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STUDY OF SIDELOBE REDUCTION ON FRACTAL-BASED 

CONFORMAL ARRAYS USING GENETIC ALGORITHM 

 

INTRODUCTION 

 

Analysis and design of antenna arrays synthesizing with a main beam and 

sidelobes have been of interest for amount of time. The implementations of those 

antennas are various used on many surfaces which are not just flat planar. Many that 

have been fitted to non-flat surface, such as vehicle or airborne exterior structure, are 

conformal antennas. Conformal array antennas are normally expected to be use to 

mobile communication or radars. In such application, one of the major problems is 

how to provide antennas with low sidelobe to avoid electromagnetic interference. 

 

Recently, Fractal geometry has been applied to numerous designs of antenna 

arrays with the improvement in sidelobe reduction and broadband coverage. More 

over, the concept of fractal gives the self-similar characteristic and space-filling 

capability. Various fractal geometries have been observed such as Koch curves, 

Sierpinski curves, Peano curves, and so on which are widely employed in many 

applications. 

 

 In this study, the objective is to analyze the fractal array behavior in sidelobe 

reduction when conformed to various surfaces. We use genetic algorithm (GA) to 

determine the sidelobe level through the vast space of solution.  GA is an optimization 

method based on the theory of natural selection which is suitable for a large number 

of parameters like excitation on each element of fractal arrays.  

 

 

 



LITERATURE REVIEW  

 

1. Isotropic point source 

 

1.1 Definition of isotropic point source 

 

An isotropic point source is a source that radiates energy uniformly in all 

directions. For such a source the radial component Sr of the Poynting vector is 

independent of θ and Φ. A graph of Sr at a constant radius as a function of angle is a 

Poynting vector, or power-density, pattern, but is usually called power pattern. The 

three-dimensional power pattern for an isotropic source is a sphere. In two dimensions 

the pattern is a circle, as in Figure 1 

 

 

Figure 1  Polar power pattern of isotropic source 

 

The isotropic source is not a physically realizable type. Even the simplest 

antennas have directional properties. As an example the power pattern of such a 

source is shown in Figure 2 where Srm is the maximum value of Sr. 
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Figure 2  (a) Power pattern and (b) relative power pattern for same source. Both 

patterns have the same shape. The relative power pattern is normalized to a 

maximum of unity (1). (Kraus and Marhefka, 2003) 

 

Sr can be expressed in 3 difference ways, absolute power pattern, relative 

power pattern and normalized pattern. Absolute power pattern is expressed in watt 

per square meter. If Sr is expressed in terms of its value in some reference direction, 

the graph is a relative power pattern. Thus, the pattern radius for relative power is   

Sr/ Srm where Srm is the maximum value of Sr. A pattern with a maximum of unity is 

called a normalized pattern.  

 

1.2 Field patterns 

 

Since the power from a point source has only a radial component which 

can be considered as a scalar quantity. For point sources we deal with far fields so E 

and H are  entirely transverse to the wave direction, perpendicular to each other, in-

phase, and related in magnitude by intrinsic impedance of medium (E/H=Z=377Ω for 

free space). Thus, the Poynting vector around a point source is everywhere radial, the 

electric field is entirely transverse, having only Eθ and EΦ component. The conditions 

characterizing the far field are: 

 

- Poynting vector radial (Sr component only) 

- Electric field transverse (Eθ and Eφ component only) 
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At a point of far field the Poynting vector and the electric field are related 

as they are in plane wave, if r is sufficiently large. The relation between the average 

Poynting vector and the electronic field is 

 

 

 

Where Z0 = instrinsic impedance of medium and  

 

 

 

Where E  = amplitude of total electric field intensity 

 Eθ = amplitude of θ component 

 Eφ = amplitude of φ component 

 

A pattern showing variation fo the electric field intensity at a constant 

radius r as a function of angle (θ,φ) is called a field pattern. The magnitudes of both 

the electric field components of the far field vary inversely as the distance from the 

source. However, they may be different functions, F1 and F2, of the angular 

coordinates, θ andφ.  

 

1.3 Phase pattern 

 

If the field varies harmonically with time and the frequency is known, the 

far field in all directions from a source may be specified by four quantities: 

 

1) Amplitude of the polar component Eθ of the electric field as a function 

of r, θ, and Φ 

2) Amplitude of the azimuthal component EΦ of the electric field as a 

function of r, θ, and φ 
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3) Phase lag δ of Eφ behind Eθ as a function of θ and φ 

4) Phase lag η of either field component behind its value at a reference 

point as a function of r, θ, and φ 

 

 

 (a) (b) 

 

(c) 

Figure 3  The pattern in (a) three-dimensional, (b) polar and (c) decibel display with 

the polarity of the lobes alternate (+ and -). (Kraus and Marhefka, 2003)  
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2. Conformal array 

 
2.1 Definition of a conformal antenna 

 

A conformal antenna is an antenna that conforms to something. The shape 

can be some part of an airplane, high-speed train, or other vehicle. The purpose is to 

build the antenna so that it becomes integrated with the structure and does not cause 

extra drag. The purpose can also be that the antenna integration makes the antenna 

less disturbing, less visible to the human eye; for instance, in an urban environment. A 

typical additional requirement in modern defense systems is that the antenna not 

backscatter microwave radiation when illuminated by, for example, an enemy radar 

transmitter (i.e., it has stealth properties). 

 

The IEEE Standard Definition of Terms for Antennas (IEEE Std 145-

1993) gives the following definition: 

2.74 Conformal antenna [conformal array]. An antenna [an array] that 

conforms to a surface whose shape is determined by considerations other than 

electromagnetic; for example, aerodynamic or hydrodynamic. 

2.75 Conformal array. See: conformal antenna. 

 

2.2 Why conformal? 

 

Many conformal antennas have been used on a modern aircraft. There can 

be more than 20 different antennas for a commercial airplane and up to 70 for 

militaries, such number may causing considerable drag and increase fuel 

consumption. The integration of antennas to the aircraft skin is highly recommended. 

Some of the antenna functions should be combined in the same unit if the design can 

be made broadband enough. The need for conformal antennas is more for the large-

sized apertures that are necessary for communications. (i.e., satellites and radars) 
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Table 1  Comparison planar array and conformal array 

 

Parameter Planar array Conformal array 

Technology Mature Not fully established 

Analysis tools Available In development 

Beam control Phase only usually sufficient, 

fixed amplitude 

Amplitude and phase, more 

complicated 

Polarization Single can be used (dual 

often desired) 

Polarization control required, 

especially if doubly curved 

Gain Drops with increased scan Controlled, depends on shape 

Frequency bandwidth Typically 20% Wider than planar is possible 

Angular coverage Limited to roughly ±60° Very wide, half sphere 

Radar Cross Section Large specular RCS Lower than planar 
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3. Array factor, main lobe and side lobe 

 

3.1 Array factor 

 

Consider an N-element antenna array located in three-dimensional space. 

Suppose that the nth element of the 3-D array is located at the rectangular coordinate 

(xn, yn, zn). Suppose that the nth element of the array nth has current amplitude 

excitation In and relative phase βn. In terms of the position vector , the array factor 

of this 3-D antenna array can be expressed as: 

 

  (3.1) 

 

where  is a unit vector in direction of field point. 

 

In this study, we set the relative phase to zero (βn = 0) and the direction of 

mainlobe to z-axis so that θ0 and φ0 are zero. The array factor of an N-element antenna 

array in 3-D space is given by 

 

 (3.2) 

  

  

  

  

where  is a vector whose component in the x-, y- and z-axes are and  

respectively, and  is a unit vector whose components along the x-,y- and z-axes are 

 and  respectively 
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The function has the following properties: 
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the arrays factors in term of n
)
 with the minimum spacing 1min dd =  and 12 add = , 

respectively. 

 

3.2 The mainlobe and sidelobes 

 

According to the beampattern in Figure 4, the highest peak in the mainlobe 

while the smaller peaks are Sidelobe. The beampattern may be interpreted as the 

spatial filter response of an array. Thus the mainline is similar to the passband in a 

spatial band-pass filter, which only passes signals in these directions. Similar to filter 

design in digital signal processing, we would like the beam to approach the delta 

pulse or equally an infinitely thin beam. But from array processing theory, this is 

impossible using an array with finite spatial extension. The location of mainlobe peak 

tells in which direction we get maximum response with the array. Another measure 

used to characterize the mainlobe is the mainlobe width or the beamwidth. Here we 

define it to be the full width of the mainlobe at 6dB below the mainlobe peak on the 

beampattern from the angular array pattern; we can measure at which angle 2φ the 

mainlobe has dropped 6dB. 
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Figure 4  Linear plot of power pattern and its associated lobes. 

 

The beamwidth is then φ for consistency and usually measured in degrees. 

The Sidelobe in the beampattern is equal to the stopband in a bandpass filter. As is 

known from window filter design, the Sidelobe can not be completely rejected using a 

finite aperture. But the Sidelobe can be suppressed a certain degree by adjusting the 

amplitude weights and elements positions. The sidelobe region or equally the 

stopband, is conveniently defined as the area in the plane outside the first zero 

crossing of the mainlobe. The sidelobe level is used as a measure on the height of the 

highest sidelobe peak in the sidelobe region and usually given in decibel (dB). The 

height of the highest sidelobe relative to the mainlobe measures an array’s ability to 

reject unwanted noise and signals, and focus on particular propagating signals. 
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4. Fractal geometry 

 

4.1 Background of Fractal 

 

A fractal is generally "a rough or fragmented geometric shape that can be 

subdivided into parts, each of which is (at least approximately) a reduced-size copy of 

the whole," a property called self-similarity. The term was coined by Benoît 

Mandelbrot in 1975 and was derived from the Latin “fractus” meaning “broken” or 

“fractured”. Mathematicians who played major role in developing the fractals are, for 

example, Cantor (1872), Peano (1890), Hilbert (1891), Koch (1904), Sierpinski 

(1916), Julia (1918). Originally, the fractal geometry was used to describe complex 

shapes in nature that cannot be easily characterized by Euclidean geometry. A fractal 

often has the following characteristics: 

 

- A fine structure at arbitrarily small scales.  

- Too irregular to be easily described in traditional Euclidean geometric 

language.  

- Self-similarity (at least approximately or stochastically).  

- A Hausdorff dimension which is greater than its topological dimension 

(although this requirement is not met by space-filling curves such as 

the Hilbert curve).  

- A simple and recursive definition. 

 

4.2 Examples of Fractal 

 

Fractals are normally generated by recursive processes of dilations and 

translations of an initial set. Each of fractals has its own initial set or generator that 

shapes in elementary form but can produce a complex form of fractal. 
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a) Koch Snowflake 

Start with an equilateral triangle and replace the middle third of every 

line segment with a pair of line segments that form an equilateral "bump." Then 

perform the same replacement on every line segment of the resulting shape, ad 

infinitum. Every iterations, the perimeter of this shape grows by 1/3rd. The Koch 

snowflake is the result of an infinite number of these iterations, and has an infinite 

length, while its area remains finite. 

   

(a)     (b) 

   

(c)     (d) 

 

Figure 5  Koch snowflake at several stages of growth (a) initiator, (b) 1st stage,          

(c) 2nd stage, (d) 3rd stage. 
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b) Sierpinski carpet 

The construction of the Sierpinski carpet begins with a square. The 

square is cut into 9 congruent subsquares in a 3-by-3 grid, and the central subsquare is 

removed. The same procedure is then applied recursively to the remaining 8 

subsquares for an infinite time. So we obtain the Sierpinski carpet. 

 

 

 

Figure 6  Sierpinski carpet at several stages of growth (a) 1st stage (b) 2nd stage  

 (c) 3rd stage (d) 4th stage. 

 

  

(c) 

(b) (a) 

(d) 
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c) Peano-gosper curve 

The forming procedure of Peano-gosper curve starts with a straight line 

of 1 unit as an initiator. Then replace the initiator with Peano-gosper curve generator 

for stage 1. Stage 2; turn the generator counterclockwise until the link between both 

ends in aligned in the same direction as of each line segment of the generator(s) in the 

previous stage. Scale the generator to the same size as that of each line segment of 

generator and replace each of previous stage lines with an appropriate scaled of the 

generator. 

 

 

Figure 7  The Peano-gosper initiator 

 

 

Figure 8  The Peano-gosper curve generator 
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(a) (b) 

 

 

(c) 

Figure 9  The first three stages in the construction of self-avoiding Peano-Gosper 

curve. The stage 1 is shown as the dashed line superimposed on the stage 2 

generator. The generator (unscale) is shown again in (b) as the dashed curve 

superimposed on the stage 2 Peano-gosper curve 
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5. Genetic algorithm 

 

5.1 Overview 

 

Genetic algorithm (GA) is an optimization and search technique based on 

the principles of genetics and natural selection. A GA allows a population composed 

of many individuals to evolve under specified selection rules to a state that maximizes 

the “fitness”. GA has some advantages that it 

 

- Optimizes with continuous or discrete variables, 

- Doesn’t require derivative information, 

- Simultaneously searches form a wide sampling of the cost surface, 

- Deals with a large number of variables, 

- Is well suited for parallel computers, 

- Optimizes variable with extremely complex cost surface (they can 

jump out a  local minimum), 

- Provide a list of optimum variable, not just a single solution, 

- May encode the variable so that optimization is done with the encoded 

variable 

- Work with numerically generated data , experimental data, or 

analytical function 

 

Even GA is intriguing and produces stunning results, but GA is not the 

best way to solve every problem. 

 

5.2 Component of a Genetic algorithm 

 

GA begins, like any other optimization algorithm, by defining the 

optimization variables, the cost function, and the cost. It ends like other optimization 

algorithms too, by testing for convergence. In between this algorithm has some 

different. A path through the components of the GA is shown as an overview 

flowchart in Figure 10.  
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Done
Done

Define cost function, cost, variables

Select GA parameters

Generate initial population

Decode chromosomes

Find cost for each chromosome

Select mates

Mating

Mutation

Convergence Check

 

Figure 10  Flowchart of genetic algorithm 

 

The GA begins by defining a chromosome or an array of variable values to 

be optimized. If the chromosome has Nvar variables given by p1,p2,…,pNvar , then the 

chromosome is written as an Nvar element row vector. 

 

 chromosome = [p1,p2,…,pNvar] (5.1) 
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Each chromosome has a cost found by evaluating the cost function, f, at p1,p2,…,pNvar 

 

 cost = f(chromosome) = f(p1,p2,…,pNvar) (5.2) 

After everything has settled, GA starts by generating a group of 

chromosomes known as population. The population has Npop chromosomes and is an 

Npop × Nbits matrix filled with random ones and zeros generated using 

 

pop = round(rand(Npop, Nbits)); 

 

Table 2  Example initial population 

 

Chromosome               Cost 

0 1 1 0 1 0 1 0 1 0 0 1 -98 

1 1 0 0 0 1 0 1 0 0 0 0 -134 

1 0 0 0 0 0 1 1 0 0 1 0 -123 

0 1 1 0 1 0 1 0 0 0 0 1 -113 

0 0 1 0 1 1 1 0 0 0 0 1 -125 

1 1 1 0 0 0 0 1 1 0 1 0 -110 

  

The selection of fittest population is to discard the chromosomes with 

highest cost. First, the Npop costs and associated chromosomes are ranked from lowest 

to highest. Then, only the best are selected to continue with the selection rate, Xrate, 

which is the fraction of Npop that survives for next step. The number of chromosomes 

that kept each generation is 

 

 Nkeep = Xrate Npop (5.3) 
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Table 3  Example selected population after 50% selection rate 

 

Chromosome        Cost 

1 1 0 0 0 1 0 1 0 0 0 0 -134 

0 0 1 0 1 1 1 0 0 0 0 1 -125 

1 0 0 0 0 0 1 1 0 0 1 0 -123 

 

Two chromosomes are selected form Nkeep chromosomes to produce two 

new offspring, until Npop- Nkeep offspring are born to replace the discarded 

chromosomes. This process is called “Mating”. The most common form of mating 

involves two parents that produce two offspring. A crossover point is randomly 

selected between the first and last bits of parents’ chromosomes. Consequently the 

offspring contain portion of the chromosomes of both parents. 

 

Parent 1  1 1 0 0 0 1 0 1 0 0 0 0 
Parent 2  0 0 1 0 1 1 1 0 0 0 0 1 

              

Offspring 1  1 1 0 0 0 1 1 0 0 0 0 1 
Offspring 2  0 0 1 0 1 1 0 1 0 0 0 0 

 

Figure 11  Example of mating 

 

Mutations will be added at the end of mating process. Random mutations 

alter a certain percentage of the bits in the list of chromosomes. A single point 

mutation changes a 1 to 0, and visa versa. Mutation points are randomly selected from 

the total number of bits in the population matrix. The number of mutation is given by; 

 

 #mutations = µ × (Npop - 1) × Nbits (5.4) 

 

Where µ is mutation rate in percent 
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Offspring 1  1 1 0 0 0 1 1 0 0 0 0 1 
Offspring 2  0 0 1 0 1 1 0 1 0 0 0 0 

              

Mutated Offspring 1  1 1 0 0 1 1 1 0 0 0 0 1 
Mutated Offspring 2  0 0 1 0 1 1 0 1 1 0 0 0 

 

Figure 12  Example of mutated chromosomes 

 

After the mutations take place, the costs associated with the offspring and 

mutated chromosomes are calculated. The process described is iterated. Then the 

processes are repeated, after ranking chromosomes the selection has been made and 

the discarded chromosomes are replaced by offspring from kept parents.



MATERIAL AND METHOD 

 
Materials 

 
1. Personal Computer (AMD AthlonTM XP3800 Dual Core+ 1.67GHz 

processor, 1GB DDRRAM)  

2. MATLAB TM (MATrix LABoratory) version 7.5 

 

Methods 

 

 The purpose of this research is to study the behavior of array antennas on 

sidelobe reduction when conformed to various surfaces. By using the concept of 

genetic algorithm, we search through the wide space of solutions. We start with 

developing Matlab codes to generate the selected conformal fractal arrays and to 

synthesize the arrays with low sidelobes. Then analyze results of sidelobe reduction. 

 

1. Generating the fractal-based conformal arrays 

 

1.1 Generate the 3rd stage Peano-gosper curve to specify the coordinates for 

fractal array. By using procedure mentioned above we’ve acquired a Peano-gosper 

curve at the 3rd stage. Assume that the array elements are positioned on each corner 

and each end of the curve, so we gain 344 array elements along the 3rd stage Peano-

gosper curve. 

 

1.2 Conform the array to selected surfaces by project each coordinate of 

elements to the selected surface. We have chosen several shapes of surfaces that are 

parabolic dome shape, part of cylindrical shape, and cosine-ring shape. So we obtain 

coordinates of conformed arrays. 
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2. Sidelobe evaluation with Genetic algorithm 

 

 This research main objective is to analyze how fractal arrays behave when 

conformed to surfaces. By using concept of genetic algorithm we synthesize our 

arrays with low sidelobe level. Several of surfaces, arrays being mounted, are 

presenting different sidelobe levels and patterns. 

 

 

Figure 13  Flow chart of methodologies 
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We represent a relative current excitation on 344 elements of array by a 344-

decimal gene chromosome which is used in the process of sidelobe evaluations with 

concept of genetic algorithm. We’ve generated 16 chromosomes that the genes are 

randomized from 0 to 5 as the initial populations. After evaluating the initial 

population by sidelobe level, 50 percent of fittest chromosomes are selected and the 

rest are discarded. The remained chromosomes are matched to produce offsprings. In 

the crossover process, the crossover point is determined at the middle of each 

chromosome. Mutation rate is set to 10 percent and a mutated gene is randomly 

selected from 344 genes in a chromosome. This work is aimed to run each model for 

2000 iterations.  

 

3. Analysis the results 

  

We repeat evaluating sidelobe levels in all selected models so that there is 

sufficient data to analyze.



RESULTS AND DISCUSSION 

 

Results 

 

1.  Peano-gosper conformal arrays synthesis using genetic algorithm 1st setting 

 We’ve set up the model parameters as shown in Table 4 

 

Table 4  General Parameters of the simulation model 

 

Parameter Value 

Minimum space between elements (dmin) λ 

Peano-gosper stage of growth 3 

Current excitation (In) 0-5 

Number of chromosome in a generation 16 

Number of generations in GA process 2000 

 

1.1 Simulation results of Peano-gosper array conformed to a cylindrical 

surface by x-axis 

 

By integrate each coordinate of elements of the array to a cylindrical shape 

with the height (Z) equal to 2 times of dmin we acquire the geometry of the conformed 

array as shown in Figure14. We used GA to optimize the sidelobe level of the array. 

Figure17 shows the normalized plot of array factor and Figure16 shows the reduction 

of sidelobe level in 2000 generation that have been performed. 
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(a) 

 

(b) 

 

Figure 14  Element locations for the (a) x-z, (b) y-z, and (c) x-y views of x-axis 

cylindrical conformed array. 
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(c) 

Figure 14  (continued) 
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Figure 15  3-dimension view of conformed array with printed number of elements. 

 

Figure 16  Evolution diagram of genetically optimized conformed array shows the 

reduction of sidelobe level from nearly zero to -12.497 dB. 
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(a) 

 

(b) 

Figure 17  Normalized genetically optimized array factor versus (a) θ for φ = 90°,   

(b) φ for θ  = 90°, and (c) top view of the radiation pattern of the x-axis 

cylindrical conformal array. 
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(c) 

 

Figure 17  (continued) 
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1.2 Simulation results of Peano-gosper array conformed to a cylindrical 

surface by y-axis 

 

We’ve change the axis of cylindrical shape to y-axis, other settings using 

the same as 1.1. We have got the result from the simulation as shown in Figure 18  

 

 

(a) 

 

(b) 

 

Figure 18  Element locations for the (a) x-z, (b) y-z, and (c) x-y views of y-axis 

cylindrical conformed array. 
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(c) 

Figure 18  (continued) 
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Figure 19  3-dimension view of y-axis cylindrical conformed array with printed 

number of elements. 

 

 

Figure 20  Evolution diagram of genetically optimized conformed array shows the 

reduction of sidelobe level from zero to -13.179 dB. 
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(a) 

 

(b) 

Figure 21  Normalized genetically optimized array factor versus (a) θ for φ = 90°,   

(b) φ for θ  = 90°, and (c) top view of the radiation pattern of the y-axis 

cylindrical conformal array. 
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(c) 

Figure 21  (continued) 
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1.3 Simulation results of Peano-gosper array conformed to a cosine-ring 

surface. 

 

The results of Peano-gosper based conformal array that conformed to 

cosine-ring surface are shown as follow: 

 

(a) 

 

(b) 

 

Figure 22  Element locations for the (a) x-z, (b) y-z, and (c) x-y views of cosine-ring 

conformed array 
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(c) 

Figure 22  (continued)  
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Figure 23  3-dimension view of conformed array. 

 

Figure 24  Evolution diagram of genetically optimized conformed array shows the 

reduction of sidelobe level from -3.5 dB to -7.168 dB. 
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(a) 

 

(b) 

Figure 25  Normalized genetically optimized array factor versus (a) θ for φ = 90°,    

(b) φ for θ  = 90°, and (c) top view of the radiation pattern of the cosine-

ring conformal array. 
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(c) 

Figure 25  (continued) 
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2.  Peano-gosper conformal arrays synthesis using genetic algorithm 2nd setting  

 

We’ve reduced the  current excitation on each element to binary and other 

settings remain the same. By this setting, we acquire the results of simulation as 

follow: 

 

2.1 Simulation results of Peano-gosper array conformed to a cylindrical 

surface by x-axis 

 

As the geometry is the same as 1.1 so we will not show that again. The 

results from GA are shown as follow: 

 

 

Figure 26 Evolution diagram of genetically optimized conformed array shows the 

reduction of sidelobe level from about -2 dB to -12.223 dB. 
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(a) 

 

(b) 

Figure 27  Normalized genetically optimized array factor versus (a) θ for φ = 90°,   

(b) φ for θ  = 90°, and (c) top view of the radiation pattern of the x-axis 

cylindrical conformal array. 
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(c) 

Figure 27  (continued)  
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2.2 Simulation results of Peano-gosper array conformed to a cylindrical 

surface by y-axis 

 

 

Figure 28  Evolution diagram of genetically optimized conformed array shows the 

reduction of sidelobe level from about -1 dB to -12.093 dB. 
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(a) 

 

(b) 
Figure 29  Normalized genetically optimized array factor versus (a) θ for φ = 90°,   

(b) φ for θ  = 90°, and (c) top view of the radiation pattern of the y-axis 

cylindrical conformal array. 
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(c) 

Figure 29  (continued)  
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2.3 Simulation results of Peano-gosper array conformed to a cosine-ring 

surface 

 

 

Figure 30  Evolution diagram of genetically optimized conformed array shows the 

reduction of sidelobe level from about -3.7 dB to -9.193 dB. 
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(a) 

 

(b) 

Figure 31  Normalized genetically optimized array factor versus (a) θ for φ = 90°,   

(b) φ for θ  = 90°, and (c) top view of the radiation pattern of the cosine-

ring conformal array. 
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(c) 

Figure 31  (continued)  
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Discussion 

 

 After we’ve performed the simulation of the conformal Peano-gosper array by 

using genetic algorithm to optimize sidelobe level for all selected models with various 

setting parameters, we can draw out some picture from the solutions that acquired. 

First of all, the results show that our models contain unchanged Peano-gosper curve 

pattern on the top view as shown in Figure 14(c), 18(c) and 22(c).  

 

 Second, with the concept of genetic algorithm we are capable of reducing the 

sidelobe level from high level to reasonable level for each model as shown in Figure 

16, 20, 24, 26, 28 and 30. Therefore, consider each conformal surfaces that affect to 

the arrays, the results show that radiation pattern of each conformal arrays is 

depended on shape of the conformed surface also if we determine through Figure 

17(c), 21(c) and 25(c) or Figure 27(c), 29(c) and 31(c). 

 

 We are now comparing the genetically optimized sidelobe level of the 

experimental arrays. Regarding to Figure 14 to 31, Figure 32 shows the comparison of 

sidelobe level between the model applying maximum current excitation at 5 and 1 

(Imax = 5 vs. Imax = 1) via evolution diagrams, Figure 33 shows the comparison 

between each models and Table 5 show the summarized result of this thesis. 

 

We analyze the other results of simulations which are 2000th iteration’s 

arrangements of current excitation by testing each model’s arrangement on different 

frequency by alternating element’s minimum distance (dmin) to λ/2 and 3λ/4. Figure 34 

to 39 show the radiation pattern of each model in various dmin. As the figures have 

shown the frequency has some effect to the size and shape of radiation pattern but still 

remain the main pattern of its models. 
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(a) 

 
(b) 
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(c) 

Figure 32  Evolution diagrams show the comparison of the sidelobe level for each 

models between current excitation maximum (Imax) equal to 5 (solid line) 

and 1 (dash line) (a) x-axis cylindrical conformal array, (b) y-axis 

cylindrical conformal array, and (c) cosine-ring surface conformal array. 

 



 

52

 
Table 5  Summarized results of the experiments 

 

Maximum 
current 

excitation 

Conformed surface Sidelobe level 
at 1st  

generation 
(dB) 

Sidelobe level 
at 2000th 

generation 
(dB) 

Reduced 
Sidelobe 

(dB) 

5 x-axis cylindrical - 0.947 dB - 12.497 dB 11.550 

5 y-axis cylindrical 0 dB - 13.179 dB 13.179 

5 cosine-ring surface - 3.284 dB - 7.168 dB 3.884 

1 x-axis cylindrical 0 dB - 12.223 dB 12.223 

1 y-axis cylindrical - 0.651 dB - 12.093 dB 11.442  

1 cosine-ring surface - 3.737 dB - 9.139 dB 5.402 

 

(a) 

Figure 33  Evolution diagram shows comparison of sidelobe level between each 

models for (a) the maximum current excitation equal to 5 and (b) the 

maximum current excitation equal to 1, solid line as x-axis cylindrical, 

dash-dot line as y-axis cylindrical and dash line as cosine-ring. 
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(b) 

Figure 33  (continued)  
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(a) 

 

(b) 

Figure 34  Radiation pattern of 2000th generation x-cylindrical conformal array that 

the maximum current excitation equals to 5 at different sizes of minimum 

spacing (dmin): (a) λ/2, (b) 3λ /4, and (c) λ. 
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(c) 

Figure 34  (continued)  
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(a) 

 

(b) 

Figure 35  Radiation pattern of 2000th generation x-cylindrical conformal array that 

the maximum current excitation equals to 1 at different sizes of minimum 

spacing (dmin): (a) λ/2, (b) 3λ /4, and (c) λ. 
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(c) 

Figure 35  (continued)  
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(a) 

 

(b) 

Figure 36  Radiation pattern of 2000th generation y-cylindrical conformal array that 

the maximum current excitation equals to 5 at different sizes of minimum 

spacing (dmin): (a) λ/2, (b) 3λ /4, and (c) λ. 
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(c) 

Figure 36  (continued)  
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(a) 

 

(b) 

Figure 37  Radiation pattern of 2000th generation y-cylindrical conformal array that 

the maximum current excitation equals to 1 at different sizes of minimum 

spacing (dmin): (a) λ/2, (b) 3λ /4, and (c) λ. 
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(c) 

Figure 37  (continued)  
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(a) 

 

(b) 

Figure 38  Radiation pattern of 2000th generation cosine-ring conformal array that the 

maximum current excitation equals to 5 at different sizes of minimum 

spacing (dmin): (a) λ/2, (b) 3λ /4, and (c) λ. 
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(c) 

Figure 38  (continued)  
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(a) 

 

(b) 

Figure 39  Radiation pattern of 2000th generation cosine-ring conformal array that the 

maximum current excitation equals to 1 at different sizes of minimum 

spacing (dmin): (a) λ/2, (b) 3λ /4, and (c) λ. 
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(c) 

Figure 39  (continued)  
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CONCLUSION AND RECOMMENDATION 

 

Conclusion 

 

The Peano-gosper based conformal arrays have been presented with sidelobe 

reduction on various surfaces, x-axis cylindrical, y-axis cylindrical and cosine-ring 

surface. It has been shown that the sidelobe level was reduced from high sidelobe 

levels to acceptable levels, about -12dB and -13dB for cylindrical models, by using 

genetic algorithm concept optimization that we run for 2000 iterations. It is found that 

the different shape and size of conform surfaces has a major effect on how sidelobe 

level of the array decreasing and also has a major role in constructing the radiation 

pattern. 

 

Recommendation 

 

 For further work, we may emphasize on shapes of conformed surfaces to be 

more realistic and substitute each element with others than isotropic point source such 

as dipole or patch which make our models be more practical. Genetic algorithm 

optimization drawback, like other optimization techniques, is time-consuming so we 

should also focus on improving the speed of genetic algorithm. 

 

 This study limitation which is the implementation of the isotropic point 

sources as the array’s elements is not practical and the direction vector of each 

element may not point to the same direction. We have to add more parameters into the 

equations or derive new equations for different situations. The limitation also applies 

to the radiation pattern, which we had represented in 2-dimension view instead of 

actual 3-dimension, that shapes of radiation pattern may goes uncertainty if we vary 

the frequency or dmin as show in Figure 34 to 39. 



 

67

LITERATURE CITED 
 

Arakaki, D., D. H. Werner and R. Mittra.  2000.  A Technique for Analyzing 

Radiation from Conformal Antennas Mounted on Arbitrarily-Shaped 

Conducting Body, pp. 10-13.  Antennas and Propagation Society 

International Symposium, 2000.  IEEE.  

 

Balanis, C.  2005.  Antenna Theory: Analysis and Design.  John Wiley and Sons, 

Inc., New York. 

 
Bogard, J.N., D.H. Werner and P. L. Werner.  2004.  A Comparison of the Peano-

Gosper Fractile Array with the Regular Hexagonal Array. Microwave and 

Optical Technology Letters, 43(6): 524-526. 

 
Bondarenko, A.N. and Y.V. Mikhailova.  2005.  Radiation Pattern Synthesis for 

Arrays Based on Sierpinski Gasket, pp. 39-42.  KORUS'2005.  IEEE. 

 

Bray, M. G., D. H. Werner, D. W. Boeringer and D. W. Machuga.  2002.  

Optimization  of Thinned Aperiodic Linear Phased Arrays Using Genetic 

Algorithms to Reduce Grating Lobes During Scanning.  IEEE Transactions 

on Antennas and Propagation, 50(11): 2919-2924. 

 
Falconer K. 2003.  Fractal Geometry Mathematical Foundations and 

Applications.  2nd Edition.  John Wiley and Sons, Inc., New York. 

 

Hansen, R.C. 2003. Phased Array Antennas.  John Wiley and Sons, Inc., New York. 

 

Haupt R. L.  1995.  An Introduction to Genetic Algorithms for Electromagnetics.  

IEEE Antennas and Propagation Magazine.  37: 7-15.    

 

   and S. E. Haupt.  2003.  Practical Genetic Algorithms.  John Wiley and 

Sons, Inc., New York. 

 



 

68

Holder, E. J.  1991.  Sidelobe Performance in Quadratic Phase Conformal Arrays.  

IEEE Transactions on Antennas and Propagation.  39: 1234-1237. 

 

Johnson, J. M. and Y. Rahmut-Samii.  1997.  Genetic Algorithms in Engineering 

Electromagnetics.  IEEE Antennas and Propagation Magazine.  39: 7-15. 

 

Josefsson, L. and P. Persson.  1999.  Conformal Array Synthesis including Mutual 

Coupling.  Electronics Letters.  35: 625-627. 

 

 ,    .  2006.  Conformal Array Antenna Theory and Design.  John 

Wiley and Sons, Inc., New Jersey. 

 

Kraus, J. D. and R.J. Marhefka.  2003.  Antennas for All Applications.  McGraw-

Hill, Singapore. 

 
Kim Y. and D. L. Jaggard.  1986.  The Fractal Random Array, pp. 1278-1280.  

Proceeding of the IEEE.  IEEE. 

 

Kuhirun W., 2003.  A New Design Methodology for Modular Broadband Arrays 

Based on Fractal Tilings.  Ph.D. Thesis, the Pennsylvania State University at 

University Park USA. 

 
 
 , T. Jariyanorawiss, M. Polpasee, and N. Homsup.  2004.  Solving for Current 

Distribution Using Gauss-Seidel Iteration and Multigrid Method.  

Proceedings of the International Conference in ECTI, Thailand. 

 
 
Mandelbrot, B. B.  1983.  The Fractal Geometry of Nature.  John Wiley and Sons, 

Inc., New York. 

 

 

 



 

69

Massa, A., M. Donelli, F. G.B. De Nataale, S. Caorsi and A. Lommi.  2004.  Planar 

Antenna Array Control With Genetic Algorithms and Adaptive Array Theory. 

IEEE Transactions on Antennas and Propagation, 52: 2919-2924. 

 

Petko, J.S. and D.H. Wener.  2005.  The Evolution of Optimal Linear Polyfractal 

Arrays Using Genetic Algorithms.  IEEE Transactions on Antennas and 

Propagation, 53: 3604-3615. 

 

Polpasee, M.  2007.  Sidelobe Reduction in Peano-gosper Fractal Arrays Using 

Genetic Algorithms.  M.Eng. Thesis, Kasetsart University, Thailand. 

 

   and N. Homsup.  2006a.  Peano-Gosper Fractal Array Synthesis Using 

Genetic Algorithms.  Ocean 2006 IEEE Asia Pacific.  Singapore. 

 

 ,    .  2006b. Optimized low sidelobe level of Peano-Gosper Fractal 

Arrays Synthesis Using Genetic Algorithms. Proceedings of the 

International Conference in ECTI, Thailand. 

 
 ,    .  2006c.  Optimize Directivity Pattern for Arrays by Using Genetic 

Algorithms Based on Planar Fractal Arrays.  Proceedings of the 

International Conference in ISCIT, Thailand. 

 

 ,     and W. Kuhirun.  2005.  Analysis of Fractal Arrays Generated using 

a 3x3 Subarray Generator. Proceedings of the International Conference in 

ECTI,   Thailand. 

 

Polpasee, M., W. Kuhirun and N. Homsup.  2005.  Analysis of Fractal Arrays 

Generated using a 3x3 Subarray Generator, pp. 1485-1488.  Proceedings of 

the International Conference in ISCIT, China. 

 
Schuman, H.K.  1994.  Conformal Array Synthesis. Antennas and Propagation 

Society International Symposium, 1: 526-529  



 

70

Soltankarimi,F., J. Nourinia and Ch. Ghobadi.  2004.  Sidelobe Level Optimization in 

Phased Array Antennas Using Genetic Algorithm, pp. 389-394.  ISSSTA 

2004, Australia. 

 

Thor, B. and L. Josefsson.  2003.  Radiation and Scattering Tradeoff Design for 

Conformal Arrays.  IEEE Transaction on Antennas and Propagation, 51: 

1069-1076 

 

Villegas, F.J., T. Cwik, Y. Rahmat-Samii and M. Manteghi.  2004.  A Parallel 

Electromagnetic Genetic-Algorithm Optimization (EGO) Application for 

Patch Antenna Design.  IEEE Transactions on Antennas and Propagation, 

52: 2424-2435. 

 

Vinoy, K.J.  2002.  Fractal Shaped Antenna Elements for Wide-and-Multi Band 

Wireless Application.  Ph.D. Thesis, The Pennsylvania State University at 

University Park USA. 

 

Virunha, P., M. Polpasee and N. Homsup.  2006.  Optimized Directivity of Square-

Planar Fractal Arrays Using Genetic Algorithms, pp. 28-31.  Ocean 2006 

IEEE Asia Pacific, Singapore. 

 

Wener, D. H. and P. L. Werner.  1999.  A General Class of Self-Scalable and Self-

Similar Arrays, pp. 2882-2885.  Antennas and Propagation Society 

International Symposium.  Orlando, FL, USA. 

 
   and R. Mittra.  2000.  Frontiers in Electromagnetics.  IEEE Press, New 

York. 

 

  , K.C. Anusko and P.L. Werner.  1999.  The Generation of Sum and 

Difference Patterns Using Fractal SubArrays.  Microwave And Optical 

Technology Letters, 22: 524-526. 



 

71

Wener, D. H., R. L. Haupt and P. L. Werner.  1999. Fractal Antenna Engineering: The 

Theory and Design of Fractal Antenna Arrays. IEEE Antennas and 

Propagation Magazine, 41: 37-59. 

 

 , W. Kuhirun and P. L. Werner.  2004.  Fractile Arrays: A New Class of Tiled 

Arrays With Fractal Boundaries.  IEEE Transactions on Antennas and 

Propagation, 52: 2008-2018. 

 
 ,    ,      2005.  The Peano-Gosper Fractal Array.  IEEE 

Transactions on Antennas and Propagation, 51: 2063-2072. 

 
Yan, K. and Lu Y.  1997.  Sidelobe Reduction in Array-Pattern Synthesis Using 

Genetic Algorithm.  IEEE Transactions on Antennas and Propagation,   

45: 1117-1122. 

 
Zhu, J., A Hoorfar and N. Engheta.  2004.  Peano Antennas.  IEEE Antennas and 

Wireless Propagation Letters, 3: 71-74.



 

CURRICULUM VITAE 
 

NAME : Mr. Songkran PISANUPOJ 

 

BIRTH DATE : April 13, 1982 

 

BIRTH PLACE   : Bangkok, Thailand 

 

EDUCATION :  YEAR INSTITUTE  DEGREE/DIPLOMA  

 2002 Kasetsart University B.Eng. (Electrical) 

 

POSITION/TITLE : Engineer 

WORK PLACE : Provincial Electricity Authority 

  

 




