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Fig. 1. (a) Porphine (PHz) geometry and definition of its atom types: nitrogen (blue), carbon (white) and hydrogen (gray) and (b) a schematic representation of the initial
configuration for the PH, monolayer in a rectangular box in which the z-axis is chosen to be perpendicular to the interface. (For interpretation of the references to color in

this figure caption, the reader is referred to the web version of the article.)

ordered as concentration increase. For comparison, it is interesting
to investigate in the same manner for the porphine molecule that
has a similar structure with different donor atoms at the meso posi-
tions. Therefore, in this study, five different surface concentrations
of PH, molecules, covering a full range of the 7-A isotherm, were
investigated using molecular dynamics computer simulation tech-
nique.

2. Materials and methods
2.1. Potential function models

The potential model describing intermolecular interactions of
all molecules in monolayer model system is based on the pair-wise
additive approximation, which is the sum of the Lennard-Jones and
Coulomb interactions as given in Eq. (1),

12 6
o A% (%
U"""_Zz B (’1) (’1)
i

Here, r; is the distance between atom type i and j, g is the
atomic charge, and o and ¢ are the Lennard-Jones parameters
(see details in Table 1). The cross interactions (i.e., Lennard-Jones
term) between the two different atom types were obtained via the
Lorentz-Berthelot combination rule. The Lennard-jones parame-
ters for water, PH, and nitrogen molecules were taken from the
OPLS force field [28]. Molecular geometry and charge distribution
of PH, molecule were obtained from quantum chemical calcu-
lations. The density functional theory method with the 6-31G**
basis set (B3LYP/6-31G**) was employed. This method has been
successfully applied for reproducing physical properties and elec-
tronic structures of the free base porphyrin molecule [19,29] and
shows good agreement with the results obtained by Parrinello [23]
and Kozlowski [22]. A charge distribution of the PH, molecule was
obtained via Mulliken population analysis. The SPC model [30]
was employed to describe water-water interactions and the united
atom description was applied to the nitrogen molecule. Both PH,
and water molecules were kept as rigid bodies throughout the
simulations. The molecular geometries were constrained via the
SHAKE algorithm [31]. The Lennard-Jones parameters-and atomic

499
Tij

(M

charges for each atomic type in this model are summarized in
Table 1.

2.2. Simulation details

Molecular dynamics simulations were performed for the PH;
monolayer at the water-nitrogen gas interface having different sur-
face concentrations which corresponds to the numbers of 10, 15,
20, 25, and 30 PH; molecules per an area of 3.77 nm x 3.77 nm,
respectively (as denoted by systems A-E). Such surface concen-
trations cover a full range of the experimental 7-A isotherm [16].
The simulations were carried out in the periodic rectangular box
having a volume of 3.77 nm x 3.77 nm x 10.54 nm, which contained
864 water and 216 nitrogen molecules. The initial configurations of
the PH, monolayers were generated in a regular pattern and then
inserted at the water-gas interface system which was taken from
previous our work [20]. Schematic representation of the PH, mono-
layer at the water-gas interface is depicted in Fig. 1(b) in which the
z-axis was chosen to be perpendicular to the interface. It is impor-
tant to note that a sufficiently large size of the simulated box in
the z-axis (more than 100 A) was necessary in order to avoid artifi-
cial interactions between particles in the central box and its replica
[32]. All five system models were simulated at a canonical ensemble
which a number of atoms (N), volume (V) and temperature (T) were
kept constant. A constant temperature of 300 K was maintained by
using the Berendsen-thermostat [33] with a coupling constant of
0.1 ps. Water, PH; and N, molecules were coupled individually to
the heat bath. The equations of motion were integrated using a
leapfrog algorithm with a time step of 2 fs. The systems were equi-
librated for a period of 5 ns, followed by a 2 ns simulation for data
collection. During the entire simulations, periodic boundary condi-
tions were applied in all three spatial directions. The electrostatic
interactions were calculated using the Fast Particle Mesh Ewald
method (PME) method [34]. Fourth order (cubic) interpolation was
used with areal space cutoff of 1.0 nm and a grid spacing of 0.12 nm.
Van der Waals interactions were cutoff after a distance of 1.5 nm.
These simulations were performed using the Gromacs package ver-
sion 3.2.1 [35,36]. Molecular visualization was carried out by using
the VMD program [37].
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Table 1
Definition of atom types, atomic charges and Lennard-Jones parameters for water (H,0), porphine (PH;), and nitrogen (N;) molecules, respectively.
Molecule Atom type Charge £ (kJmol-') o (nm)
H0 (o] -0.820 0.6500 0316
H,0 H 0.410 0.000 0.000
PH, Conese -0.278 0.2929 0.350
PH, Npyr -0.673 0.7115 0.325
PH, (4 -0.192 0.2929 0.355
PH, Cp 0.399 0.2929 0.355
PH, 0.131 0.0000 0.000
PH; Ng pyr -0.760 0.7115 0.325
PH, Cpa -0.179 0.2929 0.355
PH, Cap 0.347 0.2929 0.355
PH; Hg 0.145 0.0000 0.000
PH; Hpyr 0.415 0.1256 0.242
PH; Hmeso 0.137 0.0000 0.000
N, N, 0.000 0.5937 0.379
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200 [ Fig. 3. Monolayer surface tension (ym) of the PH, monolayers as a function of
0 . : RN molecular area (A) for the five surface concentrations. Insets of Fig. 3 correspond
-1.0 0.5 0.0 0.5 1.0 to gaseous (system A), expanded (system B), condensed (systems C and D), and
z/nm collapsed (system E) phases, respectively.

Fig. 2. Density profiles of (a) PH, and (b) water molecules as a function of z-
coordinate for five simulated systems. The vertical dash line indicates the interface
boundary (see definition in Section 3.1).

3. Results and discussion
3.1. Density profiles

To characterize the interfacial behaviors of the PH, monolayer,
the density profiles of PH, and water molecules as a function of z-
coordinates were calculated. To identify the interface position (z;)
between water and PH, molecules, the average z-positions (zg) of
PH; molecules were calculated via Eq. (2) and then z; =zy — 0.5:

" [ z.p(z)dz

- 2
[ p(z)dz (2)

Zg

Here, p(z) is the mass density of PH, molecules and the numerical
value of 0.5 is estimated from a half diameter of the PH, molecule.
For systematic comparison, it is convenient to shift the averaged
position, zg, to be zero. The PH, and water densities are displayed in
Fig. 2(a) and (b), respectively. As seen in Fig. 2(a), adding more PH,
molecules onto the gas-water interface leads to increasing peak
height. However, it appears that the peak height is saturated at the
surface density of 25 molecules per an area of 3.77 nm x 3.77 nm
(system D) and thus addition of the PH, molecules beyond this
surface density results in a widening peak width.

The PH; density curves as they appear in Fig. 2(a) can be clas-
sified into four groups, corresponding to the gaseous (system A),
expanded (systems B), condensed (systems C and D), and collapsed
(system E) phases of the PH, monolayers, respectively, according
to a full range of the -A isotherm plot (see detailed discussion in
Section 3.2). For the gaseous phase (system A), it is clearly seen that
the PH, probability distribution is low and quite broad. Each PH,
molecule in the monolayer has a sufficiently large free area (molec-
ular area ~ 1.42 nm?2). Under such circumstances, water molecules
are likely to fill up the empty space as seen in Fig. 2(b) where
the water density profile is still prominent beyond the interface
position (z; = —0.5 nm). The density profile of water is significantly
reduced for the expanded (system B), condensed (system C and D),
and collapsed (system E) phases. A clear picture of these results can
be more conceivably presented by simulation snapshots as shown
in the inset of Fig. 3.

In Fig. 2(a), the density peak of PH, molecules increases as
more PH; molecules are added into the monolayer (systems A-D).
However, the density curve of system E becomes lower and broad
indicating that the monolayer in this system has collapsed. It can
be explained that as the PH, molecules are too closely packed, their
molecular arrangements are re-adjusted to minimize the repul-
sive interaction. Consequently, some PH, molecules are pushed
out from the initial monolayer into the water and gas phases.
Hunter and Sanders [38] reported that the optimized geometry of
porphine-porphine dimer is observed in such a way that the pyr-
role ring of one porphine align directly above the m-cavity at the
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Table 2

Molecular area (A), a number of hydrogen bonds (nys ), interaction energies of the PH,-PH; and the PH;-water systems, and an average distance between the center of mass

of the nearest neighbors PH, molecules (d) in five surface concentrations.

System A(nm?) Nyp Interaction energy (kJ/mol) d(nm)
PH;-PH; PH,-water

A 1.42 1.48 + 0.02 -184.77 + 9.02 -195.82 + 7.83 0447 +0.013

B 0.95 0.78 + 0.10 -213.32 + 10.83 -127.75 £ 5.39 0.442 + 0.013

€ 0.71 0.56 + 0.07 —245.74 + 9.85 -107.05 + 3.85 0.450 + 0.013

D 0.56 0.34 + 0.05 —-305.46 + 10.78 —75.25 + 3.18 0.423 + 0.011

E 0.47 0.47 + 0.06 —249.22 + 11.07 -100.07 £ 3.76 0.446 + 0.014

center of the other. This arrangement yields optimal 71 interac-
tions. Itis also seen that an average distance (d) between the nearest
neighbors of the PH; molecules given in Table 2 is nearly the same
for all five systems. This value (~0.4 nm) is larger than an optimal
distance of the PH; dimer system (0.34 nm). It causes water contri-
bution to the PH,-PH, interactions. A previous LB experiment on
copper porphyrazine (CuPz) [16] showed that the CuPz monolayer
formation starts to be observed at a molecular area of 1.25 nm?
for the lowest initial concentration. This study also reported the
limiting molecular area for compression of such monolayers rang-
ing 0.40-0.55 nm?, depending on the initial surface concentrations.
Qian et al. [6] prepared a monolayer film of tetrapyridylporphyrin
(TPyP) on a water subphase with a molecular area of 0.65 nm?. Our
results are in agreement with the experimental observations as will
be discussed further.

In Fig. 2(b), the water density profiles for all five systems are
plotted according to two regions; one region lying below the
interface position and another one above it. Below the interface
boundary, the water densities for all systems, excluding system E,
simply fluctuate around the bulk density value. Inside the interface
region, the water densities for all systems rapidly decrease from
the bulk density value as increasing number of PH, molecules are
added into the interface. It is seen from Fig. 2 that an increasing
number of PH, molecules clearly affects the water density profile
at the interface. For system A, the water density at the interfacial
region is the highest because there is the lowest number of PH,
molecules there. In such a case, all PH, molecules in the system are
easily dissolved by water molecules. The water density beyond the
interface position is significantly decreased and approaches zero
about 1.0 nm from the interface position. Some water molecules
associated with the hydration structure of the PH, molecules are
assumed to be the “guest”-water molecules, which are preferen-
tially oriented in such a way to maximize the hydrogen bonding
with the PH, molecules [19]. It was also observed that the number
of the guest-water molecules in the hydration shells decreases as
the surface concentration increases [16].

3.2. Monolayer surface tension

The surface tension, s, was calculated from the diagonal com-
ponents of the pressure tensor as follows:

Pxx + P,
Vs = (pzz_ (Lﬁ))l‘z

where L, is the z-component of the box size, P, is the normal
pressure and (Px + Pyy)/2 is the lateral pressure. In this simulation
there are two interfaces that have a surface tension. These are the
PH;/water interface (monolayer) and the water/gas interface at the
bottom of the water layer. Hence,

(3)

(4)

where yn, is the monolayer surface tension and ywg is the surface
tension at the water/gas interface. In order to calculate yn, it was
first necessary to determine yg. MD simulation was performed on

Vs =Vm+ Vwg

a water layer with the PH, molecules removed. The water simu-
lation was run for 3 ns using the same simulation parameters as
had been used for the PH, simulations. The monolayer surface ten-
sion as a function of the area per PH, molecules is given in Fig. 3.
It is clearly seen that the monolayer surface tension of the PH,
molecules increases with the reduction of molecular area and sud-
denly drops at the highest surface density (system E). It is also seen
that the monolayer surface tension of the system D is the high-
est. This implies that the film formation at such a molecular area
is the most stable. The lowest surface tension at the largest molec-
ular area (system A) indicates that the PH, monolayer film can be
easily dissolved by water. The dramatic decrease in the monolayer
surface tension at the smallest molecular area reflects an unstable
monolayer film.

According to an average interaction energy analysis given in
Table 2, the PH,-PH; interaction energy decreases significantly
as increasing surface concentration (systems A-D) and goes up
at the system E, but the PH,-water interaction energy shows a
reverse direction This result indicates that an increment of the PH,
molecules on a water surface leads to enhance the stability of the
PH, monolayer formation until it reaches the optimal point (sys-
tem D). Beyond this point, the monolayer film stability is reduced
because some PH, molecules start to move out from the monolayer
(i.e., some diffuse into the water bulk and into the gas phase). Conse-
quently, the collapsed phase of the PH, monolayer at the molecular
area results. Capan et al. [13] reported three existent monolayer
phases of the free base porphyrin including gaseous, expanded, and
condensed phases. Our result not only gives good agreement with
the experimental data [16], but also exhibits a clear picture of phase
transfer of the PH, monolayers as depicted in the insets of Fig. 3.

3.3. Hydrogen bonding

The mr-m interaction concept usually proposed as an explana-
tion for the stability of the phtalocyanines packing [8] may not be
used alone as the major role for PH, stability [19]. Thus, water-PH;
interaction through hydrogen bonding was found to play another
important role in keeping the whole balance of the system. As
clearly seen in Table 2, the interaction energy between the PH; and
water molecules reduces as the number of PH, molecules increases
excluding the highest surface concentration. This suggests that the
hydrogen bonding is less contribution to the monolayer film stabil-
ity at the higher surface concentrations. Characteristics of hydrogen
bonding between water and PH, molecules can be investigated
by means of hydrogen bond analysis. To determine the existence
of hydrogen bond, a geometrical criterion for donor and acceptor
atoms is used (i.e., r<0.35 nm, @ < 60°). In our models, N atoms of
PH, and O atoms of water are considered as acceptors and donors,
respectively. The average values of hydrogen bonds, nyg, calculated
as a function of molecular area (A) are given in Fig. 4. A number of
hydrogen bond is reduced with decreasing molecular area. For the
higher surface concentrations (systems C-E) molecular packing of
the PH, molecules force them to be tilted enough that hydrogen
bonding between N atoms of PH, and bulk water is too difficult. Fur-
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face for the five different surface concentrations.

thermore, an increment in PH, surface concentration also removes
guest-water molecules that can form additional hydrogen bonds.
These characteristics are similarly observed in our previous study
in which a porphyrazine monolayer at the water-gas interface was
simulated [20]. In that case, hydrogen bonds contribute to the film
stability to a larger extent.

Summation over all hydrogen bonds leads to a relatively compli-
cated dependence of hydrogen bonding on surface concentration.
Fig. 4 shows the relation between average number of hydrogen
bonds and molecular area. This plot reveals that an increment
in surface concentration (from systems A to D) causes significant
decline in the hydrogen bond number as a result of the reduction
in guest-water molecules as well as a steeper tilted orientation of
PH; over the water surface. However, further increase in surface
density from the systems D to E surprisingly brings the hydrogen
bond number up again. This results suggest that hydrogen bonding
plays an important role in the stability of the film formation, apart
from the usually believed 7- interactions [38].

3.4. Molecular orientation

Molecular orientation of the PH, molecules can be extracted
from a probability distribution of a molecular tilt angle, P(6). The
tilt angle, 6, is defined as an angle between the normal vector per-
pendicular to the molecular plane (i) and the vector parallel to the
z-axis (z) as shown in an inset of Fig. 5. This probability distribution
is calculated for all five systems and plotted in Fig. 5.
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For the two lower surface concentrations (systems A and B),
the tilt angle distributions of PH, molecules are quite broad, which
indicates that PH, molecules are preferentially oriented with tilt
angles ranging from 30° to 90°. It is clear that the PH, molecules
in the lower surface concentrations (systems A and B) have more
possibility for molecular orientations, which would not be possible
for the other systems (C-E). In the condensed phase (systems C and
D) the PH, molecules are closely packed. The probability distribu-
tion of the tilt angle shows a sharp peak at the angles of 57° and
53¢ for the systems C and D, respectively. These angles are assumed
to be the B-structure (47°) as observed in the CuPz monolayer film
at the lower surface concentration [16]. For the highest concen-
tration (system E), the tilt angles start to be observed from 60" up
to 90". The maximum peak centered at 90 indicates that the PH,
molecules preferentially orient their molecular plane perpendicu-
lar to the interface. Valkova et al. [8,16] found that the molecular
orientation of copper phthalocyanine (CuPc) monolayers on water
surface can be formed in one of the three types of phase state
including the B (45°), « (65°), and x (90°) structure, depending on
initial experimental conditions. They reported that the B-structure
of the layers is more favored in gaseous phase (lower concentra-
tion), while the - and a-forms are observed in the condensed
phase. For higher concentration the x-form is dominant. Our results
exhibit that the PH, monolayers are favored to be the B-structure
for all systems except the highest surface concentration (system E)
which it is favored to be the x-structure.

4. Summary

In this study we have shown that molecular dynamics sim-
ulations using a simplified model for the PH, monolayer at the
water-gas interface can clarify the phase transforms and mono-
layer structure. In particular, these simulations exhibit that the
phase transfer of the PH, monolayer i.e., from the gaseous to the
expanded phase, from the expanded to the condensed phase, and
the condensed to the collapsed phase can be observed with increas-
ing surface concentrations. Such results are in good agreement with
the 7-A isotherm curves of CuPz monolayer obtained from experi-
ment [16]. In addition, we have found that the formation of the PH,
monolayer film is strongly influenced by changing the number of
PH, molecules at the water surface as summarized in the following
conclusions. (i) The PH, molecules are closely packed and regu-
larly formed at increasing surface concentrations. (ii) A reduction
of the guest-water molecules at the interface due to increasing the
PH; molecules not only causes better formation of monolayer film,
but also improves the film stability. We believe that the hydrogen
bonding plays a crucial role apart from the - interactions. (iii)
Finally, for the PH, monolayers, the B-structure is the more favored
of all the monolayer phases, except the collapsed one that shows
the x-structure.
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The Hydration Structure of Porphine in Aqueous Solution as Studied by Monte Carlo
Simulation Based on Using Ab Initio Potential Models
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Abstract

The hydration structure of porphine (PH;) molecule has been investigated by using Monte Carlo
simulation method. A simulation has been carried out for a system containing one porphine and
500 water molecules in a cubic box. With a volume of 500 water molecules at 298 K and 1 atm
plus additional space occupied by the porphine molecule, a periodic cubic volume of side length
of 25.0 A was yielded. A potential model describing interaction between the porphine and water
molecules has been newly developed based on ab initio calculations, while the MCY potential
model was employed to represent water-water interaction. The simulation result showed that
there five hydration layers around the porphine have been detected. The first and second layers
were named the nearest-neighbor and inner hydration shells and the corresponding numbers of
water molecules lying in such shells are 1 and 6, respectively. The water molecule in the nearest-
neighbor shell showed two preferential orientations. One most probability orientation is that the
water molecule points its dipole moment parallel to the ligand plane and the other one is that its
dipole moment points away from the ligand center with the angle of 50° respect to the z-axis.

Keywords: Porphyrins, Porphine, Hydration, Ab initio potential, Monte Carlo simulation, Water
orientation
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Molecular structures and dynamics of the porphine and porphine/Zn*? complex monolayer
films at the water-gas interface. A molecular dynamics study.
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Abstract

Interfacial structure and orientation of the monolayer films of porphine (Ph2) and its complex
with Zn*? ion (ZnPh2) have been studied by using a molecular dynamic (MD) technique. The
system model ‘consists of 15 Ph2 and 15 ZnPh2 molecules regularly distributed on a water
surface of 3.77x3.77 nm’. Two monolayer systems have been simulated at the temperature of
300 K and the constant volume. The results revealed that density distributions of Ph2 and ZnPh2
are quite significant different. The density peak of ZnPh2 is narrower and sharper than that of
Ph2. This means that the ZnPh2 molecules favorite to stay locally at the interface. In addition, it
has been observed from the density of water in the interface region that there is a small peak
appeared at the interface. This implies that the interaction between water and ZnPh2 molecules is
stronger than the interaction between water and Ph2 molecules. Molecular orientations of Ph2
and ZnPh2 molecules on the water surface have been investigated by calculating the distribution
of molecular tilted angle. The results shown that the Ph2 molecules prefer to tilt with the angle of
66.4" respect to the interface plane, while the tilted angles of ZnPh2 molecules is 71.0" and 90",
respectively. The tilted angles of 66.4° to 71.0" are assumed to correspond to the a-form of
crystalline phthalocyanine which is the most stable form.
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