

Figure 12  The production rules for fuzzy decision. 

 

2.3  Defuzzification 

 

              The results of fuzzy decision are defuzzified to numerical values (the 

number of infected hosts) as shown in Figure 13, 14, and 15. In these graphs, the Z-axis 

values are the fraction of infected hosts. The values on X-axis and Y-axis represent (1) 

H and T in Figure 13, (2) O and T in Figure 14, and (3) O and H in Figure 15. 

Comparison of the three graphs for a given the maximum value (1.0) of O, H, and T 
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shows the effect on worm damage. These surfaces show that the factors have different 

effects on the fraction of infected hosts over a broad range of values. 

 

 

z 
x 

y 

 

Figure 13  The decision surfaces of worm damage prediction when O = 1.0 

 

 

z 
x 

y 

 

Figure 14  The decision surfaces of worm damage prediction when H = 1.0 
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z 
x 

y 

 

Figure 15  The decision surfaces of worm damage prediction when T = 1.0. 

 

3.  Parameter Tuning

 

Worm propagation is the process of copying worm code to other machines as 

much as possible. This behavior accelerates the spread of worm to infection saturation 

in a very short time. A key parameter of host configuration that supports the 

propagation process is the trust relationship between hosts. Therefore, controlling trust 

may lessen the worm damage. We adjust a trust parameter using a fuzzy feedback 

control that employs rules incorporating qualitative knowledge of the effect of the 

parameter.  

 

An example of qualitative knowledge in worm propagation is “trust relationship 

among hosts has a convex downward effect on the network full infection time in the 

enterprise network”. Our studies using a real worm attack suggest that such a scheme 

can delay the network full infection time. Therefore, the mitigation of worm 

propagation has more time to proceed. 
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3.1  The effect of trust 

 

       As we know, the higher trust (T) is, the smaller network full infection time 

(Tf) is. In the best case, T should be zero, at which point Tf will be maximized. 

Unfortunately, T cannot be zero because some applications require trust relation for 

their operations. To demonstrate the effect of T on Tf, we conducted real attacks in 

which the value of T is varied. Figure 16 displays the relation between network full 

infection time and trust while openness and homogeneity are held fixed.  

 

       The squares indicate the average full infection times measured at different 

trust values in the network of 150 hosts. As can be seen, in the very small T, Tf is nearly 

constant because trust relation has not much effect for the propagation. On the other 

hand, if T is larger, Tf will be decreasing because the larger T creates more scanner 

hosts. Our proposed fuzzy feedback control is to estimate the appropriate T for the 

largest Tf. For example, in Figure 16 the appropriate T is the value in the interval of 0.2 

and 0.4.  
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Figure 16  The relation of network full infection time and trust. 
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3.2  Fuzzy feedback control 

 

       The architecture of the fuzzy feedback control system is shown in Figure 

17. The feedback loop operates in discrete time. The first component in the feedback 

loop is a monitor that measures the network full infection time or Tf. The next part is a 

differentiator whose output is the change in network full infection time (dTf) between 

the current and previous monitoring values.  

 

       Moving further along the feedback loop, there is the fuzzy controller that 

determines the change in trust for the next time interval. The fuzzy controller has two 

inputs: dTf and the change in trust of the prior time interval (dT*). The controller’s 

output is the change in trust for the next interval (dT). An integrator converts this output 

based on the prior T and the minimum trust requirement into an actual T which is 

applied to the enterprise network.  

 

 
 

Figure 17  Fuzzy feedback control system. 

 

The fuzzy controller is derived from expert knowledge to approximate and 

construct the control surface. The control system design is based on interpolative and 

approximate reasoning. Three steps are performed: fuzzification, inference, and 

defuzzification. The exact partitioning of input and output spaces depends upon 

membership functions. Triangular shapes specify the membership functions of inputs 

and output. The membership functions are shown in Figure 18.  
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The fuzzy sets for inputs and output are as follows. 

 

- Input: dTf, dT* 

  Fuzzy set: {Negative, Zero, Positive} 

- Output: dT  

   Fuzzy set: {Negative, Positive} 

 

 
 

Figure 18  The membership functions of inputs and output for fuzzy feedback  

             control system. 

 

Expert experiences are used to generate IF-THEN rules based on the knowledge 

of the relation between dTf and dT*. The qualitative knowledge in worm propagation in 

this study is “trust relationship among hosts has a convex downward effect on the 

network full infection time in enterprise network” as displayed in Figure 16.  
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A rule base is a set of production rules as in Figure 19. The dash and solid 

arrows of the graph describe IF and THEN parts of rules, respectively. The position 1, 

2, 3, and 4 are identical to the first, second, third, forth rules, respectively. For fuzzy 

inference, we use the minimum correlation method, which truncates the consequent 

fuzzy region at the truth of the premise. The centroid defuzzification method is adopted 

to yield the expected value of the solution fuzzy region. 

 

 
 

 
 

Figure 19  The production rules for fuzzy feedback control  

                  system. 
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RESULTS AND DISCUSSION 

 
The test environment consists of a class C heterogeneous IP network subdivided 

into three wired subnets and one wireless subnet (infrastructure mode) as shown in 

Figure 20. There are 200 hosts consisting of desktop computers and laptops running a 

mixture of Windows NT, Windows 2000, Windows XP, Solaris, and Linux operating 

systems. In this network, a router connects the four subnets with 6 Fast Ethernet 

switches and 2 IEEE 802.11b wireless access points.  

 

 
 

Figure 20  Test network architecture. 

 

The experiments aim to investigate the usefulness of parameters, to evaluate the 

performance of damage prediction, and to demonstrate the ability of parameter 

adjustment for delaying network full infection time. Blaster and Sasser, which attack 

the default configuration of desktop computers in enterprise networks and require no 

user intervention, are used in the experiments.  

 

Code Red and Slammer were not chosen because they target server application 

and attack the optional component of applications. Nimda was not selected since it 



 
36

requires user intervention for some modes of infection, hence its behavior is difficult to 

simulate.  

 

In the experiments, two variants of Blaster and two variants of Sasser randomly 

attack the test network. Infection experiments were performed for 192 different test 

configurations that are the combination of different values of three factors: O, H, and T. 

The openness value is varied by NAT for computers in subnets. The homogeneity is the 

density of hosts running Windows family. Finally, the configuration of file transfer and 

file sharing service is used to represent trust conditions. The minimum requirement of 

trust in this study is assumed to be 0.1. 

 

During worm execution, the number of infected computers is calculated at the 

average time of full infection for each test configuration. The fraction of infected nodes 

is translated into two classes using the damage threshold 0.3: Normal (D < 0.3) and 

Critical (D ≥ 0.3). The damage threshold is the condition defined by the organization.  

 

A total of 1,728 experimental results have been collected; of these, 864 are used 

for generating membership functions and the other 864 are for evaluating the 

performance of the damage prediction and parameter tuning. 

 

There are two main reasons that we perform real attacks rather than simulations. 

First, a real attack can provide the conditions of practical configuration setup, effects of 

environmental factors, and stochastic behaviors of attacks. The other reason is that it is 

useful to setup host populations as on real networks. One class C network can represent 

the actual address space of a small or medium enterprise network. We can directly 

observe the consequence of an attack in a realistic topology. 
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Usefulness of Factors    

 

We first study the full infection condition of real attacks in enterprise networks. 

Worms were released in two networks of 200 hosts: real network and ideal network. 

The first setup is a network with the configuration of factors O, H, and T. The later is a 

network without any configuration of these factors.  

 

As can be seen from Figure 21, the hosts in the real network are not all infected. 

Some hosts are protected from attacks by their configuration parameters. In addition, 

the network full infection times are the time point of 19 and 21 (the time of zero 

increase of infection) for the real network and the ideal network, respectively.  
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Figure 21  The network full infection condition. 

 

In general, there is no exact answer to the question of which factors are most 

influential for infection.  It is believed that the factors that influence the worm infection 

significantly can be used to predict worm damage. To observe the effect of a single 

variable on the infection, Figure 22, 23, and 24 show the number of infected hosts (Y-

axis) as a function of one variable when the other two are held fixed. As can be seen, 
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the number of infected hosts increases as the factor value increases. This means that the 

proposed factors effect the number of infected hosts significantly. 

 

 
 

Figure 22  Variation of worm damage according to openness. 

 

 
 

Figure 23  Variation of worm damage according to homogeneity. 
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Figure 24  Variation of worm damage according to trust. 

 

We also consider the factors that are useful for classifying the worm damage 

into two classes. To study this, we analyze the Receiver Operating Characteristics 

(ROC) curve (Van, 1968) that presents the variation of true positives (Y-axis) 

according to the change of false positives (X-axis). Figure 25, 26, 27, and 28 show the 

ROC curves with respect to the different damage threshold of 0.3, 0.4, 0.5, and 0.6, 

respectively.  

 

The ROC curve indicates that the factor is effective if its curve lies above the no 

discrimination line. In addition, we can compare the significance of factors for binary 

classification by comparing the area under their ROC curves. The greater the area the 

more effective the factor is for classification. As can be seen, most factors are above the 

no discrimination line. Homogeneity is likely the most significant factor in 

classification for all damage thresholds in this study.  
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Figure 25  Factor effect of classification with the  

                                                 damage threshold 0.3. 

 

 
 

Figure 26  Factor effect of classification with the  

                                                damage threshold 0.4. 
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Figure 27  Factor effect of classification with the  

                                                 damage threshold 0.5. 

 

 
 

Figure 28  Factor effect of classification with the  

                                                 damage threshold 0.6. 

 

 



 
42

Figure 29 and 30 show ROC curves for combinations of factors with a damage 

threshold 0.3. Figure 29 shows ROC curves of the combinations O+H, O+T, and H+T. 

Figure 30 shows the ROC curve of the combination O+H+T. Comparison of all ROC 

curves shows that a combination of factors can produce a much more effective 

classification than any single factor. O+H and O+H+T are the most effective 

combinations of factors for classification in this study. 

 

 
 

Figure 29  Combination of two factors with the damage   

       threshold 0.3. 
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Figure 30  Combination of three factors with the damage   

      threshold 0.3. 

 

Performance of Damage Prediction   

  

As we know, it is impossible to know the behavior of new worms. Therefore, 

the prediction accuracy cannot be measured directly from data of new worm signatures. 

In our assumption, the prediction is based on the prior knowledge of two well-known 

worms and we use these signatures to test the accuracy of prediction. We understand 

that it cannot guarantee the prediction accuracy of the prediction but with all available 

information, this is the best way to evaluate the accuracy. 

 

The experiments were conducted with different population sizes and network 

architectures. Two architectures are analyzed: wired network and wireless network 

(infrastructure). The output of the predictor is the number of infected hosts. We can 

analyze the performance of the predictor by comparing the predicted number of 

infected hosts with the actual number. The prediction accuracy of the model is 

measured by the root mean squared error (RMSE) and the mean absolute error (MAE). 

RMSE is the most commonly used measure of accuracy of prediction. If this number is 

significantly greater than MAE, it means that there are test cases in which the 
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prediction error is significantly greater than the average error. RMSE is calculated by 

equation:  

 

( ) ( ) ( )
n
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RMSE nn

22
22

2
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=  (17) 

 

MAE is the average of the difference between predicted and actual value in all 

test cases; it is the average prediction error that can be calculated by: 

 

n
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...2211

 (18) 

 

where a is the actual value, c is the predicted value, and n is the total number of 

test cases.  

 

Table 2 shows that there is no significant difference between RMSE and MAE 

for three network architectures with a damage threshold 0.3. We can observe that the 

network size does not have much effect on prediction accuracy for the range of 

networks used in this study.  

 

Table 2  The prediction accuracy RMSE (MAE)  

 

 
Number of nodes 

 

 
 

Network architectures 
 

100 
 

 
150 

 
200 

 
Wired networks  

 
Wireless networks  

 
Heterogeneous networks 

 

 
0.083 (0.068) 

 
0.111 (0.080)  

 
0.135 (0.089) 

 
0.064 (0.052)  

 
0.149 (0.108)  

 
0.116 (0.076) 

 
0.088 (0.071)  

 
0.108 (0.081)  

 
0.145 (0.099) 
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The fraction of infected nodes is divided into two categories: Normal (D < 0.3) 

and Critical (D ≥ 0.3). Table 3 shows the prediction rate (true-positive rate) and false-

positive error rate of heterogeneous networks with the damage threshold 0.3. As can be 

seen, the prediction rate is more than 83% for all population sizes. The greater network 

size does not imply a higher false-positive error rate because it can be better than the 

smaller network size. 

 

Table 3  The prediction rate and false-positive error rate 

 

 
Number of nodes 

 

 
 

Prediction accuracy 
 

100 
 

 
150 

 
200 

 
Prediction rate  

 
False-positive error rate 

 
90.91% 

 
0% 

 
83.33% 

 
4.16% 

 
90.91% 

 
4% 

 
 

 

Performance of Parameter Tuning   

  

In general, the state of worm attack in a network can be described as in Figure 

31 – hosts that are vulnerable to a worm are called susceptible hosts; hosts that have 

been infected and can infect others are called infectious hosts; hosts that are immune or 

dead such that they cannot be infected by a worm are called removed hosts.  

 

The SIS (susceptible – infectious – susceptible) model studies the spread of 

computer viruses, which assumes that a cured computer can be reinfected (Kephart and 

White, 1993). It is not suitable for modeling worm propagation since once an infected 

computer is patched or unserviced; it is more likely to be immune to this worm.  

 

In this research, however, the SIS model is suitable for our experiment because 

we assume that there is no system patch released at that time of infection – the removed 
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state is not considered. Each attack event operates in discrete time as in the susceptible 

– infected – susceptible model. For different trust configurations, the worms are 

released randomly and we monitor the network full infection time.  

 

These infected hosts are then cleaned and the worm is released again for the 

next cycle of the experiment. This attack cycle is similar to the situation of new worm 

spread in an organization. Even though no patches are available for systems, the 

operating system on the infected nodes is reinstalled so that the organization can 

continue its business. Hence, these hosts are still at risk from this worm. 

 

 
 

Figure 31  State diagram of SIS model. 

 

Figure 32 and 33 show the performance of the fuzzy controller in a wired 

network of 150 hosts. Figure 32 shows the effect of full infection time under a 

stationary trust value. The top plot shows the trust value of 0.6. As can be seen, the full 

infection time is changing due to the stochastic behavior of worm attack.  

 

Figure 33 shows the fuzzy feedback controller seeks the trust value to delay the 

full infection time for the network. The top plot shows the value of trust. We see the 

trust value starts at 0.6 and keeps decreasing until it converges to a value that provides 
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higher full infection time. The full infection time of the network gradually increases 

from 31 to 47 minutes in 10 cycles of attacks. 
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Figure 32  Full infection time with fixed trust in wired network. 
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Figure 33  Full infection time with fuzzy control in wired network. 

 

We also study the trust parameter tuning in the wireless network of 50 hosts. 

Figure 34 shows the effect of full infection time under a stationary trust value 0.8.  The 

performance of fuzzy controller shows in Figure 35. The trust values are changed in 

three steps: 0.8, 0.4, and 0.2. The full infection time gradually increases to 22 minutes. 

There is no significant difference in the performance of fuzzy feedback control between 

wired and wireless networks in this study.  
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Figure 34  Full infection time with fixed trust in wireless network. 
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Figure 35  Full infection time with fuzzy control in wireless network. 
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CONCLUSION 

 

The proliferation of computer communication makes wide usage of data 

processing and raises concerns about computer and network security. Many types of 

intrusions attempt to subvert hosts via networks. Currently, worms are a key vector of 

computer attacks that produce great damage across Internet and enterprise networks.  

 

There are three broad strategies for limiting attacks by worms: prevention, 

treatment, and containment. Prevention is concerned with how to reduce the size of the 

vulnerable population. Treatment includes measures to detect and eradicate worms. 

Containment is a methodology to analyze and control intrusive communications.  

 

However, none of these strategies are effective and rapid enough to adequately 

mitigate worm propagation. Therefore, it is extremely important for organizations to 

better understand the behavior of worm infections in order to assess their vulnerability 

and adopt a strategy to minimize the damage due to worm attacks.    

 

 This research describes a formal framework to mitigate the damage due to 

worm infection in enterprise networks. The framework includes analyzing the effect of 

parameters influencing worm infection, predicting the number of infected nodes, and 

optimizing key parameters to mitigate the damage. Worm infection depends upon 

several factors. However, there is no exact answer to the question of which factors are 

most influential for infection.  

 

These factors can be used to the prediction and mitigation of worm damage. The 

general behavior of worms includes three processes: scanning, attacking, and 

propagating. Parameters relating to these three processes are defined: Openness, 

Homogeneity, and Trust.  Openness describes the quantity of computer systems that can 

be targeted; Homogeneity defines the area of infection – the more systems with the 

same vulnerability, the more number of infected populations. Finally, Trust determines 

relations among computer systems that worms use for propagation.  
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Prediction of the number of infected nodes is performed by developing 

measurements of these different factors and then fusing them by a fuzzy decision 

process. The optimization of key parameters to mitigate the worm damage is performed 

by automatic parameter tuning using a fuzzy controller that employs rules incorporating 

qualitative knowledge of the effect of these parameters.  

 

Fuzzy logic is utilized for prediction and optimization in this problem because 

the measures are uncertain and imprecise, and human experts have intuition or 

knowledge of the effects of characteristics of parameters that relate to worm attacks.  

 

Experiments using real worm attacks on a variety of test cases in large enterprise 

networks were conducted to study the parameters influencing worm infection, to 

evaluate the performance of the damage prediction model, and to demonstrate the 

minimization of damage by parameter tuning.  

 

The experimental results show that the selected parameters are strongly 

correlated with actual infection rates, the damage prediction produces accurate 

estimates, and the optimization of parameters can lessen the damage from worm 

infection. These results suggest that this approach can be beneficial in terms of both 

management and operations.  It provides quantitative information useful for risk 

analysis, security investment, policy development, and incident response with respect to 

worm threat.  
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RECOMMENDATION FOR FUTURE WORK 

 

This research observes the relation of the number of infected nodes with time. 

We, however, introduce the study computer worm spread by calculating the basic 

reproductive number (R0) as found in the biological epidemiology. In the analytical 

theory of epidemics, the rate of spread of an epidemic and whether such spread is self-

sustaining depends on the magnitude of the basic reproduction number, defined as the 

average number of secondary cases generated by one primary case in a susceptible 

population (Anderson, 1991). The basic reproductive numbers of our experiments are 

described in Table 4. 

 

Table 4  The basic reproductive number (R0)  

 

 
Number of nodes 

 

 
 

Network architectures 
 

100 
 

 
150 

 
200 

 
Wired networks  

 
Wireless networks  

 
Heterogeneous networks 

 

 
5 
 
6  
 
5 

 
6  
 
5  
 
6 

 
5 
 
5 
 
6 

 
 

The average R0 of worm attacks in the network of 200 hosts is estimated that 

5.3 secondary infections were generated per case on average at the start of the attack. In 

the biological epidemiology, the R0 of severe acute respiratory syndrome (SARS) cases 

in Singapore (Jarc et al., 2003) and Hong Kong (Steven et al., 2003) is about 3 and 2.7, 

respectively. From this comparative study, we introduce to use this value for measuring 

the worm spread. 

 

This thesis objective is to handle with the problem of worm attacks, and, the 

nature of computer viruses or worms has a closed relationship with the spread of 
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viruses in the epidemiology. For the goals of epidemic research in medical science, the 

epidemic should be contained, the antiviral drug can control and lessen the outbreak, 

and the vaccination will apply to all susceptible population as soon as possible.   

 

Our formal framework can be applied to the problem of virus outbreak in the 

medical field that is the emerging issue today. The computer worm has three processes: 

scanning, exploiting, and propagating. These processes relates to the spread of virus 

disease, which also have three components: agent, host, and environment.  

 

The scanning of computer worm is identical to the agent of disease. The worm 

exploitation is similar to a host under the virus outbreak. Finally, the propagation of 

worm has the same characteristic as the environment factor in epidemiology. 

 

Highly pathogenic H5N1 influenza A viruses are now endemic in avian 

populations in Southeast Asia, and human cases continue to accumulate. Although 

currently incapable of sustained human-to-human transmission, H5N1 represents a 

serious pandemic threat owing to the risk of a mutation or reassortment generating a 

virus with increased transmissibility (Ferguson et al., 2005).  

 

The case of human-to-human infection may potentially occur in the near future. 

Therefore, it is extremely essential to predict the number of human infection for 

assessment and containment. In this section, we will first apply our framework to the 

problem of human-human infection of H5N1 influenza A virus.  

 

The factors influencing virus spread may include infectivity, vulnerability, and 

contactivity. Infectivity (I) describes the capability of virus to infect people. 

Vulnerability (V) defines the characteristic of immunization. Finally, the contactivity 

(C) describes the method of virus transmission from human to human. The disease 

dispersion (D) can be given as a function of these factors: 

 

( )CVID ,,ϕ=  (19) 
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The model is shown in Figure 36.  

Number of infectious cases (D) 

Fuzzy Decision (φ) 

Factors of Interest 
(I, V, C) 

 
 

Figure 36  The architecture of H5N1 prediction system. 

 

Infectivity describes the capability of H5N1 influenza A virus to spread from 

human to human. The higher infectivity can infect more people than the lower value. 

Infectivity can be measured by the value of the basic reproductive number R0. 

  

Vulnerability is the immune factor of susceptible group. The more vulnerable 

group of people creates more possibility to spread. Vulnerability can be measured by a 

set of {Age, Education}. Age and education are the age and education level of people, 

respectively. Population with high age and low education can increase the dispersion of 

viral disease. 

 

Contactivity supports the propagation of disease based on a set of {Contact rate, 

Population density}. The contract rate is the degree of contact between people based on 

transportation model. The population density describes the density of people in the 

focused area.  
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The model can predict the number of infected people by utilizing the fuzzy 

inference system. Furthermore, the accuracy of prediction may be evaluated by the 

prior outbreak data of viral disease. In conclusion, we show that this is the example of 

problem solving by applying our model to other fields.  
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