

โครงการวิจัยอุตสาหกรรมนี้เป็นโครงการวิจัยเพื่อหาสภาวะในการสร้างฟิล์มนิ่งเครื่องปัลอกฟิล์มบางด้วยไอโคเมิร์บอคัชพลาสma (PECVD) บนแผ่นเควเฟอร์ โดยฟิล์มที่สร้างขึ้นต้องมีคุณสมบัติในการกันสิ่งปนเปื้อนและกันน้ำได้ ฟิล์มที่สนใจในงานวิจัยนี้คือฟิล์มซิลิกอนในไตรด์ ซึ่งฟิล์มนิคนี้เป็นชนวน ถึงแม้ว่าจะทราบขั้นตอนการผลิตฟิล์มนิคนี้แต่สภาวะการผลิตที่ให้คุณสมบัติฟิล์มตามต้องการนั้นยังเป็นปัญหาอยู่ ปัญหาในงานวิจัยนี้เริ่มจากเซนเซอร์วัดความดันในหลอดเลือดซึ่งมีฟิล์มนิคนี้เคลือบอยู่ไม่สามารถทำงานได้ตรงตามข้อกำหนดเฉพาะเมื่ออยู่ในน้ำ เมื่อทำการวินิจฉัยย่างละเอียด จึงเข้าใจว่าเนื้อฟิล์มบางส่วนประกอบด้วยพันธะเคมีที่ไม่ใช่ซิลิกอนในไตรด์ งานวิจัยนี้ใช้ความสามารถในการทนแรงดันไฟฟ้า (Breakdown Voltage) เป็นตัววัดความแน่นหนาของพันธะเคมีที่ได้ในการสร้างฟิล์ม และพบว่าจากฟิล์มที่สร้างได้ในปัจจุบันสามารถทนแรงดันพังได้ 5 โวลท์ ทำให้งานวิจัยนี้จึงมุ่งเน้นที่จะเพิ่มความสามารถในการทนแรงดันพัง ขั้นตอนการดำเนินงานวิจัยมี 2 ขั้นตอน ขั้นตอนที่หนึ่งเป็นขั้นตอนในการหาสภาวะในการผลิตที่ให้ฟิล์มซิลิกอนในไตรด์ ซึ่งตัวชี้วัดที่ใช้ในการบ่งชี้ความเป็นซิลิกอนในไตรด์คือ ค่าดัชนีหักเหทางแสง ในขั้นตอนที่สอง ทำการทดลองที่ได้จากขั้นตอนที่หนึ่งมาคัดกรองโดยอาศัยตัวชี้วัดเพิ่มเติมอีกหนึ่งตัวชี้วัดคือ ค่าความสัมภានของฟิล์มซึ่งค่าที่ดีที่สุดอยู่ที่ร้อยละ 0 ทำให้สภาวะที่จะนำไปทดลองต่อเหลือเพียง 5 สภาวะการผลิตจากนั้นนำ 5 สภาวะนี้ไปทำการทดสอบความสามารถทนแรงดันพัง พนว่าทั้ง 5 สภาวะการผลิตใหม่ที่ได้ยังไม่สามารถทนแรงดันพังได้ดีกว่าสภาวะการผลิตที่ใช้อยู่เดิม แต่ย่างไรก็ตามงานวิจัยนี้ทำให้ทราบว่าการใช้ค่าดัชนีหักเหทางแสงเป็นตัวแปรตอนสนองในการทดลองเพียงอย่างเดียวนั้นไม่เพียงพอ แต่ต้องสนใจความหนาสมำเสมอของฟิล์มที่ได้ด้วย โครงการวิจัยอุตสาหกรรมนี้ได้ห้องค์ความรู้ใหม่ในการสร้างโครงสร้างทดสอบ (Test Structure) ที่มีสภาวะการทำงานใกล้เคียงผลิตภัณฑ์จริงกว่าแบบเดิม สำหรับใช้ในการทดสอบความสามารถการทนแรงดันพัง แก่ TMEC นอกจากนั้นยังสร้างขั้นตอนการปฏิบัติงานใหม่ สำหรับประยุกต์ใช้หากำที่เหมาะสมสำหรับกระบวนการผลิตอื่นๆ ให้กับองค์กร

This industrial project was to find the conditions to operate film deposition process (Plasma Enhancement Chemical Vapor Deposition: PECVD) on wafers so that the film can be used to provide contaminate and water passivation to the wafers. Specifically, the film that is considered here is Silicon Nitride film (a type of an insulation film). Although the steps in the deposition process of the Nitride film are known but the preferred process conditions and reactions among the initial (inputs) materials are not fully understood. The problem was found that sensor, having this type of film on the surface, could not work properly in water. After performing a fine diagnosis, it was believed that some areas of the film did not have Silicon Nitride type of chemical bonding. A Breakdown voltage was used to measure the denseness of chemical bonding, and a baseline level of breakdown voltage was at 5v. This research project aimed to increase the breakdown voltage. Therefore, the research was divided into 2 steps. The first step was to screen the conditions under which the Nitride film was likely to be formed by considering the Reflective Index (RI) value. The RI value for the Nitride film is 2. As a result, 53 process conditions were selected based on the RI value and statistical results as candidates. In the second step the candidates were further screened by considering 2 outputs: RI value (the closer to 2 is the better) and the uniformity value (0 is the best value). Five candidates were finally selected to perform the actual deposition of the Nitride film on the test structure. Then these five samples were tested for the breakdown voltage to check the water passivity property. Although the results from the 5 samples did not yield greater film water passivity than those of the previous process condition, we realize that it is difficult to consider only RI as the output response, we should pay attention to thickness uniformity also. This industrial research project offers new knowledge of designing new test structure to TMEC and new method in finding process parameter used as procedure in this organization.