

PURIFICATION AND CHARACTERIZATION OF AMYLASE IN MON THONG DURIAN (Durio zibethinus) Mutt. cy. Mon Thong)

a thesis for the degree of master of science khon kaen university 600255606

ห้องสมุดงานวิจัย สำนักงานคณะกรรมการวิจัยแห่งชาติ

PURIFICATION AND CHARACTERIZATION OF AMYLASE IN MON THONG DURIAN (Durio zibethinus Murr. cv. Mon Thong)

MISS SAIJAI POSOONGNOEN

A THESIS FOR THE DEGREE OF MASTER OF SCIENCE KHON KAEN UNIVERSITY

2011

PURIFICATION AND CHARACTERIZATION OF AMYLASE IN MON THONG DURIAN

(Durio zibethinus Murr. cv. Mon Thong)

MISS SAIJAI POSOONGNOEN

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN BIOCHEMISTRY GRADUATE SCHOOL KHON KAEN UNIVERSITY 2011

THESIS APPROVAL KHON KAEN UNIVERSITY

FOR

MASTER OF SCIENCE IN BIOCHEMISTRY

Thesis Title:	Purification and characterization of amylase in Mon Thong durian
	(Durio zibethinus Murr. cv. Mon Thong)

Author: Miss Saijai Posoongnoen

Thesis Examination Committee

Assoc. Prof. Dr. Piyada Theerakulpisut Dr. Sittiruk Roytrakul Assoc. Prof. Dr. Sompong Thammasirirak Assoc. Prof. Dr. Sakda Daduang Chairperson Member Member Member

Thesis Advisor:

Sakda Daduang.

Advisor

(Assoc. Prof. Dr. Sakda Daduang)

L. Hernmart

K. Sangaro

(Assoc. Prof. Dr.Lampang Manmart) Dean, Graduate School

(Asst. Prof. Dr. Kiat Sangaroon) Dean, Faculty of Science

Copyright of Khon Kaen University

สายใจ ปอสูงเนิน. 2554. การแยกบริสุทธิ์และศึกษาสมบัติของเอนไซม์อะไมเลส (amylase) ใน ทุเรียนหมอนทอง (*Durio zibethinus* Murr. cv. Mon Thong). วิทยานิพนธ์ปริญญาวิทยา ศาสตรมหาบัณฑิต สาขาวิชาชีวเคมี บัณฑิตวิทยาลัย มหาวิทยาลัยขอนแก่น. อาจารย์ที่ปรึกษาวิทยานิพนธ์: รศ.คร. ศักดา ดาดวง

บทคัดย่อ

E41100

ทุเรียน (Durio zibethinus Murr.) เป็นผลไม้เศรษฐกิจที่สำคัญของประเทศไทย มีกลิ่นหอมเฉพาะตัว รส หวานจัดเมื่อสุก เนื่องจากมีการสะสมแป้งในปริมาณสูง และเมื่อสุกจะถูกเปลี่ยนเป็นน้ำตาล คาคว่าจะเป็นผลจาก การทำงานของเอนไซม์อะไมเลส คังนั้นงานวิจัยนี้จึงสนใจแยกบริสุทธิ์และศึกษาสมบัติของเอนไซม์อะไมเลสใน ทุเรียนหมอนทอง เริ่มจากการประมาณระขะสุกด้วยการวัดปริมาณแป้งในเนื้อทุเรียนโดยวิชี Iodine test พบ ปริมาณแป้ง 1.10% ของน้ำหนักสด และวัดความเข้มข้นของน้ำตาลรีคิวซ์ในสารสกัดทุเรียนด้วย DNS method พบน้ำตาล 0.17% ของน้ำหนักสด จากนั้นวัดปริมาณโปรตีนด้วยเทคนิค Bradford พบปริมาณโปรตีน 0.97 mg ต่อ กรัมเนื้อทุเรียนสด จากนั้นศึกษาแบบแผน โปรตีนด้วยเทคนิค SDS-PAGE พบแถบ โปรตีนในช่วง 28-97 kDa และ มีแถบ โปรตีนหลักในช่วง 38-55 kDa เมื่อตรวจหาแอกติวิตีของเอนไซม์อะไมเลสด้วย Zymographic method พบ กิจกรรมการทำงานของอะไมเลสที่ขนาคโมเลกุล 45 kDa จากนั้นจึงได้ศึกษาลำคับกรคอะมิโนบางส่วนด้วย เทกนิก 2D-PAGE และ LC-MS/MS สามารถระบุชนิคของโปรคืนในสารสกัคทูเรียนได้ 27 spots จากทั้งหมด 40 spots ซึ่งสามารถจัดกลุ่มโปรตีนได้ 9 กลุ่ม คือ carbohydrate, protein, lipid และ secondary metabolism และกลุ่ม ของ protein folding, ripening process, antioxidant enzyme, cell wall hydrolysis และอื่นๆ (not identified) โดย พบโปรคืนที่น่าสนใจ คือ Glutathione reductase, Isoflavone reductase และพบเอนไซม์แอลฟาอะไมเลส มีขนาด 45 kDa และ pI 6.51 มีลำคับกรคอะมิโนบางส่วน คือ IATVLPDK จากนั้นแยกบริสุทธิ์เอนไซม์อะไมเลสโคยการ ตกตะกอนด้วยเกลือแอมโมเนียมซัลเฟตอิ่มตัว 70%, affinity chromatography (epoxy-activated sepharose 6B ligated with β-cyclodextrin) และ DEAE Toyopearl Anionic Exchange Chromatography พบเอนไซม์มีความ บริสุทธิ์ขึ้น 340.36 เท่า, specific activity 234.85 units/mg และพบกิจกรรมการทำงานของอะไมเลสที่ขนาค โมเลกูล 45 kDa จากนั้นนำเอนไซม์ที่ผ่านการแขกบริสุทธิ์ มาศึกษาสมบัติต่างๆ พบว่ามี Optimum pH 7.0 และ Optimum temperature 40 °C และยังสามารถทำงานได้ที่อุณหภูมิสูง 90 และ 100 °C มีความเสถียรที่ pH 6-10 และ อุณหภูมิ 30-60 °C และเมื่อศึกษาผลของไอออนโลหะชนิคต่างๆ คือ Ca²⁺ , Mn²⁺, Zn²⁺, Co²⁺, Na⁺ และ K⁺พบว่า ไม่มีผลต่อการทำงานของเอนไซม์อะไมเลส แต่ EDTA ส่งผลให้เอนไซม์สูญเสียการทำงาน แสคงให้เห็นว่า เอนไซม์อะไมเลสจากทุเรียนหมอนทองเป็นชนิค แอลฟา (α-type) จากสมบัติดังกล่าว จะสามารถนำไปศึกษาและ พัฒนาเพื่อนำไปประยุกค์ใช้ในอุตสาหกรรมต่อไป

Saijai Posoongnoen. 2011. Purification and characterization of amylase in Mon Thong durian (Durio zibethinus Murr. cv. Mon Thong). Master of Science

Thesis in Biochemistry, Graduate school, Khon Kaen University.

Thesis Advisor: Assoc.Prof. Dr. Sakda Daduang

ABSTRACT

E 41100

Durian (Durio zibethinus Murr.) is an important commercial fruit of Thailand. This fruit has unique smell and sweet taste in ripening stage. Large storage of starch is converted into sugar by amylase activity. Therefore, the aim of this study is to purify and characterize amylase in Mon Thong durian. The study started from estimation of ripening stage by quantitation starch and sugar content using Iodine test and DNS method. Results showed 1.1% of starch in fresh durian pulp and 0.17% of reducing sugar in fresh weight durian pulp of reducing sugar in crude durian extract. Protein was 0.97 mg protein/g fresh weight by Bradford method measurement. SDS-PAGE technique showed protein pattern of crude durian with molecular weight ranging from 28 to 97 kDa, with major bands around 38-55 kDa. Zymograhic detection showed clear transparent amylase band at 45 kDa. After that, 2D-PAGE and LC-MS/MS strategies were used consequently to determine partial amino acid sequence. The total of 40 excised spots were analyzed by LC-MS/MS, 27 spots were identified with high homologies to known proteins. They were organized into 9 groups, concerning in carbohydrate, protein, lipid and secondary metabolism. Some are predicted to be protein in folding process, ripening process, antioxidant enzyme, cell wall hydrolysis and other (not identified). Moreover, the most interested ones are glutathione reductase, isoflavone reductase and α -amylase. α -amylase in crude durian were identified with molecular weight about 45 kDa and pI 6.51, with IATVLPDK as partial amino acid sequence. Then, crude durian was precipitated and purified with at 70% (NH₄)₂SO₄, affinity chromatography (epoxy-activated sepharose 6B ligated with β -cyclodextrin) and further subjected to DEAE Toyopearl Anionic Exchange Chromatography, respectively, with 340.36 purification fold and 234.85 units/mg specific activity. Amylase showed high purity after SDS-PAGE analysis with molecular weight about 45 kDa. Furthermore, the activity of purified amylase was detected by Zymograhic method exhibiting single clear transparent band. Optimum pH and temperature for durian amylase were 7.0 and 40 °C, respectively. Moreover, durian amylase still showed functional activity at 90 and 100 °C. Furthermore, its stability was over a broad range of pH 6 to 10 and temperature 30 °C to 60 °C. Many metal ions (Ca²⁺, Mn²⁺, Zn²⁺, Co²⁺, Na⁺ and K⁺ ions) did not affect amylase activity, but activity almost completely abolished by 5 mM EDTA. This result implied that amylase of Mon Thong durian is a metalloenzyme and belongs to the member of the a-type. Therefore, a-amylase from crude Mon Thong durian could be applied to be a good choice for various applications in the future especially in industry.

Goodness portion to the present thesis is dedicated for my parents, all of my teachers and all of my friends

ACKNOWLEDGEMENTS

I would like to appreciate my advisor, Associate Professor Dr. Sakda Daduang, for giving good counsels, paying close attention, providing overwhelming advices and invaluable mercy through this research. I would like to thank Associate Professor Dr. Sompong Thammasirirak, Department of Biochemistry, Faculty of Science, Khon Kaen University for helpful suggestion and very kindly advices and great kindness. I would like to thank Dr. Sittiruk Roytrakul, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency for helpful and suggestion to determine partial amino acid sequence of amylase in Monthong durian by LC-MS/MS.

I am deeply grateful to Miss Sophida Sukprasert, Miss Muchalin Meunchan and Miss Nuthaporn kerndee, Mr. Paroonkorn Incomnoi and Miss Papenpaksiri Rungsa and other members of SAKDA LAB and Protein and Proteomics Research Group. They have made avarices and support in a number of ways such as friendship, kindness, valuable advices. Appreciation is also expressed to all staff, members and friend in the department of Biochemistry, Faculty of Science for their practical help, providing the wonderful environment and friendship throughout the time of this study.

I would like to express my deepest and sincere gratitude to the Research Professional Development Project Under the Science Achievement Scholarship of Thailand (SAST) and Nakhon Ratchasima Rajabhat University for backup scholarship of my Student of the Master of Science in Biochemistry Program.

Lastly, I am grateful to my parents. Thanks for their love, encouragement, support, cheerfulness and pushing up throughout my life.

Saijai Posoongnoen

TABLE OF CONTENTS

			Pa	ige
ABSTRACT (IN TH	AI)	i	i
ABSTRACT (IN ENG	GLISH)	i	ii
DEDICATION	V		i	iii
ACKNOWLE	DGEM	ENTS	i	iv
TABLE OF C	ONTER	NTS		V
LIST OF TAE	BLES		t	ix
LIST OF FIG	URES		3	xi
LIST OF ABE	BREVA	TIONS	3	XV
CHAPTER I	INTRO	DUCTION		1
1.1	Ration	ale and background		1
1.2	Scope	and limitation of this study	:	3
1.3	Object	tives of the study		3
1.4	Antici	pated outcome		3
CHAPTER II	LITE	RATURE REVIEWS	,	4
2.1	Inform	nation about amylase	,	4
	2.1.1	Endoamylase	,	4
	2.1.2	Exoamylase	;	4
	2.1.3	Debranching enzymes	6	4
2.2	Amyla	ase source		5
2.3	The pr	roperties of amylase		6
2.4	Struct	ure and mechanism of amylase		9
	2.4.1	α-amylase		9
	2.4.2	β-amylase		11
	2.4.3	γ-amylase or glucoamylase		14
2.5	Applic	cation of amylase		15
	2.5.1	Starch conversion		15
	2.5.2	Fuel alcohol production		15
	2.5.3	Textile industry		15

TABLE OF CONTENTS (Cont.)

			Page
	2.5.4	Detergent industry	16
	2.5.5	Food industry	16
	2.5.6	Paper industry	16
	2.5.7	Treatment of starch processing waste water	16
2.6	Inform	nation about Durian	16
	2.6.1	Botanical characteristics of durian	17
	2.6.2	Durian in Thailand	20
	2.6.3	Cultivars of durian in Thailand	21
	2.6.4	Changing during ripening of durian	23
2.7	Role	of amylase to starch mobilization in fruits	24
2.8	The re	search about amylase in plant	27
CHAPTER II	I MET	THODOLOGY	30
3.1	Mater	ials	30
	3.1.1	Laboratory instruments and others	30
	3. 1.2	Chemicals and reagents	31
3.2	Metho	ods	34
	3.2.1	Sample preparation	34
	3.2.2	Starch and reducing sugar content determination	34
	3.2.3	Protein determination and protein clean up for analysis	35
	3.2.4	Sodium dodecyl sulfate polyacrylamide gel	35
		electrophoresis (SDS-PAGE) analysis	
	3.2.5	Zymographic method	36
	3.2.6	Two-dimensional polyacrylamide gel electrophoresis	37
		(2D-PAGE) and Liquid chromatography tandem mass	
		spectrometry (LC-MS/MS)	
	3.2.7	Purification of amylase from Mon Thong durian	37
	3.2.8	Enzyme characterization using DNS method	40
	3.2.9	Enzyme characterization using Zymographic method	40

TABLE OF CONTENTS (Cont.)

			Page
CHAPTER IV	RESU	LTS	42
4.1	Sample	e preparation	42
4.2	Starch	and reducing sugar content determination	43
4.3	Protein	n Determination using Bradford Method	46
4.4	Crude	durian protein pattern of Sodium dodecyl sulfate	48
	polyac	rylamide gel electrophoresis (SDS-PAGE) analysis	
4.5	Zymog	graphic method	49
4.6	Two-d	limensional polyacrylamide gel electrophoresis	51
	(2D-P.	AGE) and Liquid chromatography tandem mass	
	spectro	ometry (LC-MS/MS)	
4.7	Purific	cation of amylase from Mon Thong durian	70
	4.7.1	Ammonium sulphate fractionation	70
	4.7.2	Purification of amylase from Mon Thong durian using	72
		Epoxy-activated Sepharose 6B affinity chromatography	
	4.7.3	Purification of amylase from Mon Thong durian using	78
		DEAE Toyopearl Anion Exchange chromatography	
4.8	Enzyn	ne characterization in durian crude using DNS method	83
4.9	Enzyn	ne characterization using Zymographic method	85
CHAPTER V	DISCU	JSSIONS	91
CHAPTER V	I CONO	CLUSION	99
REFERENCE	S		101
APPENDICE	S		109
	APPE	NDICES A Reagents for identification and amylase	110
		activity assay	
	APPE	NDICES B Identification by Mascot search	118
	APPE	NDICES C Reagents for purification and enzyme	<u>124</u>
		characterization	

vii

TABLE OF CONTENTS (Cont.)

APPENDICES D The data and calculation	132
APPENDICES E Research publications	138
	140

VITAE

Page

LIST OF TABLES

-			
D	-	-	~
r	я	U	е

Table 2.1	The properties of α-amylase	7
Table 2.2	The properties of β -amylase	8
Table 2.3	Nutrient composition per 100 g edible portion of durian	22
Table 2.4	Starch degrading enzymes isolated from bananas	25
Table 4.1	Absorbance 620 nm of starch as standard by Iodine test	43
Table 4.2	Determination of starch in fruit pulp	44
Table 4.3	Absorbance at 540 nm of glucose as standard by DNS method	44
Table 4.4	The reducing sugar in fruit extract	45
Table 4.5	Absorbance at 595 nm of BSA as protein standard by	46
	Bradford method	
Table 4.6	Quantity of protein in fruit	47
Table 4.7	Molecular weight (MW) and Isoelectric point (pI) of protein	54
	spots were obtained from Image master 2D platinum program	
Table 4.8	Protein identifications of protein in Mon Thong durian were	57
·	obtained from LC-MS/MS analysis	
Table 4.9	Protein identifications of protein were obtained from LC-MS/MS	63
	analysis	
Table 4.10	Protein identifications of precipitated protein in Mon Thong	65
	durian were obtained from LC-MS/MS analysis	
Table 4.11	Protein identifications of crude Mon Thong durian were	68
	obtained from LC-MS/MS analysis	
Table 4.12	Analysis of amylase after ammonium sulfate fractionation	70
Table 4.13	Purification of amylase from Mon Thong durian pulp (386 g)	77
Table 4.15	Summary purification of amylase from Mon Thong durian pulp	82
	(386 g)	
Table A 1	Absorbance at 540 nm of glucose as standard solution	133
	by DNS method for analyze amylase activity	
Table A 2	The amylase activity was determined in different pH	135
	from 4 to 10 by DNS method at 37 °C	

LIST OF TABLES (Cont.)

Table A 3	The amylase activity was determined in different	136
	temperature from 30 to 100 °C by DNS method at pH 7.0	

Page

LIST OF FIGURES

		Page
Figure 2.1	Hydrolysis position on polysaccharide molecules of hydrolase family	5
Figure 2.2	Ribbon diagram of barley α-amylase	10
Figure 2.3	Possible catalytic mechanism of α-amylase	11
Figure 2.4	Crystal structure of recombinant soybean beta-amylase	12
	complexed with beta-cyclodextrin	
Figure 2.5	The catalytic mechanism of β -amylase (single displacement reaction)	13
Figure 2.6	The structure model of Aspergillus niger glucoamylase	14
Figure 2.7	Durian tree	17
Figure 2.8	Durian leaf	18
Figure 2.9	Durian flower	18
Figure 2.10	Durian fruit	19
Figure 2.11	The Durian Suitable Growing Locations	20
Figure 2.12	Some of commercial cultivars in Thailand	21
Figure 2.13	The pathway of starch degradation and sucrose synthesis in fruit	26
Figure 2.14	Effect of postharvest ethylene treatment on amylase activity	27
	and starch content in mature avocado fruit pulp	
Figure 2.15	(A) = Changes in amylase activity and fresh fruit weight in	28
	developing mango fruits (B) = Changes in starch content	
	and amylase activity during ripening of mango fruit	
	(C) = Changes in acid and sugar contents during mango	
	fruit ripening	
Figure 4.1	Mon Thong durian (D. zibethinus Murr. cv. Mon Thong) (A)	42
	and Mon Thong durian pulp (B)	
Figure 4.2	Starch calibration curve	43
Figure 4.3	Glucose calibration curve	45
Figure 4.4	Bovine serum albumin (BSA) calibration curve	46

LIST OF FIGURES (Cont.)

		Page
Figure 4.5	SDS-PAGE analysis of Mon Thong durians	48
	(D. zibethinus Murr. cv. Mon Thong) on 13% acrylamide gel	
Figure 4.6	Zymographic analysis of crude Mon Thong durian	50
	(D. zibethinus Murr. cv. Mon Thong) on 13% acrylamide	
	gel containing 1% soluble starch	
Figure 4.7	Representative 2D-PAGE profile of protein in Mon Thong	53
	durian (D. zibethinus Murr. cv. Mon Thong)	
Figure 4.8	Functional classification and the correspondence percentage	62
	of each class were indicated	
Figure 4.9	Representative 2D gel profile of precipitated protein in	64
	Mon Thong durian (D. zibethinus Murr. cv. Mon Thong)	
Figure 4.10	Zymographic analysis of crude durian of Mon Thong durian	67
	(D. zibethinus Murr. cv. Mon Thong) on 13% acrylamide gel	
	containing 1% soluble starch	
Figure 4.11	The ammonium sulfate fractionation of crude durian extract	71
Figure 4.12	The protein pattern and amylase activity of ammonium sulfate	71
	fractionation (20 µg Protein) of crude durian extract	
Figure 4.13	Chromatogram of crude durian purification using	73
	Epoxy-activated Sepharose 6B affinity chromatography	
Figure 4.14	Protein bands by 13% SDS-PAGE, staining with coomassie	74
	brilliant blue of protein peaks at fraction number 4, 29, 30, 31,	
	32 (number 1, 2, 3, 4 and 5) from Epoxy-activated Sepharose	
	6B affinity chromatography	
Figure 4.15	Protein bands by 13% SDS-PAGE, staining with silver of	75
	protein peaks at fraction number 4, 29, 30, 31, 32 (number 1, 2,	
	3, 4 and 5) from Epoxy-activated Sepharose 6B affinity	
	chromatography	

LIST OF FIGURES (Cont.)

		Page
Figure 4.16	Amylase activity by Zymographic method of protein peaks at	76
-	fraction number 4, 29, 30, 31 and 32 (number 1, 2, 3, 4 and 5)	
	from Epoxy-activated Sepharose 6B affinity chromatography	
Figure 4.17	Chromatogram of crude durian purification using DEAE	79
	Toyopearl Anion Exchange chromatography	
Figure 4.18	Protein bands by 13% SDS-PAGE, staining with silver	80
	of protein peaks at fraction number 17, 18, 19, 20 and 21	
	(number 1, 2, 3, 4 and 5) from DEAE Toyopearl Anion	
	exchange chromatography	
Figure 4.19	Amylase activity by Zymographic method of protein peaks	81
	at fraction number 18, 19, 20 and 21 (number 1, 2, 3 and 4)	
	from DEAE Toyopearl Anion Exchange chromatography	
Figure 4.20	Effect of pH on the activity of partial purified amylase	83
	(0.01 µgProtein) by DNS method	
Figure 4.21	Effect of temperature on the activity of crude durian	84
	by DNS method	
Figure 4.22	Effect of pH on the activity of partial purified amylase	85
	(0.01 µgProtein) by Zymographic method	
Figure 4.23	Effect of temperature on the activity of partial purified amylase	86
	(0.01µgProtein) by Zymographic method	
Figure 4.24	Effect of temperature on the activity of partial purified amylase	87
	(0.01µg Protein) at 90 °C and 100 °C by Zymographic method	
Figure 4.25	The pH stability of the partial purified amylase (0.005 μ g	88
	Protein) by Zymogaphic method	
Figure 4.26	Effect of temperature on thermal stability of the partial purified	89
	amylase (0.005 µg Protein) by Zymogaphic method	

-

LIST OF FIGURES (Cont.)

		Page
Figure 4.27	The effect of various metal ions and EDTA (5 mM) on the	90
	partial purified amylase activity	
Figure A 1	The parameters of Mascot MS/MS Ion Search	122
Figure A 2	The example of results report from Mascot MS/MS Ion Search	123
Figure A 3	Glucose calibration curve	133

LIST OF ABBREVIATIONS

Degree Celsius
Alpha
Beta
Gramma
Microgram
Microlitre
Two-dimensional polyacrylamide gel electrophoresis
Silver (I) ion
Aspartic acid
Bacillus
Calcium (II) ion
Calcium chloride
Cadmium (II) ion
Centimetre
Cobalt (II) ion
Copper (II) ion
Double-distilled water
Diethyl amino ethyl
Dinitrosalicylic acid method
Dithiothreitol
Ethylenediaminetetraacetic acid
Iron (II) ion
Gram
Glutamic acid
Gram per millilitre
Hydrochloric Acid
Mercury (I) ion
Histtidine

LIST OF ABBREVIATIONS (Cont.)

hr	Hour
I ₂	Iodine
IAA	Iodoacetamide
IPG	Immobilized pH gradients
K^+	Potassium (I) ion
kDa	Kilodalton
Kg	Kilogram
KI	Potassium iodide
K _m	Michaelis constant
kVh	kilovolt hours
LC-MS/MS	Tandem Mass Spectrometry
Leu	leucine
Li ²⁺	Lithium (II) ion
Lys	Lysine
М	Molar
MALDI-TOF	Matrix-assisted laser desorption ionization – Time of flight
mA	Milliampere
Met	Methionine
mg	Milligram
Mg ²⁺	Magnesium (II) ion
mg/ml	Milligram per milliliter
ml	Millilitre
mM	Millimolar
Mn ²⁺	Manganese (II) ion
Ν	Normal
Na ⁺	Sodium (I) ion
NaCl	Sodium chloride
NaOH	Sodium hydroxide
NL	Non-linear gradient

LIST OF ABBREVIATIONS (Cont.)

nm	Nanometre
Phe	Phenylalanine
pI	Isoelectric point
SD	Standard deviation
SDS-PAGE	Sodium dodecyl sulfate polyacrylamide gel electrophoresis
sec	Second
Trp	Tryptophan
Tyr	Tyrosine
U/ml	Unit per milliliter
V	Voltage
v/v	Volume per volume
Val	Valine
Zn ²⁺	Zinc (II) ion