

PROTECTIVE EFFECT OF CURCUMIN AGAINST ADVERSE EFFECT AFTER PRAZIQUENTEL TREATMENT IN LIVER FLUKE-INFECTED HAMSTERS

MISS LAKHANAWAN CHAROENSUK

A THESIS FOR THE DEGREE OF MASTER OF SCIENCE
KHON KAEN UNIVERSITY
2011

PROTECTIVE EFFECT OF CURCUMIN AGAINST ADVERSE EFFECT AFTER PRAZIQUENTEL TREATMENT IN LIVER FLUKE-INFECTED HAMSTERS

MISS LAKHANAWAN CHAROENSUK

A THESIS FOR THE DEGREE OF MASTER OF SCIENCE KHON KAEN UNIVERSITY

PROTECTIVE EFFECT OF CURCUMIN AGAINST ADVERSE EFFECT AFTER PRAZIQUENTEL TREATMENT IN LIVER FLUKE-INFECTED HAMSTERS

MISS LAKHANAWAN CHAROENSUK

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF SCIENCE IN PARASITOLOGY

GRADUATE SCHOOL KHON KAEN UNIVERSITY

THESIS APPROVAL KHON KAEN UNIVERSITY

FOR

MASTER OF SCIENCE

IN PARASITOLOGY

Thesis Title:	Protective effect of curcumin against adverse effect after praziquante	1
	treatment in liver fluke-infected hamsters	

Author: Miss Lakhanawan Charoensuk

Asst. Prof. Dr. Porntip

Thesis examination committee

Assoc. Prof. Dr. Supason Wanichwecharungruang Chairperson
Assoc. Prof. Dr. Thewarach Laha Member
Assoc. Prof. Dr. Somchai Pinlaor Member
Asst. Prof. Dr. Wipaporn Ruangjirachuporn Member

Pinlaor

Thesis Advisors:

Souched Frakor Advisor

(Assoc. Prof. Dr. Somchai Pinlaor)

W. Rung Co-advisor

(Asst. Prof. Dr. Wipaporn Ruangjirachuporn)

Portip Pinlaor Co-advisor

(Asst. Prof. Dr. Porntip Pinlaor)

(Assoc. Prof. Dr. Lampang Manmart)

(Prof. Dr. Pisake Lumbiganon)

Member

Dean, Graduate School

Dean, Faculty of Medicine

Copyright of Khon Kaen University

ลักขณาวัลย์ เจริญสุข. 2554. ฤทธิ์ป้องกันของเคอร์คูมินต่อผลข้างเคียงหลังจากการรักษาด้วยยาพรา ซิควอนเทลในหนูแฮมสเตอร์ที่ติดพยาธิใบไม้ตับ. วิทยานิพนธ์ปริญญาวิทยาศาสตร มหาบัณฑิต สาขาวิชาปรสิตวิทยา บัณฑิตวิทยาลัย มหาวิทยาลัยขอนแก่น.

อาจารย์ที่ปรึกษาวิทยานิพนซ์: รศ.คร. สมชาย ปิ่นละออ, ผศ.คร. วิภาภรณ์ เรื่องจิระชูพร, ผศ.คร. พรทิพย์ ปิ่นละออ

บทคัดย่อ

E47355

ยาพราซิควอนเทลเหนี่ยวนำให้แอนติเจนของพยาธิใบไม้ตับ (Opisthorchis viverrini) แพร่กระจายและเหนี่ยวนำเซลล์อักเสบภายหลังการรักษาในระยะเวลาสั้นๆ ส่งผลให้เกิดภาวะออกซิ เคทีฟและ ในเตรทีฟสเตรสตามมา เพื่อลดผลข้างเกียงคังกล่าวเราจึงให้สารเสริมเกอร์คูมินซึ่งมีฤทธิ์ ต่อต้านการอักเสบ เป็นสารสกัคจากขมิ้นชั้น ในหนูแฮมสเตอร์ที่ติดพยาธิใบไม้ตับและรักษาด้วยยา พราซิควอนเทล ที่เวลา 12 ชั่วโมงภายหลังการรักษา เคอร์คูมินสามารถลคเซลล์อักเสบชนิคอีโอซิโน ฟิลและเพิ่มโมโนนิวเคลียร์เซลล์ สัมพันธ์กับการแสคงออกในระคับยืนและโปรตีนของ nuclear factor-erythroid 2-related factor 2 (Nrf2) และ heme oxygenase-1 เคอร์คูมินยังเพิ่มการแสคงออกของ ยืนที่ควบคุมค้วย Nrf2 เกี่ยวข้องในภาวะเครียดประกอบค้วย (Kelch-like ECH-associated protein 1, NAD(P)H:quinine oxidoreductase 1, glutamate cysteine ligase, และกระตุ้น transcription factor 3 ยืนที่สร้างเอ็นไซม์ต่อต้านอนุมูลอิสระ (peroxiredoxin 3, peroxiredoxin 6, manganese superoxide dismutase และ catalase) นำไปสู่การเพิ่มระคับความสามารถในการต่อต้านสารอนุมูลอิสระ (ferric antioxidant capacity) ในพลาสมา ในทางตรงข้ามเคอร์คูมินสามารถลคระดับ 8-oxo-7,8-dihydro-2'deoxyguanosine ในปัสสาวะ มาลอนไดอัลดีไฮด์ ในเตรต/ในไตร และการทำงานของเอนไซม์อะ ลานีนอะมิโนทรานสเฟอเรสในพลาสมาซึ่งเป็นตัวชี้วัคภาวะถูกทำลายของตับ การเปลี่ยนแปลง เหล่านี้สัมพันธ์กับการยับยั้ง NF-kB โมเลกุลที่เกี่ยวข้อง (COX-2 และ iNOS) และ proinflammatory cytokines (IL-1β และ TNF-α) สรุป การให้เคอร์คูมินอาจจะมีประสิทธิภาพเป็นสารเคมีป้องกันรักษา ภาวะออกซิเคทีฟและในเตรทีฟสเตรสจากการรักษาด้วยยาพราซิควอนเทลในการติคพยาธิใบไม้ตับ โดยเหนี่ยวนำ Nrt2 และยับยั้ง NF-kB ที่ควบคุมวิถีได้ Nrt2 อาจเป็นโมเลกุลเป้าหมายใหม่สำหรับการ รักษาไม่เฉพาะในโรคติคเชื้อปรสิตแต่รวมถึงโรคอื่นๆที่เกิดจากกระบวนการอักเสบ

Lakhanawan Charoensuk. 2011. Protective Effect of Curcumin Against Adverse

Effect After Praziquantel Treatment in Liver Fluke-Infected Hamsters.

Master of Science Thesis in Parasitology, Graduate School, Khon Kaen University.

Thesis Advisors: Assoc. Prof. Dr. Somchai Pinlaor, Asst. Prof. Dr. Wipaporn Ruangjirachuporn, Asst. Prof. Dr. Porntip Pinlaor

ABSTRACT

E47355

Praziquantel induces dispersion of Opisthorchis viverrini antigens and recruits inflammatory cells after short-term treatment, resulting in increase oxidative and nitrative stress. To reduce this adverse effect, we supplemented with curcumin, a traditional antiinflammatory agent derived from turmeric (Curcuma longa), in O. viverrini-infected hamsters treated with praziquantel. At 12h after treatment, curcumin decreased eosinophil infiltration and increased mononuclear cell infiltration in parallel with nuclear factor-erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 expression at the transcriptional and protein levels. Curcumin also enhanced the expression of genes involved in the Nrf2-regulated stress pathway (Kelch-like ECHassociated protein 1, NAD(P)H:quinine oxidoreductase 1, glutamate cysteine ligase, and activating transcription factor 3, peroxiredoxin 3, peroxiredoxin 6, manganese superoxide dismutase, and catalase), leading to increased ferric antioxidant capacity in the plasma. In contrast, curcumin decreased the level of oxidative and nitrative stress markers such as urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine, plasma levels of malondialdehyde and nitrate/nitrite, and activity of plasma alanine transaminase, a liver injury marker. This correlated with the suppression of nuclear factor-kappaB (NF-κB) and related molecules (cyclooxygenase-2 and inducible nitric oxide synthase) and proinflammatory cytokines (IL-1 β and TNF- α). In conclusion, curcumin may be an effective chemopreventive agent against oxidative and nitrative stress derived from praziquantel treatment during O. viverrini infection via induction of Nrf2 and suppression of NF-κB-mediated pathways. Nrf2 may also be a novel therapeutic target for not only parasitic diseases but other types of inflammation-mediated diseases.

Goodness Portion to the Present Thesis is Dedicated for my Parents and to my supervisor, relatives and entire teaching staff

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor, Associate Professor Dr. Somehai Pinlaor for his kindness in providing a good opportunity to be his advisee. I am also appreciated for his valuable supervision, suggestions, supporting, encouragement, guidance and criticism through the course of my study.

I would like to express my greatest appreciation to my co-advisor, Assistant Professor Dr. Porntip Pinlaor and Assistant Professor Dr. Wipaporn Ruangjirachuporn for their valuable advices, suggestions and kindness useful comment. Appreciation is also expressed to Associate Professor Dr. Supason Wanichwecharungruang and Associate Professor Dr. Thewarach Laha for my thesis examination committee.

I would like to express my sincere thanks to Dr. Suksanti prakobwong,
Miss Umawadee Laothong, Miss Nuttanan Hongsrichan and Miss Jarinya
Khoontawad, for their helpful suggestions on experiment and laboratory working.

I also extend thank to Liver Fluke and Cholangiocarcinoma Research Center and The Invitation Research Fund from Faculty of Medicine, Khon Kaen University, Thailand for supporting the grant of my study and research foundation, respectively.

Finally, I would like to express my sincere gratitude and appreciation to my dear parents and my family for their encouragement and providing a change to study.

Lakhanawan Charoensuk

TABLE OF CONTENTS

		Page
ABSTRACT (IN THAI)		i
ABSTRACT (IN ENGLISH)		ii
DEDICATI	ON	iii
ACKNOW	LEDGEMENTS	iv
LIST OF T	ABLES	vii
LIST OF F	IGURES .	viii
LIST OF A	BBREVIATIONS	ix
CHAPTER	I INTRODUCTION	
1.1	Background	1
1.2	Research questions	3
1.3	Objectives of the study	3
1.4	Location of research conducting	3
1.5	Anticipated outcomes	3
CHAPTER	II LITERATURE REVIEW	
2.1	Opisthorchis viverrini	4
2.2	Treatment of opisthorchiasis	9
2.3	Free radicals	12
2.4	Oxidative stress and nitrative stress	14
2.5	Nuclear factor-erythroid 2-related factor-2 (Nrf2)	15
2.6	Antioxidants and antioxidant-related enzymes	19
2.7	Phase I and Phase II enzyme	21
2.8	Curcumin	21
2.9	Conceptual framework	32
CHAPTER	R III RESEARCH METHODOLOGY	
3.1	Parasites	34
3.2	Hamster infection	34
3.3	Animal and experimental design	34
3.4	Specimen collection and protocol of the study	36

TABLE OF CONTENTS (Cont.)

			Page
	3.5	Administration of curcumin	38
	3.6	Administration of praziquantel	38
	3.7	Histopathological study	38
	3.8	Immunohistochemical study	39
	3.9	Determination of biochemical parameters	39
	3.10	Gene expression study	42
	3.11	Western blot analysis	44
	3.12	Statistical analysis	50
CHA	APTER	LIV RESULTS	
	4.1	Effect of curcumin on inflammatory cell infiltration in O. viverrini-	51
		infected hamsters treated with praziquantel	
	4.2	Effect of curcumin on Nrf2 expression in O. viverrini-infected	54
		hamsters treated with praziquantel	
	4.3	Effect of curcumin on HO-1 expression in O. viverrini-infected	56
		hamsters treated with praziquantel	
	4.4	Curcumin up-regulation of Nrf2-regulated stress response genes	58
	4.5	Effect of curcumin on the expression of antioxidant genes	59
	4.6	Effect of curcumin on the expression of oxidant genes	60
	4.7	Effect of curcumin on the expression of proinflammatory cytokines	62
	4.8	Effect of curcumin on biochemical parameters in O. viverrini-	63
		Infected hamsters treated with praziquantel	
CH	APTEI	R V DISCUSSION	65
CHAPTER VI CONCLUSION ,		67	
REFERENCES		68	
APPENDICES		82	
VITAE		96	

LIST OF TABLES

		Page
Table 1	ROS in living organisms	13
Table 2	RNS in living organisms	14
Table 3	Sequence of the murine primers used for real time PCR	45
Table 4	Sequence of amplified fragment identities to rat, mouse	46
	and human nucleotides and amino acids	
Table 5	Histopathology changes in O. verrini-infected hamsters treated	53
	with praziquentel and the effect of curcumin supplement	

LIST OF FIGURES

		Page
Figure 1	Life cycle of Opisthorchis viverrini	5
Figure 2	Proposed mechanism responsible for activation of Nrf2-ARE	17
	signaling	
Figure 3	Major curcuminoids in Curcuma longa	22
Figure 4	Biosynthetic pathway of curcumin in Curcuma longa	23
Figure 5	Conceptual framework of the study	33
Figure 6	The experimental design of animal model	35
Figure 7	Protocol of specimen collection and analysis	37
Figure 8	Schematic of 8-OH-dG determination by ACE TM EIA	40
Figure 9	Histopathological changes in O. viverrini-infected hamsters treated	52
	with praziquantel and the effect of a curcumin supplement	
Figure 10	Expression of Nrf2 in O. viverrini-infected hamsters treated with	55
	praziquantel and the effect of curcumin supplement	
Figure 11	Expression of HO-1 in O. viverrini-infected hamsters treated	57
	with praziquantel and the effect of curcumin supplement	
Figure 12	mRNA levels of Nrf2-regulated stress response genes in	58
	O. viverrini-infected hamsters treated with praziquantel and the	
ø	effect of curcumin supplement	
Figure 13	mRNA levels of antioxidant genes in O. viverrini-infected hamsters	59
	treated with praziquantel and the effect of curcumin supplement	
Figure 14	Expression levels of oxidant genes in O. viverrini-infected	61
	hamsters treated with praziquantel and the effect of curcumin	
	supplement	
Figure 15	mRNA levels of proinflammatory cytokines in O. viverrini-infected	62
	hamsters treated with praziquantel and the effect of curcumin	
	supplement	
Figure 16	Effect of curcumin on biochemical parameters in O. viverrini-	64
	infected hamsters treated with praziquantel	

LIST OF ABBREVIATIONS

°C degree Celsius

8-oxodG 8-oxo-7, 8-dihydro-2'-deoxyguanosine

μL microliter

μm micrometer

pg/mL picogram per milliliter

ALT alanine transaminase

ATF-3 activation transcription factor 3

CAT catalase

cDNA complementary deoxyribonucleic acid

COX-2 cyclooxygenase-2

EDTA ethylenediaminetetraacetate

FRAP ferric reducing antioxidant power

GCL glutamate cysteine ligase

GSH glutathione

HO-1 heme oxygenase-1

H₂O₂ hydrogen peroxide

IL-1 β interleukin-1 β

iNOS inducible nitric oxide synthase

Keap1 Kelch-like ECH-associated protein 1

MDA malondialdehyde

mg/kg milligram per kilogram

mL milliliter millimeter

M-MLV RT Moloney Murine Leukemia Virus Reverse

Transcriptase

mRNA messenger ribonucleic acid

NF-kB nuclear factor-kappaB

nm nanometer

LIST OF ABBREVIATION (Cont.)

NO nitric oxide

NOS nitric oxide synthase

NOx nitrate/nitrite

NQO1 NADPH: quinone oxidoreductase-1

Nrf-2 nuclear erythroid 2-related factor 2

NSS normal saline solution

¹O₂ singlet oxygen

³O₂ triplet-state molecular oxygen

O2^{*} superoxide anion

OH hydroxyl radical

ONOO peroxynitrite

Prdx 3 peroxiredoxin 3
Prdx 6 peroxiredoxin 6

ROS reactive oxygen species

RNS reactive nitrogen species

rpm round per minute

RT-PCR reverse transcription-polymerase chain reaction

SOD superoxide dismutase

TBA thiobarbituric acid

TBARS thiobarbituric acid-reactive substances

TNF- α tumor necrosis factor- α