ชื่อโครงการ การคัดเลือกแบคทีเรียปฏิปักษ์และการพัฒนาผลิตภัณฑ์แบคทีเรียปฏิปักษ์เพื่อ ควบคุมโรคพืชที่ปลูกในระบบไฮโครโพนิกส์ ชื่อผู้วิจัย มานะ กาญจนมณีเสถียร¹ อัจฉรา เพิ่งหนู² ฤดีกร วิวัฒนปฐพื² และวานิด รอดเนียม³ หน่วยงานที่สังกัด ¹มหาวิทยาลัยศิลปากร ²มหาวิทยาลัยสงขลานครินทร์ และ ³มหาวิทยาลัย ทักษิณ แหล่งทุนอุดหนุนการวิจัย สถาบันวิจัยและพัฒนา มหาวิทยาลัยศิลปากร ประจำปีงบประมาณ พ.ศ. 2553 (ต่อเนื่อง 2 ปี) ปีที่เสร็จ พ.ศ. 2556

ประเภทการวิจัย การวิจัยประยุกต์

บทคัดย่อ

การวิจัยนี้มีวัตถุประสงค์ (1) เพื่อคัดเลือกแบคทีเรียปฏิปักษ์ที่มีประสิทธิภาพในการยับยั้งการเจริญ ของเชื้อ *Pythium* spp. ในการปลูกพืชระบบไฮโครโพนิกส์ (2) พัฒนาชีวภัณฑ์แบคทีเรียปฏิปักษ์ที่มี ประสิทธิภาพและคงตัวเพื่อควบคุมเชื้อราสาเหตุโรคของพืชที่ปลูกในระบบไฮโครโพนิกส์ และ (3) เพื่อ ศึกษาประสิทธิภาพของชีวภัณฑ์แบคทีเรียปฏิบักษ์ในการควบคุมเชื้อราสาเหตุโรคของพืชในระบบไฮโคร โพนิกส์

เชื้อแบคทีเรียปฏิปักษ์ Bacillus velezensis ที่แยกได้จากรากพืชที่ปลูกในระบบไฮโครโพนิกส์มี ประสิทธิภาพในการยับยั้งการเจริญของเส้นใยของเชื้อรา Pythium helicoides, Aphanomyces sp. และ P. aphanidermatum ที่พบในระบบไฮโครโพนิกส์ เชื้อแบคทีเรียปฏิปักษ์ Bacillus velezensis มีความสามารถ ในการผลิต IAA มีขนาดเอนโคสปอร์ก่อนข้างใหญ่ และไม่มีผลยับยั้งเชื้อแบคทีเรียปฏิปักษ์ชนิคอื่น จึง ได้รับการกัดเลือกนำมาใช้ในการผลิตชีวภัณฑ์

การพัฒนาสูตรชีวภัณฑ์ *B. velezensis* รูปแบบแกรนูลชนิดละลายน้ำ ซึ่งประกอบด้วยสปอร์ของ แบคทีเรียปฏิปักษ์ lactose และ polyvinyl pyrrolidone K-30 พบว่า สูตรตำรับ F8 มีคุณสมบัติทางกายภาพที่ เหมาะสม ละลายน้ำได้ดี มีปริมาณเชื้อแบคทีเรียปฏิปักษ์ในสูตรตำรับ 10¹⁰ CFU/g และมีประสิทธิภาพใน การยับยั้งเส้นใยของเชื้อรา *Aphanomyces* sp. สูง (96%) อย่างไรก็ตาม หลังจากเก็บชีวภัณฑ์ไว้ที่ อุณหภูมิห้อง (26-32°C) เป็นเวลา 6 เดือน ปริมาณเชื้อแบคทีเรียปฏิปักษ์ในชีวภัณฑ์มีแนวโน้มลดลง

การพัฒนาสูตรชีวภัณฑ์ B. velezensis รูปแบบของเหลวแขวนตะกอนเข้มข้น ซึ่งประกอบด้วยสปอร์ ของแบกทีเรียปฏิปักษ์กระจายตัวในของเหลว โดยอาศัยสารแขวนตะกอน xanthan gum พบว่า สูตรตำรับ F4 มีกุณสมบัติทางกายภาพที่เหมาะสม มีปริมาณเชื้อแบกทีเรียปฏิปักษ์ในสูตรตำรับ 10¹⁰ CFU/g มี ประสิทธิภาพในการยับยั้งเส้นใยของเชื้อรา *Aphanomyces* sp. สูง (90.8%) ไม่เกิดการตกตะกอนหลังจากตั้ง ไว้ 4 สัปดาห์ หลังจากเก็บชีวภัณฑ์ไว้ที่อุณหภูมิห้อง เป็นเวลา 6 เดือน ปริมาณเชื้อแบคทีเรียปฏิปักษ์ในชีว ภัณฑ์มีแนวโน้มเพิ่มขึ้น

เมื่อนำชีวภัณฑ์ *B. velezensis* รูปแบบของเหลวแขวนตะกอนเข้มข้นมาทำการทดสอบกับพืชทั้งใน ห้องปฏิบัติการ และกับพืชที่ปลูกในโรงเรือนปลูกพืชระบบไฮโครโพนิกส์ (ระบบ dynamic root floating technique) พบว่าเมื่อทำการทดสอบในห้องปฏิบัติการ ชีวภัณฑ์ *B. velezensis* รูปแบบของเหลวแขวน ตะกอนเข้มข้นมีประสิทธิภาพในการลดเปอร์เซ็นต์การตายที่เกิดกับเมล็ดของผัก *Lactuca sativa* และลด เปอร์เซ็นต์การเข้าทำลายที่รากพืชของเชื้อราสาเหตุโรครากเน่า (*P. aphanidermatum*)

เมื่อทำการทดสอบกับพืชที่ปลูกในระบบไฮโดรโพนิกส์ (ระบบ dynamic root floating technique) ณ วิทยาลัยเกษตรและเทคโนโลยีเพชรบุรี พบว่าเมื่อฉีดพ่น (spraying) ชีวภัณฑ์ *B. velezensis* รูปแบบ ของเหลวแขวนตะกอนเข้มข้น (10¹³ CFU/มิลลิลิตร) [1% และ 10% (ปริมาตรโดยปริมาตร) ตามลำคับ] ไป ยังรากของผัก (*L. sativa* var. Red Coral ที่ปรากฏอาการของโรกแล้วอย่างชัดเจน และ *L. sativa* var. Green Oak ที่ไม่ปรากฏอาการของโรก) จะสามารถลดเปอร์เซ็นต์การเข้าทำลายที่รากพืชของเชื้อราสาเหตุโรคราก เน่าที่ปรากฏในระบบปลูก และยังพบว่าการฉีดพ่นชีวภัณฑ์มีผลต่อในการเพิ่มน้ำหนักสดและน้ำหนักแห้ง ของพืชด้วยเช่นกัน

เมื่อทำการทคสอบกับพืชที่ปลูกในระบบไฮโครโพนิกส์ (ระบบ dynamic root floating technique) พบว่าเมื่อราค (drenching) ชีวภัณฑ์ *B. velezensis* รูปแบบของเหลวแขวนตะกอนเข้มข้นไปยังผัก *Brassica* campestris var. chinensis สามารถเพิ่มน้ำหนักสุดของผักชนิดนี้ด้วยเช่นกัน

คำสำคัญ : การพัฒนาผลิตภัณฑ์แบคทีเรียปฏิปักษ์ โรคพืชที่ปลูกในระบบไฮโครโพนิกส์

Research Title Screening of bacterial antagonists and development of bacterial antagonist formulations for controlling diseases of vegetable in hydroponics condition Researcher Mana Kanjanamaneesathian¹, Ashara Pengnoo², Ruedeekorn Wiwattanapatapee² and Wanit Rotniam³

Office ¹Silpakorn University, ²Prince of Songkla University and ³Taksin University

Research Grants Research and Development Institute, Silpakorn University, Fiscal Budget of Year 2010 (Two years project)

Year of Completion 2013

Type of research applied research

Abstract

This research project aimed to (1) select an effective bacterial antagonists to control disease caused by *Pythium* spp. in vegetables grown in hydroponic system (2) develop the formulations of a bacterial antagonist, *B. velezensis*, in water-soluble granule and suspension concentrate forms and (3) test the efficacy of the selected formulation in controlling root rot disease in vegetable in hydroponic production system.

Bacillus velezensis, isolated from root of vegetable grown hydroponically, was effective in inhibiting a mycelial growth of *Pythium helicoides*, *Aphanomyces* sp. and *P. aphanidermatum* presented in the hydroponic system. This bacterium had relatively large endospore and was capable of producing IAA, a plant growth hormone. This bacterium was subsequently chosen for formulation study.

Granule formulations were composed of the bacterial endospores of *B. velezensis*, lactose and polyvinyl pyrrolidone K-30. The formulation F8 had good physical characteristics and high water solubility. Granules contained bacteria in the range of 10^{10} CFU/g and performed high mycelial growth inhibition of *Aphanomyces* sp. (96 %). However, the population of *B. velezensis* in the formulation had decreased with time after 6 months storage at room temperature (26-32°C).

Suspension concentrate formulations were composed of the bacterial spores dispersed in concentrate liquid using xanthan gum as a suspending agent. The formulation F4 had good physical characteristics and there was no sedimentation occurred after 4 week storage at room temperature. The

formulation contained bacteria in the range of 10^{10} CFU/g and performed high mycelial growth inhibition of *Aphanomyces* sp. (90.8 %). The population of *B. velezensis* in the suspension concentrate remained high and had a tendency to increase after 6 months storage at room temperature.

Initial results indicated that the suspension concentrate formulation was effective in controlling root rot when applied directly to seedlings of *L. sativa*. This efficacy was, however, nullified when the formulation was applied as a suspension to raise these seedlings.

The suspension concentrate formulation was sprayed onto the roots of one-month-old *Lactuca sativa*, grown by the dynamic root floating technique (DRFT) used as the hydroponic growing system, in two efficacy trials. In the first test with *L. sativa* (var. Red Coral) with root rot symptoms, a 1% suspension concentrate formulation (10^{13} CFU/mL) (v/v) was effective in reducing the %age of root tips colonized by the pathogen and for increasing the fresh shoot weight. In the second test with *L. sativa* (var. Green Oak) using healthy-looking roots, a 10% suspension concentrate formulation (10^{13} CFU/mL) (v/v) was also effective in reducing the %age of root tips colonized by the pathogen. The suspension concentrate formulation of the bacterium increased the fresh shoot weight.

This formulation, when applied as a drench treatment to seedlings of *Brassica campestris* var. *chinensis*, increased growth of this vegetable.

Key words : development of bacterial antagonist formulations, diseases of vegetable in hydroponics condition