

วิทยานิพนธ์นี้ เป็นการศึกษาและประเมินศักยภาพการประยุคพลังงานของเครื่องปรับอากาศแยกส่วนแบบที่มีอินเวอร์เตอร์เทียบกับแบบไม่มีอินเวอร์เตอร์ในห้องลักษณะต่างๆ โดยประเมินผลการประยุคพลอดทั้งปี ซึ่งขั้นตอนการศึกษานั้นแบ่งเป็น สองส่วน ส่วนแรกทดสอบหาค่าการใช้พลังงานจำเพาะของเครื่องปรับอากาศที่สองแบบที่ระดับการการทำความเย็น 40% ถึง 100% ของพิกัดเครื่องส่วนที่สองเป็นการนำค่าการใช้พลังงานจำเพาะของเครื่องปรับอากาศที่สองแบบไปประเมินพลังงานที่ต้องใช้พลอดทั้งปี โดยใช้โปรแกรม TRNSYS วิเคราะห์ภาระของระบบปรับอากาศเป็นรายชั่วโมงของห้อง จากการศึกษาทั้งสองส่วนสามารถอธิบายได้ดังนี้

ประสิทธิภาพการใช้พลังงานของเครื่องปรับอากาศแบบที่มีอินเวอร์เตอร์จะมีค่าเพิ่มขึ้น เมื่อใช้งานในสภาวะต่ำกว่าพิกัดสูงสุด โดยประสิทธิภาพเพิ่มเป็น 1.1, 18.6, 17.6, 36.1, 52.8 และ 48.6% เมื่อทำงานที่ระดับภาระ 90, 80, 70, 60, 50 และ 40% ตามลำดับ แต่ประสิทธิภาพของเครื่องปรับอากาศแบบไม่มีอินเวอร์เตอร์จะลดลง เมื่อใช้งานในสภาวะต่ำกว่าพิกัดสูงสุด โดยลดลงเป็น 0.2, 1.1, 6.0, 6.1, 9.3 และ 16.1% เมื่อทำงานที่ระดับภาระ 90, 80, 70, 60, 50 และ 40% ตามลำดับ เมื่อนำค่าประสิทธิภาพที่วิเคราะห์ได้ไปประเมินการใช้พลังงานทั้งปีของห้องลักษณะต่างๆ อันได้แก่ สำนักงานที่ใช้งานช่วงกลางวัน สำนักงานที่ใช้งานตลอด 24 ชั่วโมง และห้องนอนที่ใช้งานเฉพาะกลางคืน พบร่วมกับเครื่องปรับอากาศแบบที่มีอินเวอร์เตอร์ (เบอร์ 5) มีศักยภาพการประยุคพลังงานเทียบกับแบบไม่มีอินเวอร์เตอร์อยู่ระหว่าง 31.1 ถึง 44.5% และมีระยะเวลาคืนทุนอยู่ระหว่าง 1.9 ถึง 4.8 ปี และหากเลือกติดตั้งเครื่องปรับอากาศให้มีขนาดเล็กลงพอเหมาะสม กับภาระการทำงานทำความเย็นสูงสุดของห้องดังกล่าว จะทำให้สามารถประยุคพลังงานได้ 27.1 - 43.9% และมีระยะเวลาคืนทุน 0.6 - 3.2 ปี

ผลการวิจัยสรุปได้ว่า ตัวแปรที่มีผลต่อศักยภาพการประยุคพลังงานของเครื่องปรับอากาศแบบที่มีอินเวอร์เตอร์ คือ 1) การเลือกเครื่องปรับอากาศให้มีขนาดพอเหมาะสมกับห้อง 2) ช่วงเวลาการใช้งาน และ 3) ทิศทางที่ผนังห้องได้รับแสงอาทิตย์ส่องโดยตรง

This research aims to investigate an energy saving potential per annual for both inverter and non-inverter air conditioners at various loads. In this study, a number of experimental works were carried out to determine specific energy consumption of the air conditioner units. The air condition units, both inverter and non-inverter type, were tested with varying the cooling load condition from 40% to 100% of their capacity. In addition to this, the TRNSYS program was used to predict and analyze an annual energy consumption of these air conditioners based on their specific energy consumption that derived from experimental work. The analysis was conducted based on the 1 hour time interval.

From the experimental works, the energy efficiency ratio (EER) of inverter air conditioner was increased when it was operated under its maximum cooling load. The increasing of EER for the inverted type when it operated at 90, 80, 70, 60, 50 and 40% of the maximum cooling load was 1.1, 18.6, 17.6, 36.1, 52.8 and 48.6% respectively. Conversely, the result of non-inverter air condition showed that the EER was decreased when it operated under its maximum cooling load condition. The decreasing of EER for this non-inverted type was 0.2, 1.1, 6.0, 6.1, 9.3 and 16.1% when the cooling load was 90, 80, 70, 60, 50 and 40% of its maximum condition. Moreover, an annual energy consumption of these air condition units was compared based on TRNSYS model. The TRNSYS model used in this study was constructed into three different models which are models; day time office, 24hrs office and bedroom model. Comparison study of these air condition units in the three room models indicated that an annual energy saving potential of inverter air conditioner (No. 5) was 31.1-41.5% higher than the non-inverter type. With this figure, the payback period of 1.9-4.8 years was found for inverted air condition unit. Furthermore, in case that an appropriate size of the inverter air condition unit was selected, an annual energy consumption of 27.1 - 43.9% could be saved with the 0.6-3.2 years payback period.

In conclusion, the thesis presents that the parameter effect on energy saving potential on inverter air conditioner was 1) Elected optimization of air condition unit 2) Period of operation system and 3) The side of wall acquires solar energy.