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ABSTRACT

Both direct current resistivity (DCR) and controlled-source electromagnetic

(CSEM) surveys are used for measuring resistivity variation of the subsurface. The goal

of this research was to develop modeling and inversion programs for 2D DC resistivity

surveys and also the 3D CSEM modeling that can be used inside the existing ModEM

program. For 2-D DCR modeling, we developed a hybrid finite difference (FD) - finite

element (FE) method. The technique was most efficient in both CPU time and memory

when the surface elevation is incorporated into the survey. For inversion, we imple-

mented our 2-D hybrid FD-FE method for the sensitivity calculation. The inversion

algorithm was based on the data-space Occam’s inversion. Both hybrid and data-space

results in an efficient inversion program that can be used with topography. For CSEM

modeling, the modeling is based on the scattered-field technique. Its accuracy greatly

depends on the grid discretization. ModEM is a modular electromagnetic inversion

system developed under a general mathematical framework for solving the EM inverse

problem. Here, we implemented our CSEM modeling into the ModEM code. Our

preliminary results showed that a 3-D CSEM is still not practical and requires further

investigation.
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CHAPTER I

INTRODUCTION

1.1 Introduction

Resistivity is a intrinsic property of a material, which quantifies how strongly

a material opposes the flow of electric current. In most rocks, the porosity and chemical

content of the water filling the pore spaces are more important in governing resistivity

than the conductivity of mineral grains of which the rock is composed. The range of

resistivities among rocks is quite large, extending from under 10−1 to over 108 Ωm.

Rocks and minerals with resistivities below 1.0 Ωm are considered good conductors;

those from 1 to 100 Ωm are intermediate conductors and those above 100 Ωm are poor

conductors. Table 1.1 lists the ranges of resistivities for several types of water-bearing

rocks. In civil engineering, the image of the Earth’s resistivity is used to locate water

Source: G. R. Keller, in “Handbook of Physical Constants,” rev. ed., Geol. Soc. Am. Mem. 97, 1966.

Geologic
age

Marine
sand,
shale,

graywacke

Terrestrial
sands,

claystone,
arkose

Volcanic
rocks

(basalt,
rhyolite,

tuffs)

Granite,
gabbro,

etc.

Limestone,
dolomite,
anhydrite

salt

Quaternary,
Tertiary

1-10 15-50 10-200 500-2,000 50-5,000

Mesozoic 5-20 25-100 20-500 500-2,000 100-10,000

Carboniferous 10-40 50-300 50-1,000 1,000-5,000 200-100,000

Pre-
Carboniferous

Paleozoic

40-200 100-500
100-2,000 1,000-5,000 10,00-

100,000

Precambrian 100-2,000 300-5,000 200-5,000 5,000-
20,000

10,00-100,000

Table 1.1: Resistivity (in Ωm) for water-bearing rocks of various types.

tables, detect utilities (e.g., buried water, gas, sewerage), map soft soil and overburden

for geotechnical characterization. In the mining industry, a resistivity image is used for

detecting a wide variety of base metal sulphide deposits via detection of conductivity

anomalies which can be generated around sulphide bodies in the subsurface. In the

hydrocarbon industry, a resistivity image is commonly used as a complement of a seismic
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survey for classifying types of material in the appropriated structure. In statistic, about

90% of the appropriate structure are filled with saline (Constable, 2010).

To study the Earth’s resistivity, there are various methods such as telluric,

magnetotelluric, cross-well electromagnetic, controlled-source electromagnetic (CSEM),

air-borne electromagnetic, transient/time-domain electromagnetic and direct current

resistivity (DCR) survey. All of them can be separated into two types which are passive

source and active source survey. The passive source survey measures the variation of

natural EM fields and it can be applied for studying very deep structures such as plate

tectonics, fault structures, etc. The magnetotelluric (MT) method is one of the most

famous passive-source methods which measures both electric field and magnetic field

variation at the Earth’s surface. The MT method can be used not only for crustal study

(e.g. Stanley et al., 1990; Constable & Srnka, 2007; Boonchaisuk et al., 2013) but also

for hydrocarbon exploration, mining exploration and geothermal exploration.

For shallow or offshore surveys, active source surveys such as direct cur-

rent resistivity surveys and controlled-source electromagnetic surveys are more practi-

cal. The direct current (DC) resistivity survey is one of the most popular geophysical

techniques for shallow resistivity surveys. DC resistivity survey studies the Earth’s re-

sistivity by driving direct current into the ground via a pair of electrodes A and B and

then measuring the induced potential field by a other pair or electrodes M and N as

shown in figure 1.1.

In Thailand, DC resistivity surveys are commonly and widely used by many

organizations such as department of mineral resources, department of groundwater re-

sources, Chiang Mai University, Khon Kaen University, Prince of Sonhkla University

and Mahidol University for studying near-surface resistivity variations. As the DC resis-

tivity method is used for shallow survey, topography has a strong effect on DC resistivity

data (Telford et al., 1990). Topography causes localized dispersion and focusing of the

current distribution near the surface and hence generates artifacts, i.e., terrain-induced

conductive and resistive anomalies in field data. Figure 1.2 shows DC resistivity data

of a 600 Ωm half-space, sinusoidal topography model (Figure 1.3).

In the theory, the DC resistivity data of half-space model must equal the

resistivity of the half-space. In our case, the DC resistivity data should be equal to 600

Ωm. With the sinusoidal topography, DC resistivity data is not equal to 600 Ωm but it

varies from 100-1000 Ωm. The topography effect is one of the most important effects in

DC resistivity surveys and therefore should be taken into consideration when inverting

the DCR data.

In the past decades, the controlled-source electromagnetic (CSEM) survey

has become one of the most important tools for the hydrocarbon industry. It is used

as a complementary tool for seismic reflection survey. Figure 1.4 shows one successful
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Figure 1.1: A schematic diagram of direct current resistivity survey. A and B repre-
sent positive and negative current electrodes. M and N represent a pair of potential
electrodes.

Figure 1.2: The apparent resistivity of 600 Ωm half-space, sinusoidal topography model
(Figure 1.3).

CSEM survey for detecting a hydrocarbon reservoir which is done by Hesthammer &

Boulaenko (2005). Figure 1.4a shows a 2D seismic section. Several channel systems can

be extracted from the seismic data and represent potential hydrocarbon-filled structures.

Figure 1.4b shows the same seismic section masked with resistivity information from a

2D CSEM survey. The result shows that only the two shallower targets are likely to be

filled with hydrocarbons and the result was confirmed by drilling in 2008.

Nowadays, CSEM survey is used for not only detecting the presence of

hydrocarbon reservoirs but also for estimating its volume. To estimate the volume of

hydrocarbons, 3-D CSEM modeling and inversion are needed. The ModEM system is a

modular electromagnetic inversion system which provides numerical tools for developing

3-D forward modeling and inversion. ModEM is also available as a free EM developing

tool by Oregon State University. Here, we need to develop 3-D CSEM modeling to fit
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Figure 1.3: The 600 Ωm half-space model with sinusoidal topography.

different ways to approach the depth challenge, including the use
of vertical source antennae. Nonetheless, deeper depths are
currently a challenge for the technology. It is somewhat a lucky
coincidence that most hydrocarbon reservoirs in the world are
located between 1 and 3 km depth below the seafloor. The areas
suitable for the CSEM technology are still plentiful.

In the early stages of handling marine CSEM data for hydro-
carbon detection, simplified approaches were used to process and
display the data (such as the well-known magnitude versus offset
and normalised magnitude versus offset plots). Such processing
certainly still have its merit as it tend to preserve the raw results
better than more advanced processing of the data, including
inversion and migration. However, such an approach suffer from
a number of limitations, including lack of frequency content,
multiple offset processing and dealing with data from multiple
receivers simultaneously, resulting in lack of depth control. As
a result, most companies handling CSEM data have turned to
inversion and sometimes migration to provide resistivity images of
the sub-surface.

Whereas the algorithms used to invert or migrate CSEM data are
highly important, this will not in the future be themain focus of the
technology, as will be discussed later in this paper. However, it is
useful to present an example of inverted CSEM data, combinedwith
seismic data, to illustrate the impact of the technology. Fig. 3a

shows a seismic 2D section extracted from a 3D seismic data set.
Several submarine deep water channel systems can be identified in
the profile. Mapping from the 3D seismic data set identifies the
deepest system to be the biggest. Based on global commercial
success rates for wild cat wells, a well targeting the deepest and
biggest channel system may have around 25% chance of success.
Fig. 3b shows the same section with inverted (in 2005) CSEM data
placed on top of the seismic data. The CSEM data were inverted
independently of the seismic data and no constraints from the
seismic datawere applied to the inversion. Modelling demonstrates
that energy from the deepest target would reach the receivers if the
target was filled with hydrocarbons (identified by a significant
resistivity contrast).

The results show that no resistivity anomalies are registered for
the deepest target. Consequently, it becomes unlikely that the
deepest target is filled with hydrocarbons (accounting for the
possibility of making a false negative decision as controlled by
modelling). However, two of the shallower prospects show
a significant resistivity anomaly. In this specific case, other causes to
the resistivity anomaly than hydrocarbon-filled sandstone can
mainly be ruled out based on the general geological knowledge
from the area and information from the seismic data (mapping of
the channel systems, acoustic impedance information and more).
As such, moving the well location to the shallower target should
increase the chance of making a discovery significantly. In 2008, the
well shown in Fig. 3b was drilled on the prospect with the main
CSEM anomaly. The well was announced as a discovery and thus
verified the interpretation of the EM anomaly as being caused by
a hydrocarbon-filled reservoir.

Having identified reservoirs as likely hydrocarbon-filled, two
questions still remain; are the prospects commercial and what is
the new chance of success? The CSEM line that runs across the
targets in Fig. 3 is oriented perpendicular to the axis of the
channels. As such, there is no information about the hydrocarbon
fill parallel to the channel systems. It is quite possible to run
another 2D CSEM line parallel to the channel system to further
delineate the prospect. However, that was not done in this
specific case. To illustrate the importance of delineation, a 3D
synthetic CSEM data set was created (using the 2D CSEM line as
real data input). Fig. 4a shows the resulting 3D resistivity
anomaly. The resulting data provides opportunity for more
advanced analyses. It is now possible to combine information
from seismic data with information from CSEM data to constrain
the hydrocarbon-filled part of the reservoir. There are numerous
ways to do so that are beyond the scope of this paper to discuss.
Fig. 4bec show an example of how the combined data can
establish a basis for volume calculations that can be used for
evaluating the commerciality of the prospects and to rank the
prospects.

The previous example is considered to be “EM simple” in the
sense that there are no other highly resistive bodies in the area
that could complicate the analyses. It is useful to consider more
complex settings as many prospects will be associated with
shallow gas, salt, carbonates, volcanic rocks, cemented reser-
voirs, shales with high organic content and more. All of these
have the potential to cause EM anomalies as they typically are
associated with high resistivity. Fig. 5a shows an example
where a regional salt layer underlies a submarine channel
system. For proprietary reasons, the real data cannot be shown.
An unconstrained inversion of the acquired CSEM data will be
affected by the salt layer. This is because EM energy will
propagate beyond the channel system and enter the salt layer.
Energy from the salt layer will subsequently propagate upwards
to the receivers placed on the seabed and mask any effect from
the reservoir (Fig. 5b). The solution to the problem in this case

Fig. 3. (a) A 2D seismic line extracted from a 3D seismic volume. Several channel
systems can be extracted from the seismic data and represent potential hydrocarbon-
filled structures. The prospect marked with a green circle is the largest and a well
targeting this prospect has a chance of geologic success of approximately 25%. (b)
Adding resistivity information to the seismic data using CSEM technology, shows that
only the two shallower targets are likely to be filled with hydrocarbons. In this specific
case, the seismic and CSEM data were processed independently. See the main text for
detailed discussion (for interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article).

J. Hesthammer et al. / Marine and Petroleum Geology 27 (2010) 1872e1884 1875

Figure 1.4: (a) A 2D seismic section. Several channel systems can be extracted from the
seismic data and represent potential hydrocarbon-filled structures. The prospect marked
with a green circle is the largest and a well target. (b) Adding resistivity information
to the seismic data using CSEM technology shows that only the two shallower targets
are filled with hydrocarbons (Hesthammer et al., 2010).
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the ModEM system in the hope that it can be readily used.

1.2 Scope of Study

In the thesis, we work on two areas which are (1) to develop an efficient 2D

inversion program which can include topography effects in 2D DC resistivity survey and

(2) to develop the 3-D CSEM modeling that can be used inside the ModEM system.

1.3 Thesis Outline

This thesis consists of 3 chapters for two projects. The first chapter is this

chapter in which we give the introduction and the outline of the thesis.

The second chapter is the chapter for 2D DC resistivity forward modeling

and inversion. In this chapter, we describe the basics of DC resistivity surveys and the

hybrid finite difference-finite element technique that is introduced to solve the topogra-

phy effect. The accuracy and reliability of new 2D DC resistivity forward modeling and

inversion are also tested in this chapter.

The third chapter describes the basics of CSEM surveys and the scattered-

field technique. In this chapter, we also describe how to develop CSEM forward modeling

based on the scattered-field technique and then describe how to incorporate 3-D CSEM

modeling into the ModEM system. Finally, the accuracy and reliability of 3-D CSEM

forward modeling and inversion are tested at the end of this chapter.
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CHAPTER II

AN EFFICIENT 2-D DC RESISTIVITY INVERSION

In this chapter, we develop an efficient 2-D DC resistivity inversion code

that is fast, reliable and can also incorporate the topography. The technique we used

for the modeling is the hybrid finite difference and finite element method. We start

the chapter by briefly describing the fundamentals of the DC resistivity survey and also

field acquisition. The DC Resistivity method relies on Ohm’s law. In the next section,

we describe two methods that are commonly used to solve Ohm’s law for DC Resistivity

surveys. They are the finite difference (e.g. Dey & Morrison, 1979; Vachiratienchai, 2007;

Pidlisecky & Knight, 2008; Sun et al., 2009) and the finite element methods (e.g. Tong

& Yang, 1990; Sasaki, 1994; Li & Spitzer, 2002; Pain et al., 2002; Boonchaisuk et al.,

2008). We start by developing our own codes based on the two methods. To confirm

that our code works well, we validate the results through many synthetic examples and

also compare them with the commercial code (RES2DINV). The results clearly show

that FD is faster than FE but less efficient when incorporating the topography. The

advantage of FD becomes a disadvantage of FE, and the disadvantage of FD becomes a

advantage of FE. This has led us to the idea of combining both FD and FE to produce

the hybrid method. In the next section, we describe the idea of the hybrid FD - FE

method and then we examine our idea through the synthetic examples to show that our

hybrid FD - FE method is the most efficient method.

The forward modeling computes the responses from the known model. In

a real field survey, we collected the data and then inverted the data to obtain the

resistivity model. We start the section by explaining the concept of the inversion and

many different algorithms used for DC resistivity surveys. Then we focus on the data

space Occam’s inverison. This is because it is reliable and efficient. In the next section,

we describe how we implement the hybrid FD - FE method inside the data space

Occam’s inversion to produce the efficient inversion. We validate and verify our codes

through both synthetic examples and real field data.

2.1 Fundamentals of DCR Surveys

A DCR survey images the subsurface resistivity structure by measuring a

series of induced-electric potentials along with the electric current and relative geometry
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Figure 2.1: Hemisphere pattern of electric potential when current is injected into ho-
mogeneous structure.

of the four electrodes. For quality assessment or direct interpretation, the collected data

are converted into a form which is related to the relevant physical property. For each

measurement, it is theoretically equivalent of using Ohm’s Law to calculate to resistivity

i.e. the apparent resistivity.

Ohm’s law states that the electric current through a material between two

points is directly proportional to the potential difference between the two points. Ohm’s

law can be written as

J = −σ∇φ, (2.1)

where J is the current density, σ is the conductivity or the inverse of resistivity (ρ) and

φ is the electric potential. For homogeneous earth, the injected electric current will flow

out in any direction and produces an equipotential surface with a hemispherical shape

(figure 2.1). In this case, equation (2.1) can be written as

I

2πr2
= −1

ρ

∂φ

∂r
, (2.2)

where I is strength of the injected current and r is radial distance from point source.

Integrating (2.2) with respect to r, we obtain the relation between φ and r,

φ(r) =
ρI

2πr
. (2.3)

For electrode arrays, the potential at any potential electrode is equal to the sum of the

contributions from the individual current electrodes. In a four-electrode survey (figure
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Figure 2.2: shows a four-electrode DCR measurement. Current electrodes are labeled
by A and B, and potential electrodes are labeled by M and N.

2.2) over a homogeneous earth, the potential difference between potential electrode M

and N, φMN, is,

φMN =
ρI

2π

(
1

rAM
− 1

rBM
− 1

rAN
+

1

rBN

)
, (2.4)

where r is distance from the current electrode to the potential electrode and the first

subscript indicates the current electrode and the second subscript indicates the potential

electrode. rAM is the distance from current electrode A to potential electrode M.

Rearranging equation (2.4), we obtain the equation for computing resistivity from the

measurement as

ρ = G
φMN

I
, (2.5)

where the geometric factor

G = 2π

(
1

rAM
− 1

rBM
− 1

rAN
+

1

rBN

)−1

. (2.6)

The resistivity calculated by Ohm’s law in equation (2.5) is equal to the true

resistivity only in the homogeneous Earth case. In more complicated and heterogeneous

cases, the resistivity calculated by equation (2.5) is called the apparent resistivity ρa

and is measured as a function of the electrode spacing.

Although equation (2.5) can be used for all electrode arrays, it is impractical

for use in field surveys. We need to express the geometric factor in term of electrode

geometry. For common electrode arrays, G is summarized in figure 2.3 where a is the

minimum electrode spacing and n is the investigation-depth level to indicate the survey

depth. Each electrode array has a particular depth of investigation, resolution, and

sensitivity to subsurface structure and telluric noise.

The Wenner array was popularized by the pioneering work carried out by

the University of Birmingham research group (Griffiths & Turnbull, 1985; Griffiths et al.,
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Figure 2.3: Four arrays are illustrated (a) Wenner, (b) Schlumberger, (c) Dipole-Dipole,
and (d) Pole-Pole array where a is electrode spacing, n is the investigation level, and x
is distance to “infinite-electrodes” in Pole-Pole array.

1990). Many of the early 2-D surveys were carried out with this array. A schematic

diagram of the Wenner array is shown in Figure 2.3a. The Wenner array places current

electrodes on different sides of the electrode array and measures the potential difference

at the middle of the array. All distances between neighboring electrodes are equal to na.

The Wenner array has best signal response and high resolution of vertical structures

but it has a relatively shallow depth of investigation (Ward, 1990; Sharma, 1997; Loke,

2000). Its geometric factor is computed by

G = 2πna. (2.7)

The Schlumberger array has been used since the 1920’s for electrical

sounding (1D electrical survey) and is still popular. Figure 2.3b illustrates a schematic

diagram of The Schlumberger array. The way of placing electrodes of the Schlumberger

array is close to that of the Wenner array except the distance between potential elec-

trodes is always equal to a. Fixing the distance between potential electrodes makes

the signal of the Schlumberger array weaker than the signal of the Wenner array. The

Schlumberger array has the ability to resolve horizontal and vertical structures relatively

well and has a greater depth of investigation than the Wenner array, and a wider hor-

izontal data coverage than the Wenner array (Ward, 1990; Sharma, 1997; Loke, 2000).

Its geometric factor is computed by

G = πn(n+ 1)a. (2.8)

The Dipole-Dipole array or Eltran array is more popular and practical

for large scale DCR surveys than the Wenner and Schlumberger arrays and is also
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popular in induced polarization (IP) surveys because the complete separation of current

and voltage circuits reduces the vulnerability to inductive noise. A schematic diagram

of the Dipole-Dipole array is shown in Figure 2.3c. The distance between electrode A

and electrode M is equal to na while the distance between a pair of current electrodes

and a pair of potential electrodes are always a. The Dipole-Dipole array has a greater

depth of investigation than the Wenner and Schlumberger arrays but its signal strength

is the weakest of all the arrays. Because of the weakness of its signal, the Dipole-Dipole

array is more subject to telluric noise than the Wenner and Schlumberger arrays. The

Dipole-Dipole array is considered inferior to Wenner and Schlumberger arrays for the

resolution of horizontal and steeply dipping structures (Ward, 1990; Sharma, 1997; Loke,

2000). Its geometric factor is computed by

G = πn(n+ 1)(n+ 2)a. (2.9)

The Pole-Pole array is very popular in archaeological surveys because

it lends itself to rapid one-person operation. Unlike the other arrays, the Pole-Pole

array places and fixes one current electrode and one potential electrode far away from

the study area. The proper distance to a fixed electrode, x, should be 10-30 times the

distance between any two mobile electrodes. The long cables required can impede field

work and may also act as aerials, picking up stray electromagnetic signals (inductive

noise) that can affect the readings. The Pole-Pole array has the deepest penetration of

all arrays and the widest horizontal coverage for a given array length but the poorest

resolution (Ward, 1990; Sharma, 1997; Loke, 2000; Milsom, 2003). Its geometric factor

is computed by

G = 2πna. (2.10)

Arrays are usually chosen at least partly for their depth of investigation.

The depth of investigation is the depth to which a fraction of the current penetrates. It

depends on the earth resistivity structure as well as the overall length of the electrode

array (Loke, 2000). The wider the length of the electrode array, the deeper the depth of

investigation. The depth of investigation of each electrode array can be determined by

finding the array length at which the effect of a thin horizontal layer in the homogeneous

earth is a maximum. The relative effects of a thin horizontal layer, for Wenner, Schlum-

berger and Dipole-Dipole arrays, are shown in figure 2.4. The peak of the Wenner array

is located at the left of the graph while the peak of Dipole-Dipole array is located at

the right of the graph. That means the Dipole-Dipole array is the most penetrative

array and the Wenner array is the least penetrative array. The Wenner peak occurs

when the length of array is 10 times the thin layer depth, and the Schlumberger array is

only a little better. Figure 2.4 also shows the Wenner curve is the most sharply peaked,

indicating superior vertical resolving power.
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RESISTIVITY METHODS

a maximum. It is, perhaps, to be expected that much greater expansion is
needed in this case than is needed simply to detect an interface, and the
plots in Figure 6.6, for the Wenner, Schlumberger and dipole–dipole arrays,
confirm this. By this criterion, the dipole–dipole is the most and the Wenner
is the least penetrative array. The Wenner peak occurs when the array is 10

Depth/array length

Schlumberger

Dipole−dipole

Wenner

0.5 1.0

R
el

at
iv

e 
ef

fe
ct

Figure 6.6 Relative effect of a thin, horizontal high-resistance bed in other-
wise homogeneous ground. The areas under the curves have been made equal,
concealing the fact that the voltage observed using the Schlumberger array
will be somewhat less, and with the dipole–dipole array very much less, than
with the Wenner array.

105

Figure 2.4: relative effect of a thin resistive layer bed in homogeneous earth for Wenner,
Schlumberger and Dipole-Dipole arrays (Milsom, 2003).

Electrodes may in principle be positioned on the ground surface to any de-

sired degree of accuracy (although errors are always possible and become more likely

as separations increase). Most modern instruments provide current at one of a number

of preset levels and fluctuations in supply are generally small and unimportant. Noise

therefore enters the apparent resistivity values almost entirely via the voltage measure-

ments, the ultimate limit being determined by voltmeter sensitivity. There may also be

noise from induction in the cables and natural voltages, which may vary with time and

so be incompletely cancelled by reversing the current flow and averaging. Large sepa-

rations and long cables should be avoided if possible, but the most effective method of

improving the signal to noise ratio is to increase the signal strength. There are physical

limits to the amount of current any given instrument can supply to the ground and it

may be necessary to choose arrays that give large voltages for a given current flow. The
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Wenner and Pole-Pole arrays score more highly in this respect than most other arrays.

For a given input current, the voltages measured using a Schlumberger array are always

less than those for a Wenner array of the same overall length, because the separation

between the potential electrodes is always smaller. For the Dipole-Dipole array, the

comparison depends upon n but even for n = 1, the signal strength is smaller than for

the Wenner array by a factor of three (Milsom, 2003).

2.2 DCR Field Procedure and Data Plotting

For a DC resistivity survey, there are 3 recording procedures which are (1)

resistivity sounding, (2) resistivity profiling and (3) resistivity imaging.

Resistivity sounding or vertical electrical sounding (VES) is used when

the earth’s structure needs to be interpreted in terms of layers under a single location at

the surface. The electrode locations are varied symmetrically about a central location.

Therefore, data must be plotted as a function of electrode spacing rather than as a

function of location in log-log scale. The resulting plot is called a sounding curve.

Figure 2.5 shows the example curve on the two-layers model which is a 100 Ω-m and

30 m thick layer laid on a 10 Ω-m homogeneous medium. For small electrode spacings,

electric current flows only in near-surface regions. Apparent resistivities are similar

to the true resistivity of the top layer (100 Ω-m). As current flows deeper, apparent

resistivities are influenced by the resistivity of deeper materials (10 Ω-m). At very large

electrode spacings, the sounding curve reflects the deeper ground because most of the

current is flowing in the deeper regions. The most common configurations for soundings

are the Wenner and Schlumberger arrays.

Resistivity profiling is a common procedure for studying lateral changes

by moving a fixed array along the survey line. Data is plotted as a function of the

central position of the array in a log-linear scale. The resulting plot is called a profiling

curve. Figure 2.6 shows the example profiling curve on the vertical-contact model which

is 10 Ω-m uniform media on the left hand side (LHS) and 1,000 Ω-m uniform media

on the right hand side (RHS). For all electrodes on the LHS, electric current flows only

in the LHS media. Apparent resistivities are similar to the true resistivity of the LHS

media (10 Ω-m). The apparent resistivities are influenced by the resistivity of the RHS

materials (1,000 Ω-m). For electrodes on the RHS, the profiling curve reflects the RHS

media because most of the current is flowing in the RHS regions. The most common

configurations for profiling are Dipole-Dipole arrays.

Resistivity imaging or 2D DC resistivity surveying is a process for study-

ing resistivity variation in both vertical and horizontal directions. Resistivity imaging

is a combination of resistivity sounding and resistivity profiling. The electrode array is
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Figure 2.5: The example of resistivity sounding or VEF: (a) illustrates the two-layer
models which is 100 Ω-m and 30 m thick and is overlaid on 10 Ω-m uniform media and
(b) sounding curve of the two-layers model. The y-axis is the apparent resistivity value
and the x-axis is half of the distance between electrode A and B.

Figure 2.6: The example of resistivity profiling: (a) illustrates the vertical-contact mod-
els which has 10 Ω-m uniform media on the left hand side of the model and 1,000 Ω-m
uniform media on the right hand side of model and (b) profiling curve of the vertical-
contact model. The y-axis is the apparent resistivity value and the x-axis is the central
position of the array.
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moved along the survey line and its spacing is also changed. Therefore, data must be

plotted as a function of electrode spacing and the central position of the array. The

resulting plot is called a pseudo section. Figure 2.7 shows a schematic diagram of re-

sistivity imaging for collecting data with a Wenner array. Figure 2.8 represents the

examples of pseudo sections for a one-block model by using Wenner, Schlumberger and

Dipole-Dipole arrays with 48 electrodes, 1-m electrode spacing and 15 investigation-

depth levels. The x-axis of the pseudo section is the horizontal distance which is the

central position of each electrode array and the y-axis is the pseudo depth which can

be roughly estimated from the array type and electrode spacing. Following Milsom

(2003), the pseudo depth is about 25%, 35% and 50% of the array length for Wenner,

Schlumberger, and Dipole-Dipole arrays.

The pseudo section doesn’t reflect the intrinsic earth’s resistivity and it also

depends on the array type and the Earth’s structure. For interpretation, the pseudo

section must be converted to true resistivity structure. It is done by a process called

“inversion” as will be described in Section 2.4.

Figure 2.7: Pseudo section plotting for Wenner array. Each dot represents a datum.
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Figure 2.8: A example of resistivity imaging: (a) illustrates the one-block models which
has a 1 Ω-m conductive block buried in 100 Ω-m homogeneous media, (b), (c), and (d)
illustrate pseudo sections for Wenner, Schlumberger and Dipole-Dipole arrays, repre-
sentatively.
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2.3 2D DC Resistivity Modeling

DC resistivity modeling is an inverse process of inversion. DC resistivity

modeling is a computational program for calculating the apparent resistivity, ρa, from

a known resistivity model. There are various numerical techniques for developing 2D

DC resistivity modeling such as (1) boundary element (BE) method (Okabe, 1981; Xu

et al., 1998; Ma, 2002), (2) finite element (FE) method (e.g., Coggon, 1971; Fox et al.,

1980; Tong & Yang, 1990; Sasaki, 1994; Tsourles et al., 1999; Li & Spitzer, 2002; Pain

et al., 2002; Rücker et al., 2006; Boonchaisuk, 2007; Boonchaisuk et al., 2008; Erdogan

et al., 2008; Blome et al., 2009; Vachiratienchai et al., 2010), and (3) finite difference

(FD) method (e.g., Dey & Morrison, 1979; Zhang et al., 1995; Zhao & Yedlin, 1996;

Vachiratienchai, 2007; Pidlisecky & Knight, 2008; Vachiratienchai et al., 2010). Unlike

other methods, the BE method transforms the governing equation from a partial differ-

ential equation to a integral equation by using Green’s theorem. This transformation

significantly reduces the memory requirement and it makes the BE method the lowest

memory method. Although the BE method can save memory, it can function only on a

simple model as mentioned in Xu et al. (1998). The BE method is therefore not practi-

cal for use as a inversion kernel. For inversion, the FD and FE methods are commonly

and widely used for developing forward modeling. Both methods have its advantages

the FD method uses less time and memory than the FE method but the FE method is

more flexible than the FD method.

The finite element method can handle complicated geometries more easily

than the finite difference method. In DC resistivity modeling, the FE method is therefore

applied when modeling with topography (e.g. Fox et al., 1980; Tsourles et al., 1999; Loke,

2000; Li & Spitzer, 2002; Erdogan et al., 2008). However, if the topography is trivial, the

FD method is much more computationally efficient (Li & Spitzer, 2002; Erdogan et al.,

2008). Because of its superior computational performance, there have been attempts

to incorporate topography into the FD approach. Erdogan et al. (2008) applied a

triangular discretization, instead of the commonly used rectangular discretization, to

FD at the air-earth interface. With their approach, triangular FD is as accurate as

triangular FE, but slightly less accurate than the FE distorted-mesh. However, their

triangular FD algorithm is significantly faster than both FE approaches. Sun et al.

(2009) applied a coordinate transformation to the FD mesh to increase the accuracy of

their solutions when topography is present. The idea of coordinate transformation is

similar to what was previously used by Baba & Seama (2002) to incorporate seafloor

topography in electromagnetic modeling.
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2.3.1 Governing Equation

For 2D DCR survey, the governing equation is the equation for computing

the electric potential and can be derived from two basic physics principles which are

Ohm’s law (equation (2.1)) and the continuity equation,

∇ · J =
∂q

∂t
δ(x)δ(y)δ(z), (2.11)

where q is the charge density specified at a point in the Cartesian x − y − z space by

the Direc delta function.

Substituting equation (2.1) into equation (2.11), we can write a generalized

three-dimensional version of equation (2.11) as

−∇ · [σ (x, y, z)∇φ (x, y, z)] =
∂q

∂t
δ(xs)δ(ys)δ(zs). (2.12)

For the 2D assumption, the conductivity distribution in the strike (y) direction is not

changed, and so ∂
∂yσ (x, y, z) = 0. Equation (2.12) can be written as

−∇ · [σ (x, z)∇φ (x, y, z)] =
∂q

∂t
δ(xs)δ(ys)δ(zs). (2.13)

In equation (2.13), potential φ and source term ∂q
∂t δ(xs)δ(ys)δ(zs) are functions of x,

y, and z while conductivity σ is a function of x and z. The most practical way is to

solve equation (2.13) in Fourier transform space (x, ky, z) by transforming y into the

wavenumber ky domain. This transformation is performed in the forward and backward

direction by

φ̃ (x, ky, z) =

∫ ∞
0

φ (x, y, z) cos (kyy) dy, (2.14)

and

φ (x, y, z) =
2

π

∫ ∞
0

φ̃ (x, ky, z) cos (kyy) dky. (2.15)

By the transformation of equation (2.14), the three-dimensional potential distribution

φ (x, y, z) due to a point source at (xs, ys, zs) over a two-dimensional conductivity distri-

bution σ(x, z) is reduced to the two-dimensional transformed potential φ̃ (x, ky, z) which

is a solution of the transformed equation (2.13),

−∇ ·
[
σ (x, z)∇φ̃ (x, ky, z)

]
+ k2

yσ (x, z) φ̃ (x, ky, z) = Q̃δ(xs)δ(zs), (2.16)

where Q̃ is the constant steady state current density in (x, ky, z) space, given by

Q̃δ(xs)δ(zs) =
I

2∆A
δ(xs)δ(zs), (2.17)

where I is the current injected at (xs, zs), and ∆A is a representative area in the x-z

plane about the injection point (xs, zs).
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Equation (2.16) is the “governing equation” for the 2D DCR problem. To

get the transformed electric potential φ̃ for an arbitrary resistivity structure, equation

(2.16) is solved by applying the FD or FE method under mixed boundary conditions

(Dey & Morrison, 1979). The general form of a mixed boundary condition is

α(x, z)φ̃+ β(x, z)
∂φ̃

∂η
= 0, (2.18)

where

α = 0 and β = σ for ground surface,

α = ky
K1 (kyr)

K0 (kyr)
and β = 1 for left, right, and bottom boundaries,

where ky is the spatial wave number, r is the distance from source, K0 is the zeroth

order modified Bessel function, and K1 is the first order modified Bessel function.

In the following sections, we derive the discrete form of the governing equa-

tion for the FD and FE methods. After that we describe the method for selecting the

wavenumber.

2.3.2 Finite Difference Method

To solve equation (2.16) with the FD method, the conductivity model is

first discretized into a rectangular grid as illustrated in figure 2.9. The conductivity σi,j

Figure 2.9: shows the rectangular grid and the discretized area ∆Ai,j around node (i, j).

indicates the conductivity in the region bounded by nodes (i, j), (i, j+1), (i+1, j), and

(i + 1, j + 1) which are defined at the corners of a rectangular grid. For node (i, j) in

the interior, the representative area ∆Ai,j is

∆Ai,j =
(∆xj + ∆xj−1) (∆zi + ∆xi−1)

4
,
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and the representative area ∆Ai,j for node (i, j) at the ground surface is

∆Ai,j =
(∆xj + ∆xj−1) ∆zi

4
,

where ∆xj is the horizontal distance between node (i, j) and node (i, j+1), ∆xj−1 is the

horizontal distance between node (i, j) and node (i, j − 1), ∆zi is the vertical distance

between node (i, j) and node (i+ 1, j), and ∆zi−1 is the vertical distance between node

(i, j) and node (i− 1, j).

For node (i, j) for which node φ̃i,j is unknown, equation (2.16) is integrated

over the representative area ∆Ai,j to obtain

−
∫∫

∆Ai,j

∇ ·
[
σi,j∇φ̃i,j

]
dxjdzi +

∫∫
∆Ai,j

k2
yσi,jφ̃i,jdxjdzi =

I

2
δ(xs)δ(zs). (2.19)

Applying Green’s theorem to the first term of equation (2.19), we obtain∫∫
∆Ai,j

∇ ·
[
σi,j∇φ̃i,j

]
dxjdzi =

∮
Li,j

σi,j
∂φ̃i,j
∂η

dl, (2.20)

where η is the outward normal direction, and Li,j is the contour line which encloses

the representative area ∆Ai,j as shown in figure 2.9. The contour integral along the

contour line Li,j can be divided into eight parts as indicated by the arrow in figure 2.9.

By applying central differences to approximate ∂φ̃
∂η , we obtain∮

Li,j

σi,j
∂φ̃i,j
∂η

dl =
∆xjσi−1,j

2

(
φ̃i−1,j − φ̃i,j

∆zi−1

)
+

∆zi−1σi−1,j

2

(
φ̃i,j+1 − φ̃i,j

∆xj

)

+
∆ziσi,j

2

(
φ̃i,j+1 − φ̃i,j

∆xj

)
+

∆xjσi,j
2

(
φ̃i−1,j−1 − φ̃i,j

∆zi

)

+
∆xj−1σi,j−1

2

(
φ̃i−1,j−1 − φ̃i,j

∆zi

)
+

∆ziσi,j−1

2

(
φ̃i,j−1 − φ̃i,j

∆xj−1

)

+
∆zi−1σi−1,j−1

2

(
φ̃i,j−1 − φ̃i,j

∆xj−1

)
+

∆xj−1σi−1,j−1

2

(
φ̃i−1,j − φ̃i,j

∆zi−1

)
.

(2.21)

In the similar way, the second term on the left-hand side of equation (2.19) can be

expressed as∫∫
∆Ai,j

k2
yσi,jφ̃i,jdxjdzi = k2

yφ̃i,j [
σi−1,j−1∆xj−1∆zi−1

4
+
σi,j−1∆xj−1∆zi

4

+
σi,j∆xj∆zi

4
+
σi−1,j∆xj∆zi−1

4
],

= Λ (σi,j ,∆Ai,j) φ̃i,j .

(2.22)

Substituting equation (2.21) and (2.22) into equation (2.19) and rearranging, we obtain

CijL φ̃i,j−1 + CijR φ̃i,j+1 + CijT φ̃i−1,j + CijB φ̃i+1,j + CijP φ̃i,j =
I

2
δ(xs)δ(zs), (2.23)
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where

CijL = −
[

∆zi−1σi−1,j−1 + ∆ziσi,j−1

2∆xj−1

]
,

CijR = −
[

∆zi−1σi−1,j + ∆ziσi,j
2∆xj

]
,

CijT = −
[

∆xj−1σi−1,j−1 + ∆xjσi−1,j

2∆zi−1

]
,

CijB = −
[

∆xj−1σi,j−1 + ∆xjσi,j
2∆zi

]
,

CijP = −
[
CijL + CijR + CijT + CijB − Λ (σi,j ,∆Ai,j)

]
,

Λ (σi,j ,∆Ai,j) = k2
y[
σi−1,j−1∆xj−1∆zi−1

4
+
σi,j−1∆xj−1∆zi

4

+
σi,j∆xj∆zi

4
+
σi−1,j∆xj∆zi−1

4
].

(2.24)

The parameter CijL , CijR , CijT , and CijB are coupling coefficients between nodes

(i, j) and (i, j − 1), (i, j + 1), (i − 1, j) and (i + 1, j), respectively, and CijP is the self-

coupling coefficient at node (i, j). Equation (2.23) is called the self-adjoint difference

equation that is derived for the interior node. The boundary nodes can be divided into

8 types which are

Nodes located on the ground surface

The mesh region ∆Ai,j is enclosed by the contour Li,j defined by the sections

iii, iv, v, vi, a, and b as shown in figure 2.9. For all nodes (1, j), j = 2, 3, ..., Nx − 1, the

discrete equation is given by

CijL φ̃i,j−1 + CijR φ̃i,j+1 + CijB φ̃i+1,j + CijP φ̃i,j =
I

2
δ(xs)δ(zs), (2.25)

where

CijL = −
[

∆ziσi,j−1

2∆xj−1

]
, (2.26)

CijR = −
[

∆ziσi,j
2∆xj

]
, (2.27)

CijB = −
[

∆xj−1σi,j−1 + ∆xjσi,j
2∆zi

]
, (2.28)

CijP = −
[
CijL + CijR + CijB − Λ (σi,j ,∆Ai,j)

]
, (2.29)

and

Λ (σi,j ,∆Ai,j) = k2
y[
σi,j−1∆xj−1∆zi

4
+
σi,j∆xj∆zi

4
]. (2.30)
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Nodes located on the top-left and the top-right corners

For the top-left (1, 1) node and top-right (1, Nx), the mesh region ∆Ai,j is

bounded by sections (iii, iv, c, and b) and (v, vi, a, and c), respectively. The component

of J in the z-direction satisfies the Neumann condition and the component of J in the

x-direction satisfies the mixed boundary condition

α(x, z)φ̃ cos θ +
∂φ̃

∂η
= 0, (2.31)

where η is the angle between the radial distance r from the source to the node (i, j) and

the outward normal in x-direction. The discrete equation for the top-left corner node

becomes

CijR φ̃i,j+1 + CijB φ̃i+1,j + CijP φ̃i,j =
I

2
δ(xs)δ(zs), (2.32)

where

CijR = −
[

∆ziσi,j
2∆xj

]
, (2.33)

CijB = −
[

∆xjσi,j
2∆zi

]
, (2.34)

CijP = −
[
CijR + CijB − Λ (σi,j ,∆Ai,j)

]
+

∆ziσi,jα cos θ

2
, (2.35)

and

Λ (σi,j ,∆Ai,j) = k2
y

(
σi,j∆xj∆zi

4

)
. (2.36)

For the top-right corner node, we get

CijL φ̃i,j−1 + CijB φ̃i+1,j + CijP φ̃i,j =
I

2
δ(xs)δ(zs), (2.37)

where

CijL = −
[

∆ziσi,j−1

2∆xj−1

]
, (2.38)

CijB = −
[

∆xj−1σi,j−1

2∆zi

]
, (2.39)

CijP = −
[
CijL + CijB − Λ (σi,j ,∆Ai,j)

]
+

∆ziσi,j−1α cos θ

2
, (2.40)

and

Λ (σi,j ,∆Ai,j) = k2
y

(
σi,j−1∆xj−1∆zi

4

)
. (2.41)

Nodes located on the bottom edge

For nodes (Nz, j), j = 2, 3, ..., Nx−1, the region ∆Ai,j is bounded by sections

i, ii, b, a, vii, and viii and its discrete equation is

CijL φ̃i,j−1 + CijR φ̃i,j+1 + CijT φ̃i−1,j + CijP φ̃i,j =
I

2
δ(xs)δ(zs), (2.42)
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where

CijL = −
[

∆zi−1σi−1,j−1

2∆xj−1

]
, (2.43)

CijR = −
[

∆zi−1σi−1,j

2∆xj

]
, (2.44)

CijT = −
[

∆xj−1σi−1,j−1 + ∆xjσi−1,j

2∆zi−1

]
, (2.45)

CijP = −
[
CijL + CijR + CijT − Λ (σi,j ,∆Ai,j)

]
+

(
∆xj−1σi−1,j−1 + ∆xjσi−1,j

2

)
α cos θ,

(2.46)

and

Λ (σi,j ,∆Ai,j) = k2
y

[
σi−1,j−1∆xj−1∆zi−1

4
+
σi−1,j∆xj∆zi−1

4

]
. (2.47)

Nodes located on the bottom-left and bottom-right corner

For the bottom-left (Nz, 1) node and the bottom-right (Nz, Nx) node, the

region ∆Ai,j is bounded by the sections (i, ii, b, and d) and (d, a, vii, and viii), respec-

tively. Applying the mixed boundary condition, the discrete equation for the bottom-left

is

CijR φ̃i,j+1 + CijT φ̃i−1,j + CijP φ̃i,j =
I

2
δ(xs)δ(zs), (2.48)

where

CijR = −
[

∆zi−1σi−1,j

2∆xj

]
, (2.49)

CijT = −
[

∆xjσi−1,j

2∆zi−1

]
, (2.50)

CijP = −
[
CijR + CijT − Λ (σi,j ,∆Ai,j)

]
+

(
∆xjσi−1,j

2

)
α cos θ1

+

(
∆zi−1σi−1,j

2

)
α cos θ2,

(2.51)

and

Λ (σi,j ,∆Ai,j) = k2
y

[
σi−1,j∆xj∆zi−1

4

]
. (2.52)

θ2 and θ1 are the angles between the radial distance r from the source and the x- and

z-directions, respectively. For the bottom-right corner node, we get

CijL φ̃i,j−1 + CijT φ̃i−1,j + CijP φ̃i,j =
I

2
δ(xs)δ(zs), (2.53)

where

CijL = −
[

∆zi−1σi−1,j−1

2∆xj−1

]
, (2.54)

CijT = −
[

∆xj−1σi−1,j−1

2∆zi−1

]
, (2.55)
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CijP = −
[
CijL + CijR + CijT − Λ (σi,j ,∆Ai,j)

]
+

(
∆xj−1σi−1,j−1

2

)
α cos θ1

+

(
∆zi−1σi−1,j−1

2

)
α cos θ2,

(2.56)

and

Λ (σi,j ,∆Ai,j) = k2
y

[
σi−1,j−1∆xj−1∆zi−1

4

]
. (2.57)

Nodes located on the left boundary

For the nodes (i, 1), i = 2, 3, ..., Nz − 1, the region ∆Ai,j is bounded by

the contour Li,j with the sections i, ii, iii, iv, c, and d. Applying the mixed boundary

condition, we get the discrete equation

CijR φ̃i,j+1 + CijT φ̃i−1,j + CijB φ̃i+1,j + CijP φ̃i,j =
I

2
δ(xs)δ(zs), (2.58)

where

CijR = −
[

∆zi−1σi−1,j + ∆ziσi,j
2∆xj

]
, (2.59)

CijT = −
[

∆xjσi−1,j

2∆zi−1

]
, (2.60)

CijB = −
[

∆xjσi,j
2∆zi

]
, (2.61)

CijP = −
[
CijR + CijT + CijB − Λ (σi,j ,∆Ai,j)

]
+

∆ziσi,j + ∆zi−1σi−1,j

2
α cos θ, (2.62)

and

Λ (σi,j ,∆Ai,j) = k2
y[
σi,j∆xj∆zi

4
+
σi−1,j∆xj∆zi−1

4
]. (2.63)

Nodes located on the right boundary

For the nodes (i,Nx), i = 2, 3, ..., Nz − 1, the region ∆Ai,j is bounded by

the contour Li,j with the sections d, c, v, vi, vii, and viii. Applying the mixed boundary

condition, we get the discrete equation

CijL φ̃i,j−1 + CijT φ̃i−1,j + CijB φ̃i+1,j + CijP φ̃i,j =
I

2
δ(xs)δ(zs), (2.64)

where

CijL = −
[

∆zi−1σi−1,j−1 + ∆ziσi,j−1

2∆xj−1

]
, (2.65)

CijT = −
[

∆xj−1σi−1,j−1

2∆zi−1

]
, (2.66)

CijB = −
[

∆xj−1σi,j−1

2∆zi

]
, (2.67)

CijP = −
[
CijL + CijT + CijB − Λ (σi,j ,∆Ai,j)

]
+

∆ziσi,j−1 + ∆zi−1σi−1,j−1

2
α cos θ, (2.68)
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and

Λ (σi,j ,∆Ai,j) = k2
y[
σi−1,j−1∆xj−1∆zi−1

4
+
σi,j−1∆xj−1∆zi

4
]. (2.69)

The self-adjoint difference equations are the “discrete equations” for the

FD method. By applying the discrete equations to all nodes (i, j), we obtain a set of

simultaneous equations which can be written in the matrix form

CΦ̃ = s, (2.70)

where C is the coefficient matrix or “capacitance” matrix, Φ̃ is the potential vector,

and s is the source vector. The capacitance matrix is a 5-band sparse matrix as shown

in figure 2.10 and its size is equal to NT ×NT where NT is the number of nodes in the

whole domain. The capacitance matrix is a function only of geometry, physical property

Figure 2.10: the sparsity pattern of the capacitance matrix C.

distribution, and wavenumber ky. Here we use LU -factorization to decompose C, and

then use backward and forward substitutions to solve the system.

2.3.3 Finite Element Method

In order to solve equation (2.16) with the FE method, the conductivity

model is divided into many subdomains and each subdomain is called “element”. For

the 2D problem, the common shape of a finite element is triangular because it easily

handles any complex shape. Figure 2.11 represents two triangular elements which are

used for dividing the conductivity model. In the FE method, one rectangle used in

the FD method is divided into two triangular elements that are the upper and lower

elements. For the “left-slope” triangular element as shown in figure 2.11a, the upper

element is bounded by nodes (i, j), (i+ 1, j + 1), and (i, j + 1) while the lower element

is bounded by nodes (i, j), (i+ 1, j), and (i+ 1, j + 1). For the “right-slope” triangular

element as shown in figure 2.11b, the upper element is bounded by nodes (i, j), (i+1, j),

and (i, j + 1) while the lower element is bounded by nodes (i+ 1, j), (i+ 1, j + 1), and

(i, j + 1).
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Figure 2.11: shows (a) “left-slope” triangular element and (b) “right-slope” triangular
element.

Figure 2.12 illustrates an example of the conductivity model discretized by

“left-slope” triangular elements. The conductivity σLi,j indicates the conductivity in

the lower triangular element bounded by nodes (i, j), (i + 1, j), and (i + 1, j + 1) and

conductivity σUi,j indicates the conductivity in the upper triangular element bounded

by nodes (i, j), (i + 1, j + 1), and (i, j + 1). By dividing the conductivity model with

“left-slope” triangular elements only, node (i, j) is connected by nodes (i − 1, j − 1),

(i, j − 1), (i + 1, j), (i + 1, j + 1), (i, j + 1), and (i − 1, j). In the contrast, if the

conductivity model is divided with “right-slope” triangular elements only as shown in

figure 2.13, node (i, j) is connected by nodes (i, j− 1), (i+ 1, j− 1), (i+ 1, j), (i, j+ 1),

(i − 1, j + 1), and (i − 1, j). Unlike the FD method, the node (i, j) of the FE method

can connect to the neighboring node from 4 to 8 nodes depending on the discretization

around the node (i, j). Figure 2.14 shows the discretization that produces the maximum

node connection and figure 2.15 shows the discretization that produces the minimum

node connection. Due to the variation of discretization, FE method has no explicit

Figure 2.12: an example of the problem domain divided by “left-slope” triangular ele-
ments.
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Figure 2.13: an example of the problem domain divided by “right-slope” triangular
elements.

expression as equation (2.23) in the FD method. The common method for constructing

the system of equations for the whole domain as equation (2.70) in the FD method is

constructing the system of equations for each elements and then assembling the matrix

elements into the global matrix which is the system of equations for the whole domain.

To derive an equation for constructing the matrix elements, we start by

considering a subdomain shown in figure 2.16. The element has three nodes of which

the corresponding coordinate values (xi, zi) and the nodal variables (φ̃i) are assigned.

Figure 2.14: an example of the problem domain divided by a mix of “left-slope” and
“right-slope” triangular elements that produces a maximum node connection.
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Figure 2.15: an example of the problem domain divided by a mix of “left-slope” and
“right-slope” triangular elements that produces a minimum connection.

Figure 2.16: shows an example of triangular element.

Let us assume that the trial function is

ũ = a1 + a2x+ a3z. (2.71)

The trial function will be equal to φ̃i when x = xi and z = zi. By substituting the x

and z values at each nodal point we obtainφ̃1

φ̃2

φ̃3

 =

1 x1 z1

1 x2 z2

1 x3 z3

a1

a2

a3

 . (2.72)

Equation (2.72) is rewritten asa1

a2

a3

 =
1

2A

x2z3 − x3z2 x3z1 − x1z3 x1z2 − x2z1

z2 − z3 z3 − z1 z1 − z2

x3 − x2 x1 − x3 x2 − x1

φ̃1

φ̃2

φ̃3

 , (2.73)
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where

A =
1

2

∣∣∣∣∣∣
1 x1 z1

1 x2 z2

1 x3 z3

∣∣∣∣∣∣ . (2.74)

The magnitude of A is equal to the area of the linear triangular element. Its value is

positive if the element node is numbered in the counter-clockwise direction, and vice

versa. For the finite element method, the numbering direction has to be the same for

every element in the domain.

Substituting the solution of equation (2.73) into equation (2.71), we obtain

ũ(x, ky, z) = γ1(x, z)φ̃1 + γ2(x, z)φ̃2 + γ3(x, z)φ̃3,

=

3∑
i=1

γi(x, z)φ̃i,
(2.75)

where γ is the shape function for the linear triangular element which can be expressed

in the local coordinate system as

γ1 =
1

2A
[(x2z3 − x3z2) + (z2 − z3)x+ (x3 − x2)z] ,

γ2 =
1

2A
[(x3z1 − x1z3) + (z3 − z1)x+ (x1 − x3)z] ,

γ3 =
1

2A
[(x1z2 − x2z1) + (z1 − z2)x+ (x2 − x1)z] .

(2.76)

These shape function satisfy the conditions

γi (xj , zj) = δij , (2.77)

where δ is the Kronecker delta function and

3∑
i=1

γi = 1. (2.78)

Substituting ũ(x, ky, z) into equation (2.16), we obtain

R = ∇ · [σ (x, z)∇ũ]− k2
yσ (x, z) ũ+ Q̃δ(xs)δ(zs). (2.79)

Because ũ(x, ky, z) is not the exact solution, the residual R is not, in general, zero.

Hence the residual doesn’t vanish everywhere in the subdomain. To reduce the error,

the method of weighted residuals (MWR) is applied. The notion in the MWR is to

force the residual to zero in some average sense over the domain. That is∫
Ω
wiRdΩ = 0 for i = 1, ....., n, (2.80)

where wi is the weight function, and n is the number of nodal variables φ̃i. For a

triangular element as in our case, n is 3 for each subdomain. MWR can be divided into
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5 methods corresponding to the weight function (Grandin, 1991). These five methods

are (1) the collocation method, (2) subdomain method, (3) the least squares method,

(4) the Galerkin method, and (5) the method of moment. Here, the Galerkin method is

used for determining the weight function. For the Galerkin method, the weight function

is the derivative of the trial function ũ with respect to the nodal variable φ̃i,

wi =
∂ũ

∂φ̃i
= γi. (2.81)

Consider the subdomain Ω(e) for which the conductivity σ(e) is, in general, constant the

MWR equation can be written as

σ(e)

∫
Ω(e)

wi∇2ũdΩ(e) − σ(e)

∫
Ω(e)

wik
2
yũdΩ(e) +

∫
Ω(e)

wiQ̃δ(xs)δ(zs)dΩ(e) = 0. (2.82)

Consider
∫

Ω(e) wi
∂2ũ
∂x2

dΩ(e). The domain integral can be rewritten as∫
Ω(e)

wi
∂2ũ

∂x2
dΩ(e) =

∫ z2

z1

(∫ x2

x1

wi
∂2ũ

∂x2
dx

)
dz.

Applying integration by parts with respect to x, we obtain∫
Ω(e)

wi
∂2ũ

∂x2
dΩ(e) = −

∫ z2

z1

(∫ x2

x1

∂wi
∂x

∂ũ

∂x
dx

)
dz +

∫ z2

z1

[
wi
∂ũ

∂x

]x1
x2

dz.

Rewriting the expression using the domain and boundary integrations results in∫
Ω(e)

wi
∂2ũ

∂x2
dΩ(e) = −

∫
Ω(e)

∂wi
∂x

∂ũ

∂x
dΩ(e) +

∮
wi
∂ũ

∂x
nxdΓ(e), (2.83)

where nx is the x-component of the unit normal vector which is positive in the outward

direction and the boundary integral is positive in the counter-clockwise direction, and

Γ(e) is the boundary of the subdomain Ω(e).

Similarly,
∫

Ω(e) wi
∂2ũ
∂z2

dΩ(e) can be written as∫
Ω(e)

wi
∂2ũ

∂z2
dΩ(e) = −

∫
Ω(e)

∂wi
∂z

∂ũ

∂z
dΩ(e) +

∮
wi
∂ũ

∂z
nzdΓ(e), (2.84)

Combining equation (2.83) with (2.84), we obtain∫
Ω(e)

wi∇2ũdΩ(e) = −
∫

Ω(e)

(
∂wi
∂x

∂ũ

∂x
+
∂wi
∂z

∂ũ

∂z

)
dΩ(e) +

∮
wi
∂ũ

∂n
dΓ(e), (2.85)

where
∂ũ

∂n
=
∂ũ

∂x
nx +

∂ũ

∂z
nz.

Substituting equation (2.85) into equation (2.82), we obtain

− σ(e)

∫
Ω(e)

(
∂wi
∂x

∂ũ

∂x
+
∂wi
∂z

∂ũ

∂z

)
dΩ(e) + σ(e)

∮
wi
∂ũ

∂n
dΓ(e)

− σ(e)

∫
Ω(e)

wik
2
yũdΩ(e) +

∫
Ω(e)

wiQ̃δ(xs)δ(zs)dΩ(e) = 0.

(2.86)
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From the mixed boundary condition (2.18), the second term of equation (2.86) becomes

σ(e)

∮
wi
∂ũ

∂n
dΓ(e) = −

∫
Γ(e)

wiβ
(e)ũdΓ(e).

Therefore equation (2.86) is rewritten as

σ(e)

∫
Ω(e)

(
∂wi
∂x

∂ũ

∂x
+
∂wi
∂z

∂ũ

∂z

)
dΩ(e) +

∫
Γ(e)

wiβ
(e)ũdΓ(e)

+ σ(e)

∫
Ω(e)

wik
2
yũdΩ(e) =

∫
Ω(e)

wiQ̃δ(xs)δ(zs)dΩ(e).

(2.87)

Substituting equation (2.75) into equation (2.87) and applying the Galerkin method,

we obtain

3∑
j=1

[∫
Ω(e)

σ(e)∇γi · ∇γjdΩ(e) +

∫
Γ(e)

β(e)γiγjdΓ(e) + k2
y

∫
Ω(e)

σ(e)γiγjdΩ(e)

]
φ̃j

=

∫
Ω(e)

I

2
δ(xs)δ(zs)γidΩ(e) for i = 1, ...., 3.

(2.88)

This equation can be written in matrix form as

(A(e) + B(e) + C(e))Φ̃(e) = F(e), (2.89)

where

A
(e)
ij =

∫
Ω(e)

σ(e)∇γi · ∇γjdΩ(e),

B
(e)
ij =

∫
Γ(e)

β(e)γiγjdΓ(e),

C
(e)
ij = k2

y

∫
Ω(e)

σ(e)γiγjdΩ(e), and

F
(e)
i =

∫
Ω(e)

I

2
δ(xs)δ(zs)γidΩ(e).

Substituting the shape function (equation (2.76)) into equation (2.89) and evaluating

the integration following (Gabàs, 2003), we obtain

A
(e)
ij =

∫
Ω(e)

σ(e)∇γi · ∇γjdΩ(e),

=
σ(e)

4A
(bibj + cicj) ,

(2.90)

where A is the area of the element calculated by A = 1
2 (cibj − bicj), b1 = x3 − x2,

c1 = z3 − z2, and the other constants are obtained by cyclic permutations.

B
(e)
ij =

∫
Γ(e)

β(e)γiγjdΓ(e) =


0 if (x, z) ∈ Γ,

β(e)

6
L(e) (1 + δij) if (x, z) /∈ Γ.

(2.91)
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where L(e) is the length of Γ(e), and Γ is the boundary of the whole computational

domain.

C
(e)
ij = k2

y

∫
Ω(e)

σ(e)γiγjdΩ(e),

=
1

12
k2
yσ

(e)A (1 + δij) .

(2.92)

F
(e)
i =

∫
Ω(e)

I

2
δ(xs)δ(zs)γidΩ(e) =

{
0 if (x, z) 6= (xs, zs),
I

2
if (x, z) = (xs, zs).

(2.93)

We assemble the matrix elements and vector elements into the global matrix based on

its the global-node number results in

KΦ̃ = s, (2.94)

where K is the coefficient matrix or “stiffness” matrix. Figure 2.17 shows an example of

the stiffness matrix when the problem domain is discretized by “left-slope” triangular

elements only. The stiffness matrix is only a function of geometry, physical property

distribution, and wavenumber ky. This is the same as with the capacitance matrix. As

with FD, we use LU -factorization to decompose K, and then use backward and forward

substitutions to solve the system.

Both the rectangular FD and the right triangular FE define potential nodes

at the same locations (Figure 2.9 and 2.12). For the same mesh, the number of unknowns

φ̃ for both FE and FD would therefore be the same. The matrices C and K thus have the

same dimension. However, since C has only five bands, while K has seven, the number

of non-zero coefficients of FD is less than that of FE. Thus, FD would theoretically

require smaller storage than FE. In addition, the calculation time for decomposing and

solving (2.70) would be expected to be less than that for (2.94).

2.3.4 Wavenumber ky selection

After solving equation (2.70) or (2.94), we obtain the vector of transformed

electric potential Φ̃. In order to the calculate electric potential φ at a particular point

p, the inverse Fourier transform is applied at the point. In theory, inverse the Fourier

transform has to use an infinite number of wavenumbers ky to calculate the electric

potential (equation (2.15)). Here, the optimization approach proposed by Xu et al.

(2000) is used for calculating the inverse Fourier transform. Following the optimization

approach, the electric potential φ is a linear combination of the transformed electric

potential φ̃

φ(x, z) =

n∑
p=1

φ̃(r, kyp)gp, (2.95)
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Figure 2.17: the sparsity pattern of the stiffness matrix K when the problem domain
is discretized by “left-slope” triangular element. The sparsity pattern of Kk is close to
the sparsity pattern of C except that has two extra bands (gray) which correspond to
the top-left and bottom-right nodes.

where n is the number of wavenumbers, and gp is the weighting parameter. For the

homogeneous half-space earth, the electric potential is a function of the earth resistivity

ρ and the radial distance r =
√
x2 + y2 + z2 as shown in equation (2.3). Substituting

equation (2.3) into equation (2.14), we obtain

φ̃(x, ky, z) =

∫ ∞
0

ρ cos(kyy)

2π
√
x2 + y2 + z2

dy,

=
ρ

2π
K0 (ky r̃) ,

(2.96)

where r̃ =
√
x2 + z2 is the radial distance in the transformed space. Substituting (2.3)

and (2.96) into equation (2.15) and setting y equal to 0, we get

1

r̃
=

2

π

∫ ∞
0

K0 (ky r̃) dky. (2.97)

Rewriting equation (2.97) as a sum, we obtain

1

r̃
≈

n∑
p=1

K0

(
kyp r̃

)
gp. (2.98)

In order to obtain the same relative errors for different values of r̃, equation (2.98) can

be rewritten as

1 = r̃h

n∑
p=1

K0

(
kyp r̃h

)
gp = νh, (2.99)

and, in the matrix form as

Eg = ν, (2.100)

where Eh,p = r̃hK0(r̃hkyp). The values of kyp and gp are computed by minimizing the

objective function Θ,

Θ = (I− ν)T (I− ν) = (I−Eg)T (I−Eg), (2.101)
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where I is a unit column vector.

There are two steps for selection of kyp and gp. The first step is to determine

the values of gp from the given set of kyp . For a given set of kyp , a set of gp can be

determined by differentiating the objective function Θ with respect to g and setting the

result equal to zero. The differential form of Θ is

dΘ = 2dgTET (I−Eg). (2.102)

In general, dgT is not equal to zero; therefore

ET (I−Eg) = 0 or g = B−1c, (2.103)

where B = ETE, and c = ET I. The g calculated from equation (2.103) is a set of gp

corresponding to a given set of kyp . When another set of wavenumbers is given, we will

get another set of gp.

After this, we obtain the set of gp corresponding to the given set of wavenum-

bers, k0
y. The second step is to determine ky which make the objective function Θ reach

a global minimum. To do that, we expand ν with a Taylor series expansion about a set

of initial values k0
y, and take the first-order term in dky,

ν = ν0 +
∂ν

∂ky
dky. (2.104)

Substituting equation (2.104) into equation (2.101), we obtain

Θ = (I− ν0 +
∂ν

∂ky
dky)

T (I− ν0 +
∂ν

∂ky
dky). (2.105)

Differentiating Θ with respect to dky and setting its result equal to zero, we obtain the

expression for computing the new set of wavenumber k1
y as

k1
y = k0

y + M−1H, (2.106)

where

M =

(
∂ν

∂ky

)T ( ∂ν

∂ky

)
,

and

H =

(
∂ν

∂ky

)T
(I− ν0) .

The new set of wavenumbers, k1
y, might not reach the global minimum because equation

(2.106) is an approximate formula. We can obtain the optimum set of wavenumbers by

taking k1
y as a new set of the initial values k0

y and repeating the above process.
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2.3.5 Accuracy Tests for Wavenumber Selection

Here, the optimization algorithm for wavenumbers is tested to do the inverse

Fourier transform for the distance r̃ of 1.0-30.0 meters. This range of r̃ corresponds to

the distance between the current and potential electrodes for the Wenner array with 48

electrodes, 1 meter electrode spacing, and 15 investigation depth levels. This range also

covers the distance between the current and potential electrode for the Dipole-Dipole

array with 28 investigation depth levels and also covers the distance between current

and potential electrode for the Schlumberger array with 61 electrodes, 1 meter electrode

spacing, and 30 investigation depth levels.

Table 2.1 shows the set of wavenumbers and its weighting parameters cal-

culated by the optimization algorithm. Its relative error is less than 0.05% for a f of

1.0-30.0 meters and it slightly increases when the distance is over 30.0 meters as shown

in figure 2.18. It shows that the results for the optimization algorithm not only works

well in the input r̃ but also functions for some distance outside the input region. For

ky g

1.00191499e-02 2.05845911e-02
9.61319787e-02 6.37489791e-01
1.01458177e-01 -6.21186137e-01
1.89791636e-01 1.67781685e-01
5.04297173e-01 2.22301411e-01
7.86306211e-01 2.34362843e-01
1.31297930e+00 1.62692691e-01
1.97520393e+00 1.22197461e+00

Table 2.1: The eight wavenumbers set and their weighting parameters g supporting
distances from 1.0-30.0 meters

the other electrode spacing (a), we generate the appropriate wavenumber set by simply

dividing the set of wavenumbers and its weighting parameters in table 2.1 by a.

2.3.6 Validation and Numerical comparisons I

To validate our FD and FE codes, three synthetic models are used as shown

in figure 2.21. Model A (figure 2.21a) mimics the situation of wet soil (conductive layer)

lying on top of limestone (resistive layer) which is commonly found in the western part

of Thailand. For any two-layer models, the structure can be described by 3 parameters

which are the resistivity of the 1st layer ρ1, the resistivity of the 2nd layer ρ2, and the

thickness of the 1st layer z as shown in figure 2.19. The analytic solution of the apparent

resistivity ρa for Wenner, Schlumberger, Dipole-Dipole, and other 4-electrodes array is
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Figure 2.18: The relative error of ν for distance r̃ from 1.0-40.0 meters.

Figure 2.19: A schematic diagram of the general two-layers model.

given by

ρa = ρ1

[
1 + 2p

∞∑
m=1

km

{
1(

r2
AM + 4m2z2

)1/2 − 1(
r2
BM + 4m2z2

)1/2
− 1(

r2
AN + 4m2z2

)1/2 +
1(

r2
BN + 4m2z2

)1/2
}] (2.107)

where k = (ρ2 − ρ1) / (ρ2 + ρ1), p = {1/rAM − 1/rBM − 1/rAN + 1/rBN}−1, and r is

distance between the electrodes as shown in figure 2.2.
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Model B resembles a vertical fault or boundary between two different rocks

with resistive rock on one side and conductive rock on another side (figure 2.21b). The

analytic solution of the model B can be divided into five situations, depending on the

electrode positions with respect to the contact as shown in figure 2.20.

For the Wenner and Schlumberger arrays, the analytical solutions for model

B are as follows.

(1) All electrodes on left-hand side:

ρa = ρ1p

[(
1

rAM
− 1

rBM

)
−
(

1

rAN
− 1

rBN

)
+ k

{(
1

2s− rAM
− 1

2s− 2rAM − rBM

)
−
(

1

2s− rAN
− 1

2s− 2rAN − rBN

)}]
,

(2.108)

(2) Electrode B on the right-hand side:

ρa = ρ1p

[(
1

rAM
− 1

rBM

)
−
(

1

rAN
− 1

rBN

)
+k

{(
1

2s− rAM
− 1

rBM

)
−
(

1

2s− rAN
− 1

rBN

)}]
,

(2.109)

(3) Electrode B and N on the right-hand side:

ρa = ρ1p

[(
1

rAM
− 1

rBM

)
− k∗

(
1

rAN
− 1

rBN

)
+ k

{(
1

2s− rAM
− 1

rBM

)
+k∗

(
1

rAN
− 1

2rAN + rBN − 2s

)}]
,

(2.110)

(4) Electrode B, M and N on the right-hand side:

ρa = ρ1pk
∗
[(

1

rAM
− 1

rBM

)
−
(

1

rAN
− 1

rBN

)
− k

{(
1

rAM
− 1

2rAM + rBM − 2s

)
−
(

1

rAN
− 1

2rAN + rBN − 2s

)}]
,

(2.111)

(5) All electrodes on the right-hand side:

ρa = ρ1pk
∗
[(

1

rAM
− 1

rBM

)
−
(

1

rAN
− 1

rBN

)
− k

{(
1

2s+ rAM
− 1

2s+ 2rAM + rBM

)
−
(

1

2s+ rAN
− 1

2s+ 2rAN + rBN

)}]
,

(2.112)
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where s is the distance between the fault line and current electrode A, and

k = (ρ2 − ρ1) / (ρ2 + ρ1) ,

k∗ = (1 + k)/(1− k),

p = {1/rAM − 1/rBM − 1/rAN + 1/rBN}−1 .

(2.113)

Figure 2.20: The five situations of four electrodes spread over a vertical contact. The
first one is “all electrodes on the left-hand side”, the second one is “electrode B” on
the right-hand side, the third one is “electrode B and N on the right-hand side”, the
fourth one is “electrode B, M and N on the right-hand side” and the last one is “all
electrodes on the right-hand side”.

For the Dipole-Dipole array (potential electrodes placed on the right-hand

side of current electrodes), rAM = rBN = r, rAN = r − l, rBM = r + l where l is

the distance between the pair of current electrodes. Then the analytic solution for a

vertical-contact model is given by
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(1) all four electrodes on the left-hand side

ρa ≈ ρ1

{
1− kr3

(2s+ r)3

}
, (2.114)

(2) dipole straddles contact:

ρa ≈ ρ1(1 + k), (2.115)

(3) all four electrodes on right:

ρa ≈ ρ1k
∗
{

1− kr3

(2s+ r)3

}
, (2.116)

The last model (model C) consists of two different anomalies buried in a

host layer (figure 2.21c). In this model, there is no analytical solution. Commercial

software (RES2DMOD; Loke & Barker (1996)) is therefore used to generate the so-

lutions for comparison. In all models, 48 electrodes are deployed at the surface with

1m spacing. Three configurations (Schlumberger, Wenner and DipoleDipole arrays) are

used to generate the apparent resistivities up to 15 levels (n = 115). To compare and

validate the responses, a relative error ξ is used as an index to describe the accuracy of

the codes and is defined as

ξ =
1

N

N∑
i=1

|ρcal
a − ρtrue

a |
ρtrue
a

× 100%, (2.117)

where N is the total number of data points, ρcal
a is the calculated apparent resistivity

from our FD or FE by forward modeling routines, and ρtrue
a is the apparent resistiv-

ity from the analytical solution for models A and B and the numerical solution from

RES2DMOD for model C. Pseudo-sections for all three configurations of models A, B,

and C are illustrated in figure 2.22, 2.23, and 2.24, respectively. In theory, fine grid dis-

cretization would produce the most accurate result but would have resulted in a large

CPU time and large memory requirements. This might prohibit a run on some com-

plicated large models. It is therefore necessary to have an automatic mesh generation

scheme which can generate an optimized mesh that requires less calculation time and

memory but can still produce the responses at an acceptable level of accuracy.

In this section, we study the effect of grid discretization on FD and FE by

using 8 wavenumbers (table 2.1). To calculate the responses with FD or FE, the model

must be discretized as in figure 2.9 for FD or figure 2.12 for FE. In the vertical direction,

the top layer spacing is set as 0.025a where a is the electrode spacing. The spacing

between the next layers is then logarithmically increased with depth to a maximum of

about 220a. With this technique, the number of blocks in the vertical direction for the

models in figure 2.21 is set at 26 blocks as shown in table 2.3.6. For horizontal direction,

the left and right boundaries are extended beyond the first and last electrodes to at least
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Figure 2.21: Non-topography models used to validate FD, FE and our hybrid methods.
(a) Model A: wet soil (10 Ωm) lying on top of a resistive limestone (1000 Ωm). (b)
Model B: two different rocks with a vertical boundary. The left side is conductive (1
Ωm) and the right side is resistive (1000 Ωm). (c) Model C: two different anomalies
buried in a 100 Ωm half-space. The left and right anomalies are 1 Ωm and 1000 Ωm,
respectively. Forty-eight electrodes are deployed at the surface with 1-m spacing for all
models. Integers indicate the electrode number.
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Figure 2.22: Pseudo-sections of model A (figure 2.21a) for (a) Wenner, (b) Schlumberger,
and (c) Dipole-Dipole arrays.

Figure 2.23: Pseudo-sections of model B (figure 2.21b) for (a) Wenner, (b) Schlumberger,
and (c) Dipole-Dipole arrays.
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Figure 2.24: Pseudo-sections of model C (figure 2.21c) for (a) Wenner, (b) Schlumberger,
and (c) Dipole-Dipole arrays.

about 1000a to make sure that the current injection from the first and last electrodes

would not interfere with the boundaries.

The grid spacing beyond the first and last electrodes increases exponentially

to minimize the number of horizontal blocks. Between a pair of electrodes, a simple

discretization is to divide the spacing equally into many different numbers of blocks.

Here we present results from the studies of dividing the spacing distance between a pair

of electrode into 2-blocks, 3-blocks and 4-blocks cases in the horizontal direction. This

mesh generation led to a 114 × 26 model in the x- and z-directions, respectively, for

the 2-blocks case, and a 161 × 26 model for the 3-blocks case, and a 208 × 26 model

for the 4-blocks case for all models. The number of unknowns at the nodes for both FD

and FE would therefore be at 2990, 4374 and 5103 for 114 × 26, 161 × 26 and 208 ×
26 discretizations, respectively.

The number of unknowns for both methods are exactly the same but coef-

ficient matrices C and K are still different as already described in the previous section.

Because K has two more bands than C, the FE matrix K has 32,723 non-zero terms

while C has 23,571 terms. K therefore has about 38% more non-zero terms than C. FE

requires 3.29-3.62 times more CPU time than FD to solve the system of equations eight

times (for 8 ky). The relative errors of models A, B and C obtained when using the FD

and FE methods with 2-blocks, 3-blocks and 4-blocks discretizations in the horizontal
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Level Depth [m] Level Depth [m]

1 0.025 14 3.700
2 0.050 15 4.545
3 0.075 16 5.815
4 0.100 17 7.715
5 0.125 18 10.570
6 0.500 19 14.850
7 0.750 20 21.270
8 1.000 21 30.900
9 1.350 22 45.350
10 1.735 23 67.002
11 2.160 24 99.525
12 2.625 25 148.280
13 3.135 26 221.815

Table 2.2: Vertical grid is used in the synthetic tests.

direction are 0.1-1.5% (Table 2.3.6). If the model is discretized with only 1 block per

electrode pair, both FE and FD codes produce results with relative errors larger than

10% for all models. Using more than 5-blocks between a pair of electrodes, the accuracy

is improved but is not significantly different from the 4-blocks case.

Although all the relative errors are at an acceptable level (ξ < 1%), it

should be noted that FD is more accurate than FE for the 2- blocks case, the errors are

comparable for the 3-blocks case, but FE is more accurate in the 4-blocks case. We also

see that FD 2-blocks discretization is about as accurate as FE 3-blocks discretization.

This result is very important and will be used for the mixed grid hybrid FD-FE method.

However, in later section, we show that in the case of topography with a large slope,

the number of blocks between a pair of electrodes must be increased.

2.3.7 Validation and Numerical comparisons II

In this section, FD and FE codes will be tested on models that include

topography. Here, we mimic the situation of cavity detection in a karst terrain, where

limestone is the base lithology whose variable erosion yields varying topography. The

synthetic model contains extreme topography with two 60◦ hills (figure 2.25). Beneath

the left hill is an air-filled high resistivity cavity and beneath the right hill there is a high

conductivity zone. At greater depth, a high and a low resistivity structure are buried

inside an otherwise homogeneous region with a resistivity of 1000 Ωm. 48 electrodes are

deployed with 4 m horizontal spacing to cover a distance of 188 m. The three major

configurations (Wenner, Schlumberger and Dipole-Dipole arrays) are used to test the

accuracy and efficiency of the FD and FE codes.
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Model Method #Block Wenner Schlumberger Dipole Time [s]

A (Fig. 2.21a)

FD

2 0.25 0.23 0.33 0.55

3 0.15 0.15 0.27 0.83

4 0.15 0.14 0.29 1.13

FE

2 0.44 0.41 0.66 1.99

3 0.18 0.17 0.26 2.85

4 0.10 0.09 0.21 3.78

B (Fig. 2.21b)

FD

2 0.89 0.67 0.55 0.55

3 0.76 0.58 0.44 0.83

4 0.72 0.55 0.41 1.15

FE

2 1.20 0.99 1.15 1.98

3 0.66 0.51 0.57 2.87

4 0.47 0.36 0.41 3.78

C (Fig. 2.21c)

FD

2 0.96 0.84 0.89 0.55

3 0.81 0.72 0.49 0.83

4 0.76 0.73 0.44 1.14

FE

2 1.31 1.26 1.55 2.00

3 0.75 0.67 0.71 2.86

4 0.56 0.55 0.50 3.78

Table 2.3: The relative error [%] defined as (1/N)
∑N

i=1(|ρcal
a − ρtrue

a |)/ρtrue
a , where ρtrue

a

is true apparent resistivity from the analytical formula (model A and B), and from the
RES2DMOD program (model C), ρcal

a is the apparent resistivity calculated from FD,
or FE methods with 2-, 3- and 4-horizontal blocks between a pair of electrodes. Model
A, B and C are shown in figure 2.21a-c, respectively.

The FD and FE methods use the same grid (209 × 59) which are discretized

by an “automatic grid discretization” routine, but the FD method requires air layers

on top of the Earth domain. As a result, the FD method has 12,331 unknown nodes

whereas the FE methods have only 8,560. These unknown nodes result in 61,119 non-

zero coefficients in the C matrix of FD, and 58,982 in the K matrix of FE. The potentials

obtained from each method are then used to calculate the apparent resistivities for each

configuration. The pseudo-section of the Wenner, Schlumberger, and Dipole-Dipole

arrays are shown, repectively, in figures 2.26, 2.27, and 2.28 where (a) is for FD and (b)

is for FE methods.

Generally, because FE can approximate the topography better than FD,

the FE solution is therefore more accurate than FD as proven in Erdogan et al. (2008).

For this model, there is no analytical formulation and it also cannot be solved by the

RES2DMOD program. The apparent resistivity responses from the FE method are

therefore used as the reference solution ρtrue for comparison.

Table 2.3.7 shows that relative errors of the apparent resistivity responses of

the FD method range from 3% for the Wenner array to almost 8% for the Dipole-Dipole

array although topography is incorporated. The inaccuracy of the FD method results
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Figure 2.25: The extreme topography model with two steep hills and high contrast
resistivity structures beneath. The white region is an air-filled cavity.

Figure 2.26: The pseudo-section of the extreme topography model for the Wenner array
computed by the (a) FD method and (b) FE method.

from using a rectangular mesh to model the steeper slope which is not realistic. In

theory, to increase the FD accuracy one must discretize the model domain more finely.

This increases the number of the unknown nodes and consequently the CPU time and

the memory requirement. However, in practice, even if we try to discretize the model

domain more finely, particularly in the slope and the near surface region, we cannot

obtain an error lower than 2%.

In terms of CPU time, the FE (without air) method requires 1.93 times more

CPU time than the FD (with air) method. This is because the FE method doesn’t have

the explicit formula for forming its system of equations as with the FD method. The
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Figure 2.27: The pseudo-section of the extreme topography model for a Schlumberger
array computed by the (a) FD method and (b) FE method.

Figure 2.28: The pseudo-section of the extreme topography model for a Dipole-Dipole
array computed by the (a) FD method and (b) FE method.
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FE method requires a for loop to form its system of equations while the FD method

forms its system of equations by using only matrix operations. In MATLAB, a matrix

operation is more efficient than a for loop. For performing the same calculation, a

matrix operation needs less CPU time than a for loop. 83.7-88.8% of the CPU time

of FE method is for forming the stiffness matrix (K), while the rest is used to solve

equation (2.94) for all eight wavenumbers. In contrast, the FE method without air

requires a lot less memory than FD methods. The majority of the memory is used to

store the L and U matrices for each wavenumber (as in Table 2.3.7). The storing of

L and U makes the code most efficient when solving equation (2.70) or (2.94) with

different right-hand sides.

This experiment shows that when topography exists, the FD method is

still faster than the FE method but it produces inaccurate results and its memory

requirement is greater than for the FE method.

Method
Accuracy Difference [%]

CPU time [s]
Wenner Schlumberger Dipole-Dipole

FD 3.13 5.33 7.82 3.35

FE - - - 6.46

Table 2.4: The percentage accuracy difference and CPU time for all three arrays for
testing the FD and FE forward modeling schemes.

Method
Memory Usage [MB]

C or K or αC + βK L or U Total (for 8 ky)

FD 1.05 14.98 242.25

FE 0.99 8.83 145.68

Table 2.5: The memory usage for all three arrays for testing the FD and FE forward
modeling schemes.

2.3.8 A hybrid finite difference and finite element method

The advantage of FD over FE was demonstrated in the previous section and

has also been shown in Erdogan et al. (2008). However, when topography is present,

the right triangular elements of FE are more suitable for modeling a surface with topog-

raphy than the rectangular blocks of FD. FE therefore produces a more accurate result

than FD (Erdogan et al., 2008). Here we introduce a hybrid FD-FE method which

combines the advantages of both FD and FE together, and avoids the deficiencies of

both methods. The concept of hybrid methods are not new. They have been applied

in various applications, e.g., in elastic wave modeling (Jianfeng & Tielinm, 2002; Galis

et al., 2008) and in hydrology (Simpson, 2003), among many others.
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Both FD and FE are approximation methods. It has been proven that both

FE and FD yield similar discrete approximations when applied to the same grid (see

Zienkiewicz & Cheung, 1965). This is very crucial information for the hybrid method. If

there are any large differences between both approximations, a hybrid method would be

invalid. In this case, a transition zone from FD to FE and vice versa must be introduced

similar to that of Galis et al. (2008).

To confirm this important point, the electrical potentials φ̃FE and φ̃FD at all

nodes calculated with FE and FD methods, respectively, from the same pair of current

injection electrodes were compared. One example generated from model A (figure 2.21a)

and is plotted in figure 2.29. In all comparisons, φ̃FD and φ̃FE at all nodes are almost

identical as shown in figure 2.29a and b, respectively. The maximum absolute differences

between φ̃FE and φ̃FD are in the order of 10−3 (figure 2.29c).

Due to the small discrepancies between φ̃FE and φ̃FD, it is reasonable to

linearly combine equation (2.70) and (2.94) to form the single system of equations for

the hybrid method,

(αC + βK) Φ̃ = s, (2.118)

where α and β are diagonal matrices whose diagonal elements can be either 0 or 1. At

node i (or row i), if FD is used, αii = 1 and βii = 0. If FE is used at node i, αii = 0 and

βii = 1. If every node is approximated with FD, equation (2.118) reduces to equation

(2.70), and similarly if every node is approximated with FE, equation (2.118) reduces

to equation (2.94). Clearly, the system of equations (2.118) is not symmetric if both FD

and FE grids are used. Similar to FD and FE, LU -factorization is used to decompose

and solve equation (2.118).

To discretize the model with the hybrid technique, the model is first dis-

cretized with FD rectangular blocks (white circles in figure 2.30). Then, wherever there

is topography, FE triangular elements (black circles in figure 2.30) are inserted to re-

place the FD rectangular blocks. Figure 2.30 shows that any kinds of topography can

be easily modeled with left-diagonal or right-diagonal triangular elements. The left- and

right-slope models (figure 2.30a and b) can be discretized at the slope with left- and

right-diagonal triangular FE elements, respectively. For the ridge and valley models

(figure 2.30c and d), we use both left-diagonal and right-diagonal triangular elements

depending on the directions of the slopes. Since there are many more FD blocks than

FE triangular elements, it seems likely that the hybrid method will maintains the ad-

vantages of FD in terms of computational resources, while gaining accuracy from FE

when topography is present.

Figure 2.31 shows the example of hybrid grid discretization, its node-index

system, and its element-index system. The node numbers for the hybrid method are
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Figure 2.29: Contour plots of electrical potentials calculated from (a) FD method, (b)
FE method and (c) their difference. Both are generated from the same pair of inject-
ing current electrodes and the same boundary conditions. Notice that the maximum
differences are in the order of 10−3.

indexed from top to bottom and left to right (figure 2.31). The element numbers are

similarly indexed from top to bottom and left to right, but starting first with the FD

elements and then the FE elements.

Theoretical comparison

All three methods (FD, FE and HB) share the same number of unknowns

for each model discretization. The coupling coefficient matrices (C, K and αC + βK)

therefore have the same dimension, but different numbers of non-zero coefficients. For
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Figure 2.30: Examples of mixed FD and FE grids for our hybrid FD FE method for
(a) left-slope model, (b) right-slope model, (c) ridge model and (d) valley model. Solid
white circles are FE nodes. Black circles are FD nodes. Topography is denoted by black
solid lines.

Figure 2.31: Grid discretization for the hybrid FD-FE method. The slope areas are
discretized with FE (white nodes) and the others with FD (black nodes). Number of
elements is given at the center of the rectangular or triangular elements. The number
of nodes is indexed inside the black nodes for FD and the white nodes for FE (after
Vachiratienchai & Siripunvaraporn, 2013).

a hybrid method, where FD and FE grids are mixed, the number of non-zero bands

would be equal to that of FE, i.e. 7. However, because the majority of nodes are from

FD, the number of non-zero entries would be less than that of FE and slightly more

than that of FD. Hence the memory and CPU time requirements of the hybrid method

should be slightly more than that of FD, but less than that of FE.
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Validation of the hybrid FD-FE method I

Before applying a hybrid FD-FE method to a model with topography, we

must first check that our hybrid code can also produce accurate results even with a model

that has no topography. The validation tests were performed on the previous three

models (figure 2.21a-c). For these models with no topography, we used FE triangular

elements beneath the surface and FD rectangular blocks for the rest of the models. The

same mesh generation scheme used earlier for FD and FE methods is also applied for

the hybrid method. This would lead to the same number of unknowns and same matrix

dimensions for the 2-blocks, 3-blocks, and 4-blocks cases, as previously applied.

Model Method #Block Wenner Schlumberger Dipole Time [s]

A (Fig. 2.21a)

FD

2 0.25 0.23 0.33 0.55

3 0.15 0.15 0.27 0.83

4 0.15 0.14 0.29 1.13

FE

2 0.44 0.41 0.66 1.99

3 0.18 0.17 0.26 2.85

4 0.10 0.09 0.21 3.78

HB

2 0.30 0.28 0.36 0.57

3 0.18 0.17 0.27 0.88

4 0.14 0.14 0.29 1.19

B (Fig. 2.21b)

FD

2 0.89 0.67 0.55 0.55

3 0.76 0.58 0.44 0.83

4 0.72 0.55 0.41 1.15

FE

2 1.20 0.99 1.15 1.98

3 0.66 0.51 0.57 2.87

4 0.47 0.36 0.41 3.78

HB

2 1.10 0.88 0.98 0.59

3 0.90 0.72 0.83 0.88

4 0.75 0.56 0.41 1.18

C (Fig. 2.21c)

FD

2 0.96 0.84 0.89 0.55

3 0.81 0.72 0.49 0.83

4 0.76 0.73 0.44 1.14

FE

2 1.31 1.26 1.55 2.00

3 0.75 0.67 0.71 2.86

4 0.56 0.55 0.50 3.78

HB

2 1.06 0.93 0.94 0.58

3 0.86 0.75 0.50 0.89

4 0.78 0.75 0.44 1.19

Table 2.6: The relative error [%] defined as (1/N)
∑N

i=1(|ρcal
a − ρtrue

a |)/ρtrue
a , where ρtrue

a

is the true apparent resistivity from analytical formula (model A and B), and from
RES2DMOD program (model C), ρcal

a is the apparent resistivity calculated from FD,
FE, or HB methods with 2-, 3- and 4-horizontal blocks between a pair of electrodes.
Models A, B and C are shown in figure 2.21a-c, respectively.
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The number of non-zero coefficients of HB is slightly less than 1% above

that of FD, but almost about 30% less than that of FE. The memory requirement for

the hybrid method is about 7% more than that of FD, and 20% less than that of FE.

In terms of computational time to solve the system of equations 8 times (for 8 ky)

HB needs on average about 5% more CPU time than FD. Table 2.3.8 shows that the

relative errors of HB can be either larger than both FD and FE or in between the values

of both FD and FE or smaller than both FD and FE. However, they are all at about the

same acceptable level. Thus we conclude that our hybrid method can yield apparent

resistivities as accurately as the FD and FE methods where topography is not present.

Validation of the hybrid method II

In this section, our hybrid method will be tested on an extreme topography

model (figure 2.25). In this test, the model is also divided into 209 × 59 elements.

Since the hybrid method doesn’t require the air portion like the FE method, the hybrid

method therefore also has 8,560 unknown nodes. These unknown nodes result in 42,604

non-zero coefficients in the αC + βK matrix. The HB method is used to calculate the

apparent resistivities for Wenner, Schlumberger, and Dipole-Dipole configurations and

its results are summarized in table 2.3.8.

Method
Accuracy Difference [%]

CPU time [s]
Wenner Schlumberger Dipole-Dipole

FD 3.13 5.33 7.82 3.35

FE - - - 6.46

HB 0.47 0.29 0.29 2.62

Table 2.7: The percentage accuracy difference and CPU time for all three arrays for
testing the three different forward modeling schemes.

Method
Memory Usage [MB]

C or K or αC + βK L or U Total (for 8 ky)

FD 1.05 14.98 242.25

FE 0.99 8.83 145.68

HB 0.73 6.89 113.31

Table 2.8: The memory usage for all three arrays for testing the three different forward
modeling schemes.

Figure 2.32 is the forward response of Wenner, Schlumberger and Dipole-

Dipole arrays computed by the HB method. The apparent resistivity responses of the

hybrid method differ by less than 0.5% from those of the FE methods for all configu-

rations and the hybrid method requires 0.41 and 0.78 less CPU time than FE (without

air) and FD (with air) methods, respectively. This is because the systems of equations
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Figure 2.32: Pseudo-section of the “extreme” topography model (figure 2.25) for (a)
Wenner, (b) Schlumberger and (c) Dipole-Dipole arrays.

for FD and FE are larger due to the larger numbers of unknowns. 60-70% of the CPU

time of the hybrid method is for forming the coefficient matrix (αC + βK), while the

rest is used to solve equation (2.118) for all eight wave numbers. Similarly, the hybrid

method without air requires a lot less memory than both the FD and FE methods.

This experiment shows the advantage of the hybrid FD-FE method over

the conventional FD and FE methods. However, the reduction in CPU time depends

greatly on the topography. If the topography is smooth, the relative reduction in CPU

time of the hybrid method would be less than the results in Table 2.3.8.

2.3.9 Topographic gradient limitation

The topographic gradient can vary from almost flat to almost vertical. In

previous examples where the gradients are 60◦, the “automatic grid discretization”

routine works well and the accuracy is quite high. The “automatic grid discretization”

routine is designed based on the “topographic gradient” study.
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In the topographic gradient study, the left-slope model (figure 2.33) is tested

with different topographic gradients from 5◦ up to 85◦. Most electrodes were placed

Figure 2.33: The left-slope model for “topographic gradient” study

on the slope. The finite element with fine grid (20 blocks between a pair of electrodes)

is used as a base solution. The vertical grid discretization was automatically adjusted

so that the right triangular elements matched well with the slope. All of these models

were tested with the hybrid method where the slope was discretized with right triangular

elements and the interiors with rectangular grids. Results of the “topographic gradient”

study are summarized in table 2.3.9. By using the default grid generation with 3-blocks

between electrodes, for gradients below 45◦, the errors at all electrodes were on average

below 1%. The error increases with slopes of more than 45◦. This is because the right

triangular elements with 3-blocks between electrodes do not fit well with the slopes of

large gradients. The biggest errors occur near the corners. Therefore, to lower the

errors, the number of blocks between electrodes should be increased where there are

large slopes. Based on our studies, to obtain relative errors of less than 1%, the number

of blocks between electrodes must be 3, 4, 5, 6 and 7 for gradients less than 45◦, 46-50◦,

51-55◦, 56-70◦, and 71-75◦, respectively. However, when the slopes are larger than 75◦,

the average errors are larger than 5% with any number of blocks between electrodes.

The 75◦ slope appears to mark the limit of our hybrid scheme when incorporating the

slope. However, this would not be a problem because regions with a large slope are

often avoided in most field surveys.

2.4 2D DC Resistivity Inversion

Efficient inversions for two-dimensional direct current (DC) resistivity data

are available both commercially (e.g. Oldenburg & Li, 1994; Loke & Barker, 1996)
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θ [◦] No. of Grid Average Error [%]

5 3 0.3674

10 3 0.3817

15 3 0.4221

20 3 0.4737

25 3 0.5302

30 3 0.5880

35 3 0.6466

40 3 0.7115

45 3 0.7698

50 4 0.4547

55 5 0.3363

60 6 0.2973

65 6 0.3239

70 7 0.3967

75 7 0.6405

80 10 6.1826

85 10 6.6160

Table 2.9: Summary of the number of grid between a pair of electrodes that makes the
average error less than 1% for each θ.

and academically (e.g. Tong & Yang, 1990; Olayinka & Yaramanci, 2000; Christiansen

& Auken, 2004; Ha et al., 2006; Athanasiou et al., 2007; Boonchaisuk et al., 2008;

Kalscheuer et al., 2010; Santos & El-Kaliouby, 2011; Ulugergerli, 2011). An efficient

inversion in general is defined as one with a low CPU time and memory (RAM) re-

quirement. This makes many of these programs applicable on notebook computers and

therefore practical for field work. An efficient inversion should also be able to handle

topography and many different DC resistivity configurations.

There are various inversion techniques such as Gauss-Newton, quasi-Newton,

Occam’s inversion and conjugate gradient (CG) methods. Gauss-Newton is the most

direct approach for solving inverse problems (e.g. Sasaki, 1994; Li & Oldenburg, 1994;

Loke & Dahlin, 1997). The Gauss-Newton method has a high convergence rate. It

takes a few iterations to return the inverted result but it consumes a lot of CPU time

and memory. To reduce CPU time, Broyden (1965) proposed other approach called

the quasi-Newton method (Loke & Barker, 1996; Loke & Dahlin, 1997, 2002; Tsourlos

et al., 1998). Most of the quasi-Newton method is similar to the Gauss-Newton method

except the quasi-Newton method avoids excessive computation by using Broyden’s up-

date technique. The quasi-Newton method is successful for reducing CPU time but

has a lower convergence rate (Loke & Dahlin, 2002). It needs more iterations than the

Gauss-Newton method and sometimes the quasi-Newton method produces a different

result from the Gauss-Newton method. Occam’s inversion is another variant of the
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Gauss-Newton method. It was first proposed by Constable et al. (1987). Occam’s in-

version removes some unnecessary parameters from its algorithm. This makes Occam’s

inversion stabler than the Gauss-Newton method and its convergence rate is close to

the Gauss-Newton method. Zhang et al. (1995) and Ellis & Oldenburg (1994) proposed

inversion algorithm for 3D data based on the CG method. The CG method is intro-

duced to the inverse problem for reducing memory usage. It can solve inverse problems

without storing a huge matrix as in the Gauss-Newton method and its variant but

its convergence rates are less than those of other methods (Siripunvaraporn & Egbert,

2007). The algorithm of the CG method is practical for 3D inverse problems but for

2D problems the Gauss-Newton method and its variants are more practical than CG

method.

Here, we discuss about our attempt to develop an efficient Occam’s inversion

code on MATLAB. We start by reviewing the original and modified Occam’s inversion

algorithms proposed by Siripunvaraporn & Egbert (2000). Then we describe the al-

gorithm of each of the necessary modules. Finally the reliability and stability of our

inversions are tested on both synthetic data and real field data.

2.4.1 Occam’s inversion

Occam’s inversion was first proposed by Constable et al. (1987) for magne-

totelluric data and 1D DC resistivity data. Since then it has been applied to various

geophysical data (e.g. deGroot-Hedlin & Constable, 1990; LaBrecque & Ward, 1990;

Siripunvaraporn & Egbert, 2000; Siripunvaraporn et al., 2005; Greenhalgh, 2006; Boon-

chaisuk, 2007; Vachiratienchai, 2007; Boonchaisuk et al., 2008). The philosophy of Oc-

cam’s inversion is to find the smoothest model for which the response fits the observed

data at the appropriate level. This philosophy can be translated into a minimization

problem of an unconstrained functional U(m, λ)

U(m, λ) = (m−m0)TC−1
m (m−m0)+λ−1{(d−F[m])TC−1

d (d−F[m])−χ∗2d }, (2.119)

where m is the M column vector of the resistivity model, m0 is the “prior” resistivity

model, Cm is the M×M model covariance matrix, d is the observed data with dimension

N, F[m] is the forward modeling response, Cd is the N × N data covariance matrix,

χ∗d is the desired level of data misfit, λ−1 is a Lagrange multiplier, M is the number of

model parameters and N is the number of data points. The first term on the right is

the model objective function which is the square of model misfit χm determining the

consistency between m0 and m. χm is zero when m is perfectly matched with m0. The

second term on the right is the data objective function which is the square of data misfit

χd determining the difference between the observed data d and the forward response

F[m].
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Instead of directly minimizing equation (2.119), Constable et al. (1987)

considers the penalty functional Wλ(m),

Wλ(m) = (m−m0)TC−1
m (m−m0) + λ−1{(d− F[m])TC−1

d (d− F[m])}. (2.120)

When λ is fixed, ∂U/∂m is equal to ∂Wλ/∂m. Therefore, the minimum of U can

be achieved by minimizing Wλ with a series of λ, and choosing the smallest value as

the result. To obtain the stationary point of Wλ at the (k + 1) iteration, we start by

linearizing F[mk+1] based on Taylor’s series expansion, F[mk+1] = F[mk] + Jk(mk+1−
mk) where Jk = ∂F[mk]/∂mk is the N ×M jacobian or sensitivity matrix at the k

iteration. Substituting the result into equation (2.120) and solving for the stationary

point, a series of iterative solutions is obtained,

mk+1(λ) =
(
λC−1

m + JTkC−1
d Jk

)−1
JTkC−1

d d̂ + m0, (2.121)

where d̂ = d − F[mk] + Jk (mk −m0). This equation is the “original” model-update

equation for Occam’s inversion. It requires us to solve a M ×M system of equations

and we therefore call equation (2.121) “model-space” Occam’s inversion.

Parker (1994) shows new approach to compute mk+1. The new approach

requires us to solve a N×N system of equations instead of a M×M system of equations.

The new approach of equation (2.121) is called the “data-space” Occam’s inversion and

its model-update equation is

mk+1(λ) = CmJTk (λCd + JkCmJTk )−1d̂ + m0. (2.122)

The “data-space” space inversion was first used for 2D magnetotelluric data by Siripun-

varaporn & Egbert (2000). It has also been applied to 3D magnetotelluric data (Siripun-

varaporn et al., 2004, 2005), and 2D DC resistivity data (Boonchaisuk, 2007; Vachira-

tienchai, 2007; Boonchaisuk et al., 2008).

“Model-space” and “data-space” Occam’s inversion will produce the iden-

tical result if and only if all the same inverted parameters are used (Siripunvaraporn &

Egbert, 2000; Siripunvaraporn et al., 2005). As mentioned before, the “model-space”

Occam’s inversion requires memory based on the number of model parameter (M)

whereas the memory requirement of the “data-space” Occam’s inversion is based on

the number of data points (N). In other words, if N is much less than M then the

“data-space” Occam’s inversion will be more effective than the “model-space” Occam’s

inversion. For 2D DC resistivity data, the M is usually much greater than the N . There-

fore, the “data-space” Occam’s inversion is a practical algorithm for 2D DC resistivity

data. The comparison between “model-space” and “data-space” Occam’s inversion for

2D DC resistivity data can be seen in Vachiratienchai (2007).
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Here, we develop a inversion for 2D DC resistivity data based on the “data-

space” Occam’s inversion and the hybrid FD-FE methods. In the following, we describe

the necessary inversion parameters and how we design the algorithm to fully take ad-

vantage of matrix operation in MATLAB. Finally, our inversion code is tested on both

synthetic and real field data.

2.4.2 Inversion Parameters

As in equation (2.122), the “data-space” Occam’s inversion can function

when the observed data d, forward response F[mk], data-covariance matrix Cd, model-

covariance matrix Cm, initial model mk, prior model m0, sensitivity matrix Jk, and

Lagrange multiplier λ−1 are known.

The structure of d, F[mk], and m

As in section 2.1, a DC resistivity survey studies subsurface resistivity ρ by

collecting apparent resistivity ρa at the surface. ρa is therefore the observed data d and

ρ is the model parameter m for inversion. By directly using ρa and ρ, the inversion is not

stable and produces negative resistivity which is meaningless. To prevent this, ln(ρa) is

used as the observed data and ln(ρ) is used as the model parameter. The structure of

d and F[m] is a N× 1 column vector as shown in figure 2.34 and the structure of m

is a M× 1 column vector of which element number is indexed from top to bottom and

left to right of the model, starting with the FD elements and then the FE elements as

shown in figure 2.35.

Figure 2.34: The structure of data vector d.
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Figure 2.35: The structure of model vector m corresponding to the discretized model
in figure 2.31. The FD superscript indicates a FD element and the FE superscript
indicates a FE element.

Initial Model (mk) and Prior Model (m0)

The prior model and initial model are different. The initial model is used

for starting the inversion process and its resistivities are changed continually. The prior

model is the reference model and the inversion tries to find a inverted result close to the

prior model. The prior model is preserved for the whole inversion process. To achieve

the smoothest model, the homogeneous earth model is usually used as the prior model.

The resistivity is calculated by the geometric mean

ρavg = N

√
ρ1
aρ

2
a...ρ

N
a . (2.123)

By default, the prior model is also used as the initial model.

Data-Covariance Matrix Cd

The data-covariance matrix Cd has been added to the inversion to prevent

the over-fit problem which always occurs in the inversion process when the observed

data is contaminated by noise. If d is the observed data then d is the superposition of

real signal dr and noise dn

d = dr + dn. (2.124)

In DC resistivity surveys, noise comes from the installation, environment, and telluric

noise from power lines. Noise is difficult to remove from observed data. To produce

a model which perfectly fits with observed data, inversion can include non-geologically

interpretable artifacts into the inverted model. These artifacts can result in a misleading

interpretation. Cd is used for solving this problem. In general, Cd is the N×N diagonal
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matrix whose elements are errors δ of the observed data

Cd =


δ1

2 0 · · · 0
0 δ2

2 · · · 0
...

...
. . .

...
0 0 · · · δN

2

 .

In our work, d is the natural logarithm of the observed data. Cd therefore has to be

created from the error in the natural logarithm scale δlog
i . The error in the natural

logarithm scale is equal to

δlog
i =

δlinear
i

di
, (2.125)

where δlinear
i is data error in linear scale. C−1

d is simply calculated by finding the inverse

of Cd. Note that δlinear
i is usually set as 1% of di for good quality data. For noisy data,

δlinear
i is adjusted.

Matrix Cm, CmJTk Multiplication and Controlling parameter η

The model-covariance matrix Cm is introduced into the inversion for con-

trolling the changing of the resistivity model in the inversion process. In other inversion

algorithms including the “model-space” Occam’s inversion, C−1
m is used to control the

inversion process and it is a roughness operator or Laplacian operator (e.g. Constable

et al., 1987; deGroot-Hedlin & Constable, 1990). The inverse of them are close to sin-

gular and cannot be used as Cm in the “data-space” Occam’s inversion. Egbert et al.

(1994) proposed using the diffusion equation to calculate Cmu, where u is any vector,

in their oceanography inversion. This idea was also reapplied for 2D magnetotelluric

data by Siripunvaraporn & Egbert (2000), and 2D DC resistivity data by Boonchaisuk

(2007); Vachiratienchai (2007); Boonchaisuk et al. (2008).

Here, we redesign the algorithm for computing Cmu to fully take advantage

of the MATLAB environment. In the following, we review the main concepts of diffusion

in previous work and then we show the new algorithm.

The general form of the diffusion equation is

∂Ω

∂τ
= γ∇2Ω, (2.126)

where τ is the pseudo-time, and γ is the diffusion parameter. Siripunvaraporn & Eg-

bert (2000) avoids directly solving equation (2.126) because it consumes memory and

time. To avoid solving the 2D diffusion equation, we solve the 1D diffusion equation

alternatively between vertical (z-direction) and horizontal (x-direction) directions. This

approach is similar to the operator splitting method (Press et al., 1992). Considering

the 1D diffusion equation in the vertical direction (z-direction),

∂Ω

∂τ
= γ

∂2Ω

∂z2
. (2.127)
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For solving equation (2.127), there are two numerical methods which are the explicit and

implicit methods. The explicit method is faster but less stable than the implicit method.

Here the implicit method is used to solve (2.127). The time derivative, discretized using

by the forward derivative, becomes

∂Ωi

∂τ
=

Ωn+1
i − Ωn

i

τ
. (2.128)

When Ωi is not located at the boundary, the second order derivative can be discretized

by the center derivative,

∂2Ωi

∂z2
=

2γiΩ
n+1
i+1

hi(hi + hi−1)
+

2γiΩ
n+1
i−1

hi−1(hi + hi−1)
−

2γiΩ
n+1
i

(hihi−1)
, (2.129)

where hi−1 is the distance from Ωi−1 to Ωi and hi is the distance from Ωi to Ωi+1. When

Ωi is located at the upper boundary, the second order derivative can be discretized by

the forward derivative,

∂2Ωi

∂z2
=

2γiΩ
n+1
i+2

hi+1(hi+1 − hi)
−

2γiΩ
n+1
i+1

hi(hi+1 − hi)
+

2γiΩ
n+1
i

(hi+1hi)
, (2.130)

where hi+1 is the distance from Ωi to Ωi+2. When Ωi is located at the lower boundary,

the second order derivate can be discretized by the backward derivative,

∂2Ωi

∂z2
=

2γiΩ
n+1
i

(hi−2hi−1)
−

2γiΩ
n−1
i−1

hi−1(hi−2 − hi−1)
+

2γiΩ
n+1
i−2

hi−2(hi−2 − hi−1)
, (2.131)

where hi−2 is the distance from Ωi−2 to Ωi. Equation (2.127) can be rewritten in matrix

form as

Ωn+1 = (I + τΠz)
−1Ωn (2.132)

= HzΩ
n, (2.133)

where Πz is the discrete form of the second order derivative in the z-direction, Hz

is Mz ×Mz diffusion operator in z-direction, and Mz is the number of models in the

z-direction. In the same way, we can create the 1D diffusion operator in x-direction

(Hx the size of which depends on the number of models in the x-direction). The model

covariance can be written as

Cm = [HzHxHxHz]
ζ , (2.134)

where ζ is the number of iterations to apply the diffusion operator. For the “data-space”

Occam’s inversion, Cm is not constructed. CmJTk is calculated by alternately multiply-

ing Hz and Hx, following the pattern in equation (2.134), to JTk . The algorithm for

calculating CmJTk used in Vachiratienchai (2007) is shown in algorithm 1:
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Data: Jk, Hz, and Hx

Result: CmJTk
initialization;
while ii ≤ N do

read iith row of Jk;
rearrange into 2D format and save the result into Jk2D;
while jj ≤ ζ do

multiply Hz to Jk2D;
transpose the result and then multiply it by HxHx;
transpose the result and then multiply it by Hz;

end

rearrange the result into 1D format and save it into the iith

column of CmJTk ;

end

Algorithm 1: Algorithm for calculating CmJTk used in Vachiratienchai (2007).

Algorithm 1 needs a lot of CPU time to rearrange and transpose the matrix.

The computational time is about 0.5-2 minutes depending on the number of model

parameters and data. This algorithm requires matrix arrangement and matrix transpose

because Hz and Hx are developed to operate on Mz ×Mx matrix. In other words, we

can dispose of the matrix arrangement and matrix transpose from the CmJTk calculation

by redesigning Hz and Hx matrix. The new Hz and Hx matrix is designed to directly

operate on the column of JTk by rearranging the elements corresponding to the model

element index as described earlier. The new algorithm for computing CmJTk is described

below
Data: Jk, Hz, and Hx

Result: CmJTk
initialization;
transpose Jk and save the result into CmJTk ;
while jj ≤ ζ do

multiply Hz to CmJTk ;
multiply the result by HxHx;
multiply it by Hz;

end

Algorithm 2: New algorithm for calculating CmJTk .

As mentioned before, Cm is introduced for controlling the changing of the

resistivity model. In our algorithm, Cm has three adjustable parameters (τ , ζ, and γ).

From semi-empirical tests, we found that the smoothness of the inverted model depends

on τ and γ and the stability of the inversion depends on ζ. If ζ is too small (e.g. ζ = 1),

inversion fails. On other hand, if ζ is too large then the inversion will spend a lot of

CPU time computing CmJTk . From semi-empirical tests, the proper value of ζ is 10.

In physics, if we know the diffusion coefficient γ and its diffusion time τ

then we can approximate the diffusion length l by

l =
√

4γτ. (2.135)
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The diffusion length of Cm can be used to determine the smoothness of model. A larger

diffusion length corresponds to a smoother inverted model. In our inversion, τ is fixed

as 1 and γ is automatically adjusted based on the diffusion length. In this work, we

assume that diffusion length in the x-direction is equal to the diffusion length in the

z-direction and it is a function of the depth D,

l = κD, (2.136)

where κ is real number and its value is also a function of depth. Its maximum value is

1 for D < a/η and its value is reduced by 0.1 until it reaches 0.2. In other words, η is

used for controlling the smoothness of the inverted model and CmJTk . Therefore, η is

the controlling parameter for our Cm. Here, the value of η is 1, 2, 4, or 8. If η = 8,

inversion will add a superior anomaly to the inverted result for reducing the data misfit.

If η = 1, inversion will return a smoother model but its data misfit is higher.

Jacobian Matrix Jk

The Jacobian matrix is introduced to the inversion for approximating the

response of mk+1 from the known response F[mk] and model parameter mk. The

Jacobian matrix is a N ×M matrix which stores the information about the gradient of

the responses with respect to its model parameters,

Jijk =
∂Fi[mk]

∂mj
k

. (2.137)

To prevent the occurrence of negative resistivity in the inverse, ln(ρa) is used as the

response and ln(ρ) is used as the model parameter. Therefore, equation (2.137) can be

rewritten as

Jijk = − σj
φAi,Mi − φBi,Mi − φAi,Ni + φBi,Ni

n∑
p=1

gp
∂

∂σj

(
φ̃Ai,Mi

kyp
− φ̃Bi,Mi

kyp
− φ̃Ai,Ni

kyp
+ φ̃Bi,Ni

kyp

)
,

(2.138)

where the superscript of φ or φ̃ indicates its current (Ai or Bi) and potential electrodes

(Mi or Ni). The direct and simplest way to get the derivative of φ̃ at potential electrodes

is to differentiate equation (2.70), (2.94), or (2.118) with respect to σj and pick up the

result only at its potential electrode,

∂

∂σj
Φ̃
Ai

kyp
= −

(
αCkyp + βKkyp

)−1 ∂
(
αCkyp + βKkyp

)
∂σj

Φ̃
Ai

kyp
. (2.139)

This straightforward technique consumes a lot of computational resource because it

requires one to compute the derivative for the whole domain before using some elements.
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For example, if the resistivity model has 100 × 25 elements, we will have 2,626 nodes. If

we use equation (2.139), we have to calculate the derivative of 2,626 nodes before only 2

points corresponding to the M and N electrodes are used to construct the Jacobian. For

solving this problem, we introduce the extract operator Ep for extracting the interesting

nodes from the whole vector. The size of extracting operator Ep is the number of

interesting points × NT or 2 × 2,626 for the previous example. Each row of Ep has

only one non-zero element that corresponds to the position of potential electrodes and

its value is 1.

The pth node of the derivative of the transformed potential can be obtained

by multiplying the column vector ∂
∂σj

Φ̃
Ai

kyp
by the extracting operator Ep,

∂

∂σj
φ̃Ai,p
kyp

= Ep
∂

∂σj
Φ̃
Ai

kyp

= −Ep

(
αCkyp + βKkyp

)−1 ∂
(
αCkyp + βKkyp

)
∂σj

Φ̃
Ai

kyp
.

(2.140)

When coefficient matrix is symmetric (as in pure FD or FE), equation (2.140) can be

rewritten as,

∂

∂σj
φ̃Ai,p
kyp

= −ψTp
∂
(
αCkyp + βKkyp

)
∂σj

Φ̃
Ai

kyp
, (2.141)

where ψp =
(
αCkyp + βKkyp

)−1
ET
p . By using equation (2.141), we directly obtain the

interesting element ∂φ̃Ai,p
kyp

/∂σj without pre-calculating the whole vector ∂Φ̃
Ai

kyp
/∂σj .

The term ψp is equivalent to solve forward modeling when the injected current is set as

2 A. This implementation is close to the adjoint Green’s function technique proposed

by McGillivray & Oldenburg (1990). They derived it by using the adjoint field method

and they found that the derivative of ∂Φ̃
Ai

kyp
/∂σj at the pth position can be computed

by multiplying the adjoint field or ψp to “the sensitivity problem”, and integrating it

over domain. The main difference between our proof and McGillivray’s prove is that

the symmetric condition is not required in their proof. The other words, equation

(2.141) can function not only in the symmetric case like pure FD or FE but also in

non-symmetric cases like HB.

To confirm this point, we compute the Jacobian matrix by using equation

(2.141) for FD, FE and HB and its results are shown in figure 2.36. In this test, a

Schlumberger array with 48 electrodes, 4-m electrode spacing, and 22 investigation-

depth levels is used. The tested model is a 1,000 Ω-m homogeneous model discretized

into 26 elements in the z-direction and 161 elements in the x-direction. In the test, we

have 528 data points and 4,186 model parameters. FD needs 12.6 s for computing the

whole Jacobian matrix while FE needs 16.9 s and HB needs 13.2 s. Figure 2.36a, b,

and c shows the 2D section of the 20th row of the Jacobian matrix for FD, FE, and HB
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Figure 2.36: 2D section plot for the 20th row of Jk calculated from (a) FD method,
(b) FE method, and (c) HB method. (d) and (e) represents the difference of sensitivity
value calculated from FD with FE and HB, respectively. All of these are generated from
a Schlumberger array. Notice that the maximum differences are in the order of 10−4.

where the black triangles indicate electrode position. The sensitivity value is high in the

region between the A and B electrodes and its highest value is about 1 m beneath the

centre of the array. Figure 2.36d and e show the 2D section of the difference between

FD and FE and between FD and HB, respectively. On average, the sensitivity value

is in the order of 10−2 but its difference is in the order of 10−4. From this test, we

can conclude that equation (2.141) can function on both symmetric and non-symmetric

system as HB, although equation (2.141) is derived for symmetric system only.

For the DCR problem, each electrode is used as both a current and a po-



Fac. of Grad. Studies, Mahidol Univ. Ph.D. (Physics) / 65

tential electrode. It means that ψp have been calculated since solving the modeling

problem. By using equation (2.141), we can get ∂φ̃Ai,p
kyp

/∂σj by using only addition and

multiplication. The challenge for developing a Jk calculation module is to avoid us-

ing a for-loop. Equation (2.141) is used for calculating ∂φ̃Ai,p
kyp

/∂σj for only one model

parameter σj . If we develop simple code based on equation (2.141), we have to it-

erate the code M times or 4,186 times for the previous test and a for-loop in MAT-

LAB is ineffective. To avoid using a for-loop in MATLAB, we design a new way to

store ∂
(
αCkyp + βKkyp

)
/∂σj for all model parameters. Originally, αCkyp +βKkyp has

NT ×NT elements. Most of them vanish when its matrix is differentiated. For pure FD,

there are 12 non-zero elements divided into 4 groups corresponding to top-left, bottom-

left, bottom-right, and top-right nodes around the σj element as shown in figure 2.37.

Figure 2.37: The components of C matrix depending on σj .

Twelve elements of ∂Ckyp/∂σj are in 4 rows of ∂Ckyp/∂σj as shown in

figure 2.38. When multiplying ∂Ckyp/∂σj by Φ̃
Ai

kyp
, we obtain a column vector contain-

Figure 2.38: The pattern of
∂Ckyp

∂σj
. Nz is the number of nodes in the z-direction and NT

is the total number of nodes. The coefficients in first, second, third, and fourth rows are
coefficients for the top-left, bottom-left, bottom-right, and top-right nodes, respectively.
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ing 4 non-zero elements corresponding to the top-left (TL), bottom-left (BL), bottom-

right (BR) and top-right (TR) node of σj . On other hand, there are only 4 rows of

∂Ckyp/∂σj that are necessary for computing
∂Ckyp

∂σj
Φ̃
Ai

kyp
. Following this idea, we can

store ∂Ckyp/∂σj for j = 1 to M in a single matrix called M2P which has 4×M rows

and NT columns. The first M rows store ∂Ckyp/∂σj for the top-left node, the second M

rows are for the bottom-left node, the third M rows are for the bottom-right node and

the fourth M rows are for the top-right node as shown in figure 2.39. By multiplying

Figure 2.39: The pattern of the M2P matrix. The first M rows store ∂Ckyp/∂σj for
the top-left node, the second M rows is for the bottom-left node, the third M rows is
for the bottom-right node and the fourth M rows is for the top-right node.

M2P by Φ̃
Ai

kyp
, we get

∂Ckyp

∂σj
Φ̃
Ai

kyp
for all j. Then we multiply the result by ψp to obtain

∂
∂σj

φ̃Ai,p
kyp

for all p and all j. By using this method, the CPU time is significantly reduced

from more than 5 minutes to a few seconds (Vachiratienchai & Siripunvaraporn, 2010).

Note that ∂Ckyp/∂σj of FE and HB is different from FD. There are 9 or 14 non-zero

elements for FE and 9, 12 or 14 non-zeros elements for HB but those elements are still in

4 rows of ∂Ckyp/∂σj . Therefore this process can function for both FE and HB methods.

In the previous section, we describe about how to compute the whole Jaco-
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bian matrix and it needs about 12.6 seconds of CPU time for the previous test. There is

another approach for approximating the Jacobian matrix. It is called Broyden’s update

method (Broyden, 1965). Broyden’s update method updates the Jacobian matrix using

Jk+1 = Jk + ukp
T
k , (2.142)

where uk = (F[mk+1]− F[mk]− Jkpk) /
(
pTk pk

)
and pk = mk+1 −mk. It needs only

0.02 seconds for the previous test. Broyden’s update method has been applied to DC

resistivity inversion by Loke & Barker (1996), Loke & Dahlin (1997), Loke & Dahlin

(2002) and Christiansen & Auken (2004). In theory, the convergence rate of the approx-

imate Jacobian matrix is less than that of the exact Jacobian matrix. Loke & Dahlin

(2002) reported that if the resistivity contrast is greater than 10:1, there are significant

differences in the results obtained by the two methods.

Here, we also integrate Broyden’s update method into our inversion and we

compare the convergence rate of both methods on both synthetic and real field data.

2.4.3 Lagrange multiplier λ−1

The Lagrange multiplier is first introduced as the weighting parameter be-

tween the model objective function χ2
m and the data objective function χ2

d. Most of

the inversions use λ for choosing the searching space and then vary another parameter

to find the best model on that searching space. For example, Loke & Dahlin (2002)

start their inversion with a large value of λ, and then progressively reduce λ after each

iteration until it reaches the minimum limit (λm). The λm is usually set as one-tenth

of the initial λ. Loke & Dahlin (2002) have found that the initial λ is between 0.10

and 0.20 giving satisfactory results for most synthetic and field data sets. The λ is re-

duced by a factor of 2.5 after each iteration, and it reaches the minimum value after the

fourth iteration. After the fourth iteration, the λ is kept constant at λm. For Occam’s

inversion, λ is treated in a different way. It is always used as the searching parameter

for inversion. Its maximum and minimum values aren’t set as in other inversions. Its

value is automatically adjusted by the inversion to find the best result. On other hand,

Occam’s inversion automatically chooses its searching space while other inversions have

to manually choose their searching spaces. This is the advantage of Occam’s inversion

over other inversions.

For our code, we use successive parabolic interpolation (SPI) for varying λ

in logarithmic space. We start the process with 3 three initial values which are 1, 2,

and 3. Then SPI estimates the new λ such that the data objective function is less than

previous values. If χd > χ∗d, this process terminates when the new λ differs from the

previous λ by less than 20% or a parabolic curve is found. If χd < χ∗d, this process

terminates when the new λ differs from the previous λ by less than 0.001% or χd differs
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Figure 2.40: Pseudo-section of the “extreme” topography model (figure 2.25) for (a)
Wenner, (b) Schlumberger and (c) Dipole-Dipole arrays which are used as observed
data for Synthetic test.

from χ∗d by less than 5% of χ∗d. The resulting λ is used as the initial λ for the next

iteration.

2.4.4 Synthetic Test

In this section, the efficiency, robustness and reliability of our inversions are

tested on synthetic data from an “extreme” topography model. All three common arrays

(Wenner, Schlumberger and Dipole-Dipole arrays) are used in this test. Each array has

48 electrodes with 4-m horizontal electrode spacing. Figure 2.40 shows pseudo-sections

for (a) Wenner, (b) Schlumberer and (c) Dipole-Dipole arrays.

Three percent random noise is added to the simulated data to make them

as if they are collected from a real field survey and they are used as errorbars for

the synthetic tests. In the inversion, the resistivity model is discretized into 209 ×
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Figure 2.41: The final inverted results of the “extreme” topography model (figure 2.25a).
Figures a, b and c are inverted results for Wenner, Schlumberger and Dipole-Dipole
arrays computed by the FD method.

59 elements leading to 12,331 unknowns for FD and 8,560 unknowns for FE and HB.

A homogeneous model is used as the initial and prior model of which the resistivity

is computed from the geometric mean as described in Section 2.4.2. These resistivity

values lead a data misfit of FD to 9.04% for Wenner, 12.11% for Schlumberger and

18.92% for Dipole-Dipole array and lead a data misfit of FE and HB to 9.06% for

Wenner, 11.88% for Schlumberger and 18.24% for Dipole-Dipole array. The final data

misfit, CPU time, memory of the synthetic tests are summarized in table 2.10 and the

final inverted results computed by the FD method are shown in figure 2.41. Figure
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Figure 2.42: The final inverted results of the “extreme” topography model (figure 2.25a).
Figures a, b and c are inverted results for Wenner, Schlumberger and Dipole-Dipole
arrays computed by the HB method.

2.42 shows the inverted results computed by the HB method. The results from the FE

method are similar to the results from the HB method.

The HB method produces the same results as the FE method for all arrays.

For the Wenner and Schlumberger arrays, both methods can reach the target (1%)

in 5 iterations. Both inversions can also recover all anomalies beneath the topography

relatively well as shown in figure 2.42a and 2.42b. For FD, the inversion cannot reach the

target misfit and its result is different from FE and HB as shown in figure 2.41. The main

reason is that the FD response is inaccurate because of its topography approximation.
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Table 2.10: The data-misfit and memory usage for FD, FE and HB inversions for three
common arrays.

Array Method
Data Misfit CPU [min] Memory Usage [MB]
Initial Final (No. Iter) Jacobian Total

Wenner

FD 9.04 1.19 2.30 (3) 22.73 287.71

FE 9.06 1.05 6.50 (5) 23.00 191.68

HB 9.06 1.05 3.68 (5) 23.00 159.31

Schlumberger

FD 12.11 1.41 4.12 (5) 33.4 292.8

FE 11.88 1.02 7.09 (5) 33.8 196.6

HB 11.88 1.02 3.84 (5) 33.8 164.2

Dipole

FD 18.92 2.69 4.64 (5) 53.03 348.32

FE 18.24 1.99 11.74 (5) 53.67 252.02

HB 18.24 1.99 4.27 (5) 53.67 220.65

The inversion has to compensate for this inaccuracy by adding some artifacts into the

model. For the Dipole-Dipole array, all methods cannot reach the target level. Data

misfits are reduced from 18.92 to 2.69 in 5 iterations for the FD method and from 18.24

to 1.99 in 5 iterations for the FE and HB methods before diverging.

Figure 2.43 shows the variation of λ of each iteration for the HB method.

The first iteration uses 5 values of λ to search for the minimum RMS. The minimum-

RMS model of iteration 1 is then used as the initial model for the 2nd iteration. The

process is then repeated for the next iteration. Figure 2.43 shows that, after each

iteration, λ shifts to the left side, i.e., to a smaller value of λ for more structures and

a rougher model. The inversion takes slightly less than 4 min for HB and close to 8

min for FE to converge to 1 RMS and also to reach the minimum RMS at the 5th

iteration for FD. On average, each iteration takes around 40-50 s for HB, 88-105 s for

FE, and 50-60 s for FD. More than 65% of this CPU time is used for the matrix-vector

multiplication to form and store JkCmJTk , while the rest is for solving and updating the

model (equation (2.122)) for each λ.

Normally, the memory usage for inversion is dominated by the Jacobian

matrix Jk but this is not the case here. The memory usage in the forward modeling

routines to keep all L and U matrices of all eight wave-numbers is a lot larger than

that of the Jacobian matrix (Table 2.3.7 and Table 2.10). However, the total amount of

memory required for the whole inversion process (Table 2.10) is currently not a problem

for most computers for 2-D inversion. Therefore, storing all necessary matrices would

be an advantage since we can repeatedly use them as many times as we like for different

values of λ. These advantages are not possible in CG and NLCG inversions since such

algorithms do not construct this large sensitivity matrix, and do not solve the system

of equations with the direct method.
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Figure 2.43: Data misfit versus λ for each iteration.

Comparison of Jacobian calculation

In the previous section, we validated our FD, FE, and HB inversion and its

results show that the HB method produces reliable results and has fewer requirements

than other methods. Here, we test the effect of the Jacobian calculation on the inverted

result by using the HB method. In this test, inversion uses the fully computed Jacobian

matrix at the first iteration and after that uses Broyden’s update technique (equation

(2.142)) is used for updating the Jacobian matrix. The change in the data misfit with

the CPU time for the full Jacobian calculation (FJC) and Broyden’s update (BU) are

reported in figure 2.44b and the final inverted result for Broyden’s update is shown in

2.44a.

The data misfit decreases with each iteration and its reduction is largest

after first three iterations for both methods. After the 4th iteration, the data misfit of

BU is almost constant but the data misfit of FJC decreases until it reaches the target

at the 5th iteration. The inversion process of BU is terminated at the 9th iteration

because its data misfit is constant at 1.19. On average (except the first iteration), BU

uses about 18-21 seconds to finish its iteration and uses only 0.025 seconds to update

its Jacobian matrix. Although BU consumes less CPU time than FJC in each iteration,

its CPU time for whole inversion is 3.53 min which is less than that of FJC by about

8% or 19 seconds. For its inverted result (figure 2.44a), four resistivity anomalies are

recovered but its shapes are distorted from the FJC result (figure 2.42b), especially the
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Figure 2.44: (a) the inverted model of the Schlumberger data generated from extreme
topography model (Figure 2.25a) when the Jacobain matrix is estimated by Broyden’s
update (equation (2.142)) and (b) the change of data misfit with CPU time for FJC
and BU.

two deeper anomalies.

Although BU can reduce the CPU time in each iteration, its overall CPU

time is slightly less than that of FJC and this difference will decrease when the number

of models or data points decrease. This difference is acceptable for real field work.

Therefore, we highly recommend FJC for real field work.

Comparison of the controlling parameter η

As described in Section 2.4.2, we redesign the module for computing CmJTk

and its smoothness is controlled by η. In this section, we study the affect of η by using the

data from the Schlumberger array. Figure 2.45a, b, c, and d shows the inverted results
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when η is 1, 2, 4 and 8, respectively. All of them can reach target level but its results

are slightly different. The black rectangular block indicates the position of conductive

and resistive anomalies beneath the hills. Following the results, two anomalies beneath

the hills are recovered better than other anomalies for all values of η. For η = 1, the

inverted result clearly shows 4 main anomalies and 1 small artifact at the surface of the

left hill as shown in figure 2.45a. When η is increased to 2, the size of artifact increases

as shown in figure 2.45b. The number of artifacts increases from 1 to 3 when η is 4 as

shown in figure 2.45c. For η = 8, inversion includes a lot of artifacts at the surface of

the left hill and along the surface. These artifacts reduce the resistivity value of the

lower anomalies as shown in figure 2.45d.

The η parameter has an effect on the inverted results and also has effect

on the convergence rate as shown in figure 2.46. The convergence rate is lowest when

η = 1 and significantly increases when η is 2, 3 or 4. Although η = 1 has the lowest

convergence rate, it returns the clearest inverted result and its recovered anomalies are

close to actual anomalies. This is true for the locations, values, and shapes.

For noisy data from field surveys, η can be applied for controlling the clear-

ness of the inverted model. By setting η = 1, the inversion returns a model which has

a few anomalies as possible. By setting η = 8, the inversion returns a model which has

the least data misfit but might have unreasonable anomaly due to noise in the observed

data.

2.4.5 Real Case Test

Here, we tested our inversion code on real field data collected within the

Kanchanaburi campus of Mahidol University, located about 200 km west of Bangkok

(figure 2.47).

The field test area consists of many caves and cavities and also has steep

slopes. Two profiles (L1 & L2) with 48 electrodes and about 4 m spacing (along the

topography) of a Schlumberger array are laid out in the area as shown in figure 2.47.

Both profiles lie next to the cave exposed to the surface. The main objective of the

experiments is to detect and map the lateral network of the cavities beneath.

The details of the test are summarized in table 2.11. All runs set the error

bars of the data to 1%. The observed data, forward response, and its final inverted

model from our inversion code (FJC) and from the RES2DINV code are shown in figure

2.48 and 2.49 for L1 and L2, respectively.

The grid used for L1 is 190 × 82 with a total of 12,159 unknown nodes

and for L2 is 173 × 70 with 7,673 unknown nodes. As with the synthetic example,

the inversions were started with the homogeneous models with an average resistivity

of 795 Ω-m for L1 and 1,170 Ω-m for L2. These values were computed from their



Fac. of Grad. Studies, Mahidol Univ. Ph.D. (Physics) / 75

Figure 2.45: The inverted model of the Schlumberger data generated from an extreme
topography model (Figure 2.25a) when the controlling parameter η is (a) 1, (b) 2, (c)
4 and (d) 8.
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Figure 2.46: The change of data misfit with iteration for η is 1, 2, 4 and 8.

Figure 2.47: Field test area inside Mahidol University, Kanchanaburi campus, western
Thailand. The two profiles (L1 & L2) are illustrated in the map with red and black
profiles, respectively. The caves exposed at the surface are marked on the map as caves
A and B (after Vachiratienchai & Siripunvaraporn, 2013).
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Figure 2.48: Line 1 showing (a) the observed Schlumberger data, (b) the forward re-
sponse, (c) the inverted model from our inversion (FJC) and (d) the inverted model
from RES2DINV. The RMS misfits and number of iterations for this figure can be seen
in Table 2.11 (after Vachiratienchai & Siripunvaraporn, 2013).

Figure 2.49: Line 2 showing (a) the observed Schlumberger data, (b) the forward re-
sponse, (c) the inverted model from our inversion (FJC) and (d) the inverted model
from RES2DINV. The RMS misfits and number of iterations for this figure can be seen
in Table 2.11 (after Vachiratienchai & Siripunvaraporn, 2013).
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apparent resistivity and led to an data misfit of 51.3% and 57.3%, respectively, for L1

and L2 (table 2.11). Both data sets were also run with RES2DINV. The slopes at some

points of the data are too steep. RES2DINV needed to lower these slopes to make the

topography smoother. Our inversion can reduce the data misfit of L1 to a minimum of

1.75% in 8 iterations taking 8.52 min and reach the target 1% RMS for L2 in 6 iterations

in 3.79 min (table 2.11). RES2DINV can only reduce the RMS misfit to 3.09% in 25

iterations for L1 and 3.22% in 25 iterations for L2 before the program was automatically

terminated. For both runs, RES2DINV requires less than 20 seconds CPU time which

is 10-30 times faster than our code. However, our inversion code can fit the observed

data better than the commercial code as shown in table 2.11.

The commercial code is significantly faster than ours because of several

techniques used in their code. First, their code constructs and stores the initial Jacobian

matrix when the program is first installed. Then, the Jacobian matrix for each iteration

is estimated by Broyden’s update as described in section 2.4.2. This process decreases

the CPU time significantly. This RES2DINV code is therefore regarded as Broyden’s

update technique, while our code is a full Jacobian calculation (FJC) since we construct

the real sensitivity at every iteration. We also applied Broyden’s update (BU) technique

to our data space inversion code. We found that a significant reduction of the CPU

time from 40-60 s to less than 20-30 s per iteration can be obtained although this is still

more than the CPU time of RES2DINV program. Most of the extra CPU time is for

calls to the forward modeling routine. With the BU technique, the CPU time can be

significantly decreased. However, its convergence is then not as good as with the FJC.

The BU technique can reduce the data misfit to a minimum RMS of 2.77% for L1 and

2.44% for L2 (table 2.11) which are still higher than the FJC, and still better than the

data misfit of RES2DINV. The BU technique cannot decrease the data misfit as well as

using the FJC. This is shown by the runs of our code and the commercial code. Our

experiment therefore demonstrates a tradeoff between the CPU time and the minimum

Table 2.11: The descriptions of the inversions for line 1 and line 2 of the real surveys
by Occam’s inversen for both full Jacobian calculation (FJC) and Broyden’s update
(BU) and the commercial RES2DINV code. After the 21st iteration, RES2DINV was
terminated as the change in the model was relatively small.

Profile Method No. of Iter CPU Time [min] Final Misfit [%]

Line 1

Occam (FJC) 8 8.52 1.75

Occam (BU) 12 6.53 2.77

RES2DINV 21 0.27 3.16

Line 2

FJC 6 3.79 1.00

BU 6 1.97 2.44

RES2DINV 21 0.26 3.32
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misfit obtained.

The CPU time of our code depends on the number of nodes used. L1

requires more unknown nodes and therefore requires more calculation time than L2.

One major point to notice in our experiments is that to achieve the same data misfit

as that of the RES2DINV program, the FJC version needs only 3 iterations to be at

3.06% for the L1 profile and required 3.32 min. Similarly, it uses only 3 iterations to

be at 3.04 RMS for L2 and takes 1.94 min. On the other hand, the BU version needs

10 iterations (takes 5.55 min) for L1, and 4 iterations (taking 1.51 min) for L2 to be

at about the same data misfit level as the FJC version. Based on this experiment, the

CPU time of the BU version is more for L1 and slightly less for L2. Because the full

sensitivity version can reach a lower data misfit, we prefer to use the FJC version rather

than the BU version. Although, CPU times may be significantly larger than those of

RESINV2D, they are still acceptable and practical in real field surveys.

The inversion models from our inversion and RES2DINV look similar for

both profiles (figure 2.48c and d for L1, and figure 2.49c and d for L2). From figure

2.47, there are two caves, A and B, exposed to the surface. Cave A is on the right

of L1 while cave B is in between both profiles. The paths, sizes and shapes of both

caves are unknown and are investigated with the DC resistivity survey. The area is

dominated by limestone to a depth of 100 m based on the drilling. Therefore, the high

resistivity (> 3000 Ω-m) zone near the surface can only be interpreted as a cavity inside

the limestone. Figure 2.48 shows that there are three notable high resistivity zones; the

first (L1L) is at 14-25 m, the second (L1C) is 86-106 m, and the third zone (L1R) is

146-156 m but is not as near the surface as the first two cavities. For L2, three high

resistivity zones which are broader and wider are located at 30-68 m (L2L), 86-126 m

(L2C) but deeper, and 168-208 m (L2R). Associating these high resistivity zones with

both caves, we found that cave A may be mapped as L1C. If it continues to L2, it may

dip to a greater depth and appears as the high resistivity zone L2C beneath the profile

L2. Cave B shows little correlation with high resistivity zones of L1, but matches well

with L2L. This indicates that cave B dips and is wide beneath L2. The other caves

cannot be related to caves A and B.

2.5 Conclusion

Here, we develop 2-D DCR forward modeling based on the hybrid finite

difference-finite element technique and the inversion based on the data space Occam’s

inversion. This allows forward modeling to include steep topography (> 45◦). Hybrid

FD-FE technique needs less CPU time then either of the FD or FE methods alone. In

addition, the full sensitivity calculation is based on the adjoint Green’s function tech-
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nique applied to the hybrid system of equations. This technique significantly decreases

the computational time. Both techniques were applied inside the data space Occam’s

inversion. The number of iterations needed for convergence is smaller than when other

methods are used, and the method is better at reducing the RMS misfit. Its weakness

is only that it requires more CPU time than the commercial code. However, the CPU

time is in the order of a few minutes even for a larger model. It is also acceptable and

practical for applications in field surveys.
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CHAPTER III

CONTROLLED-SOURCE ELECTROMAGNETIC

INVERSION

In this chapter, we develop 3-D CSEM modeling and inversion on a ModEM

modular system. The technique we used for the modeling and inversion is the scattered-

field technique. We start the chapter by briefly describing the CSEM survey. Then we

describe Maxwell’s equations and how to solve Maxwell’s equation by a scattered-field

technique. Then we also describe ModEM and its mathematical framework. In the

next section, we summarize the keys of modification for implementation of ModEM to

work on CSEM data. Finally, we test 3-D CSEM modeling and inversion with synthetic

models.

3.1 Controlled-Source Electromagnetic Surveys

A controlled-source electromagnetic (CSEM) survey is an offshore electro-

magnetic survey for studying resistivity structure beneath the seafloor. This tech-

nique energizes the Earth by an artificial electromagnetic (EM) source and measures

the Earth’s responses. Artificial EM sources are also used in various surveys such as

controlled-source audio magnetotelluric (e.g. Qian & Pedersen, 1992; Yun-Feng & Ji-

Feng, 2011; Chang-Hong et al., 2012; Kalscheuer et al., 2012; Wang et al., 2012; Wu

et al., 2012), controlled-source radio magnetotelluric (e.g. Bastani et al., 2011), crosswell

electromagnetic (e.g. Wei et al., 1999; Hoversten et al., 2001, 2004; Kim et al., 2004;

Pardo et al., 2008; Li et al., 2010; Donadille & Al-Ofi, 2012), and marine DC resistivity

(e.g. Goto et al., 2008; Chiang et al., 2011, 2012).

Controlled-source electromagnetic surveys have existed as academic tech-

niques since the 1980s for studying the oceanic lithosphere (Constable & Srnka, 2007)

and it was applied as a tool for evaluating reservoir resistivity in the hydrocarbon in-

dustry since the late 1990s. In 2000-2002, Statoil and ExxonMobil showed that CSEM

data can be successfully used to evaluate reservoir resistivity for targets as deep as sev-

eral thousand meters offshore Angola. Both companies leveraged instrumentation and

expertise from the academic community to make big progress. This resulted in rapid

growth in the use of marine CSEM methods for exploration. Now, CSEM data repre-

sents a commercial commodity within the exploration business, and acquisition services
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are offered by three companies. The ability to determine the resistivity of deep targets

from the seafloor makes marine CSEM the most important geophysical technique to

emerge since 3D reflection seismology.

Figure 3.1 represents the basic diagram of marine CSEM. A horizontal

electric-dipole transmitter is towed close to the seafloor to maximize the energy coupling

to seafloor rocks. Other type of sources have been used, such as vertical electric and

horizontal magnetic dipoles (e.g Edwards, 2005). Nowadays, only horizontal electric-

dipole is available as the EM source in the hydrocarbon industry. At the seafloor, a

series of electromagnetic receivers spaced at various ranges from the transmitter record

the time-varying electric field and magnetic field over source-receiver ranges from sev-

eral tens of kilometers to zero. The electric and magnetic fields are processed with

various procedures such as time-domain stacking, Fourier transforms, and merging with

navigation and position. Finally the recorded signal are converted into the amplitude

and phase of the transmitted signal as functions of source-receiver offset and frequency

(which is typically between 0.1 and 10 Hz).

figurations have been used, such as vertical electric and horizontal
magnetic dipoles !e.g., Edwards, 2005", the long horizontal electric
bipole offers a number of practical and theoretical advantages;
hence, it is the only source currently used in the industry. A series of
seafloor electromagnetic receivers spaced at various ranges from the
transmitter record the time-varying source signal over source-re-
ceiver ranges from zero to several tens of kilometers, depending
upon source waveform period and the conductivity below the
seafloor. Data processing — including time-domain stacking !bin-
ning in time windows", Fourier transformation, and merging with
navigation and position — converts these recordings into amplitude
and phase of the transmitted signal as a function of source-receiver
offset and frequency !which is typically between 0.1 and 10 Hz".
Because the electromagnetic skin depth is almost always smaller in
seawater than in subseafloor rocks, at sufficient source-receiver off-
set, the electric and magnetic fields measured by the receiver instru-
ments have propagated almost entirely beneath the seafloor. This de-
sired sensitivity to subseafloor geology can be significantly weaker
in shallow water and at higher frequencies, where the air layer exerts
a proportionately stronger influence on the data. This so-called air-
wave effect arises from an unfavorable ratio of skin depths, where
the source signal up through the water column and back down to the
receivers is comparable or larger than the signal through the geolo-
gy. Equipped with magnetic as well as electric sensors, the receivers
can recover the natural source magnetotelluric !MT" signals, which
can be viewed either as a source of noise for CSEM or useful data for
recovering geologic structure.

In geophysics, electric and electromagnetic !EM" methods are
used to measure the electric properties of geologic formations. At
the low frequencies used in marine CSEM, rock resistivity accounts
for almost all of the electromagnetic response. Because replacement
of saline pore fluids by hydrocarbons !gas, gas condensate, or oil" in-
creases the resistivity of reservoir rocks, EM methods are clearly im-
portant exploration tools. Until recently, the main application of
electric methods in the oil and gas business has been well logging.

The MT method has been used on land since the 1950s !Vozoff,
1972" and in the marine environment since the 1980s !Key et al.,
2006" to image geologic structure as part of the exploration process.
The MT method is particularly useful for mapping salt, volcanics,
and carbonates that present challenges to seismic methods. Howev-
er, because MT currents within the earth are generated mostly in the
horizontal plane, thin subhorizontal resistive formations are almost
invisible to the MT method, and so the technique alone is not useful
for hydrocarbon fluid detection. On the other hand, the dipole trans-
mitters used in marine CSEM generate vertical electric fields that
sense horizontal resistors of sufficient size.

HISTORICAL CONTEXT

Beginnings

The use of electromagnetic methods in hydrocarbon exploration
dates back to the beginning of the twentieth century !e.g., Rust,
1938" and on land continues to this day, mainly through MT surveys
carried out to provide structural constraints. Marine electrical meth-
ods started with DC resistivity surveys carried out over water within
only a few years of the method’s inception !Schlumberger et al.,
1934". For DC methods to have any great sensitivity, seafloor resis-
tivity has to be less than seawater resistivity !which is 0.25 to
0.3 #m, depending on salinity and temperature"; thus the main ap-
plication was prospecting for sulfide ores. Work carried out over 80
years ago, off the Cornish coast, was reviewed by Francis !1985". A
Wenner survey in the same area of England was reported by Francis
!1977". In the context of current marine CSEM practices, it is inter-
esting to note that this early surface-towed array had an emission
current of 2000 A, provided by the generators of a minesweeper.
Wynn !1988" developed a marine induced-polarization system to
explore for mineral sands. However, because these are all shallow-
water systems and the market for offshore mineral mining is small,
little commercial activity in marine DC methods has developed.

Air (resistive)

Seawater (very conductive)  
CSEM transmitter

Seafloor (variable conductivity) 

Magnetotelluric source fields

Electric and magnetic field recorders

Figure 1. Schematic representation of the horizontal electric dipole-dipole marine CSEM method. An electromagnetic transmitter is towed close
to the seafloor to maximize the coupling of electric and magnetic fields with seafloor rocks. These fields are recorded by instruments deployed on
the seafloor at some distance from the transmitter. Seafloor instruments are also able to record magnetotelluric fields that have propagated down-
ward through the seawater layer.

WA4 Constable and Srnka
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Figure 3.1: Schematic diagram represents the horizontal electric dipole-dipole CSEM
method. An EM transmitter is towed close to the seabed to maximize the coupling of
electric and magnetic fields with seafloor rocks. These fields are recorded by instruments
deployed on the seafloor. The instruments are also able to record magnetotelluric fields
that have propagated through the seawater layer (after Constable & Srnka, 2007).

3.1.1 CSEM Sounding

CSEM sounding is the method for studying the vertical variation of Earth’s

resistivity. This method fixes the position of the receiver and varies the transmitter

position. Figures 3.4-3.8 show the sounding curve of the canonical model (Figure 3.2)

when 200 A-m horizontal electric dipole in the x-direction is towed 50 meters above the

seafloor. The canonical model consists of four layers which are (1) 1000 m thick and

0.32 Ω-m homogeneous seawater layer, (2) 1000 m thick and 1.0 Ω-m sediment layer,
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(3) 100 m thick and 100 Ω-m oil/gas reservoir layer and (4) 1.0 Ω-m sediment layer

(inspired by the Girassol prospect, Block 17, offshore Angola).

Figure 3.2: The canonical model for marine CSEM survey

Figure 3.3 shows the diagram of a CSEM receiver which consist of 3 induc-

tion coil magnetometers and 4 plastic arms for measuring 2 components of the electric

field. Three induction coils measure three components of magnetic field which are (1)

inline magnetic field, (2) broadside magnetic field and (3) vertical magnetic field. The

other two components are (1) inline electric field and (2) broadside electric field. In-

line and broadside are the words for indicating the orthogonality between the EM field

and transmitter orientation. Inline means that EM field component is parallel to the

transmitter orientation. In our case, inline means the magnetic or electric field is in the

x-direction and broadside means the magnetic or electric field is in y-direction.

Although a seafloor receiver can record all of the EM components, only an

inline electric field is used in real surveys. An inline electric field has the strongest signal

and it is much greater than the error floor of an instrument as indicated by solid line in

figure 3.4-3.8. For other components except By, their amplitudes are less than the error

floor (10−16 V/Am2 for an electric field and 10−18 T for a magnetic field). Although

the amplitude of a broadside magnetic field is also much greater than the error floor,

an inline electric field is also well suited to operation in seawater (Constable & Srnka,

2007). This is because magnetic sensors are moved by water currents.

As shown in figure 3.8, the vertical magnetic field is not sensitive to the

resistive layer. The amplitude and phase of the canonical model are similar to those

of the homogeneous model. For other EM fields, their sounding curves are divided
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Figure 3.3: The diagram of a seafloor receiver. It consists of three induction mag-
netic coils and four plastic arms for measuring two components of the electric field
(http://marineemlab.ucsd.edu).

into three regions which are (1) geometry and 1 Ω-m attenuation, (2) resistive layer

attenuation and (3) airwave. The geometry attenuation region is the region where

direct-wave attenuation dominates. This region has no information about the Earth’s

structure. The 1 Ω-m attenuation is the region where the EM field from the top sediment

layer dominates. It cannot reflect or sense the resistive layer. The geometry and 1 Ω-

m attenuation is about 2.0 km for inline (x) electric field, 4.3 km for broadside (y)

electric field, 1.0 km for inline (x) magnetic field and 1.3 km for broadside (y) magnetic

field. Next the resistive-layer-attenuation region is the region for which the response

is dominated by the EM field from the resistive layer. It contains the most valuable

information. The region is about 17 km for inline (x) electric field, 13 km for broadside

(y) electric field, 10 km for inline (x) magnetic field and 13 km for broadside (y) magnetic

field. The last one is the airwave region for which the response is dominated by airwaves.

When the transmitter generates an EM wave, the EM wave propagates in all directions

which are direct propagation to receiver, downward propagation into the Earth and

upward propagation to the air-ocean interface. When the EM wave reaches the air-

ocean interface, the EM wave will propagate along the interface and generate an EM

field propagating downward to the receiver. This wave is called the “airwave” and it

dominates when the offset is very long. In our case, the airwave shows up after 19 km

for inline (x) electric field, 17 km for broadside (y) electric field, 11 km for inline (x)
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Figure 3.4: The sounding curve of inline (x) electric field for the canonical model (in-
dicated by asterisk) and homogeneous model (indicated by diamond). Figure (a) is
amplitude and figure (b) is phase. The black solid line in figure (a) indicates the error
floor of the receiver.
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Figure 3.5: The sounding curve of broadside (y) electric field for the canonical model
(indicated by asterisk) and homogeneous model (indicated by diamond). Figure (a) is
amplitude and figure (b) is phase. The black solid line in figure (a) indicates the error
floor of the receiver.
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Figure 3.6: The sounding curve of inline (x) magnetic field for the canonical model
(indicated by asterisk) and homogeneous model (indicated by diamond). Figure (a) is
amplitude and figure (b) is phase. The black solid line in figure (a) indicates the error
floor of the receiver.
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Figure 3.7: The sounding curve of broadside (y) magnetic field for the canonical model
(indicated by asterisk) and homogeneous model (indicated by diamond). Figure (a) is
amplitude and figure (b) is phase. The black solid line in figure (a) indicates the error
floor of the receiver.
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Figure 3.8: The sounding curve of vertical (z) magnetic field for the canonical model
(indicated by asterisk) and homogeneous model (indicated by diamond). Figure (a) is
amplitude and figure (b) is phase. The black solid line in figure (a) indicates the error
floor of the receiver.
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magnetic field and 15 km for broadside (y) magnetic field.

3.1.2 2-D and 3-D CSEM imagings

2-D and 3-D imagings are commonly used words for 2-D and 3-D resistivity

images, respectively. For 2-D imaging, the receivers are placed in a straight line and the

EM transmitter is towed over the receiver line. Their data are recorded in a similar way

with CSEM sounding. In the hydrocarbon industry, 2-D CSEM imaging is only used for

detecting the presence of hydrocarbons. To delineate hydrocarbon-filled reservoirs, 3-D

CSEM imaging is required (Hesthammer et al., 2010). For 3-D CSEM, the receiver array

is placed at the seafloor as represented by circles in figure 3.9 and the EM transmitter

is towed over the array as represented by the black arrow in figure 3.9. At each the

Figure 3.9: A schematic diagram of 3-D CSEM survey. The black arrow represents the
transmitter and its orientation. Circles represent array of receivers where the white
color indicates the radial receiver and the gray color indicates the azimuthal receiver.

transmitter positions, electric and magnetic field are recorded along the tow direction

and along the perpendicular line of the tow direction. In 3-D CSEM, receivers along

the tow direction are called radial receivers and its recorded electric and magnetic fields

are called “radial” electric and magnetic fields. For the perpendicular line, receivers

are called azimuthal receivers and their recorded data are called azimuthal fields. In

general, the radial receiver records only the inline electric field, broadside magnetic

field and vertical magnetic field while the azimuthal receiver records only the broadside

electric field, inline magnetic field and vertical magnetic field (Constable, 2010). To
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interpret 3-D CSEM data, 3-D CSEM modeling and inversion are required.

3.2 3D CSEM modeling and Inversion

To develop 3-D CSEM modeling for general resistivity structures, the fre-

quency domain Maxwell’s equations are solved by a finite difference method (e.g. Alum-

baugh et al., 1996; Champagne II et al., 2001; Haber et al., 2000; Haber & Ascher, 2001;

Mackie et al., 1993; Newman & Alumbaugh, 1995; Weiss & Newman, 2002; Weiss &

Constable, 2006) or finite element method (e.g. Badea et al., 2001). As in other numer-

ical problem, the finite element method is more flexible for solving complicate geometry

(Avdeev, 2005) but the finite difference method consumes fewer resource than the finite

element method. Due to memory limitation and CSEM resolution, the finite difference

method is more practical for developing 3-D CSEM modeling than the finite element

method as shown by the number of publications.

For developing inversion, there are various inversion algorithms such as

Gauss-Newton, quasi-Newton, Occam’s inversion, and non-linear conjugate gradient.

All of them have been used to develop inversion for various geophysical applications

but non-linear conjugate gradient and quasi-Newton have only been used to develop

inversion for 3-D CSEM. Although quasi-Newton inversion has been used to develop

3-D CSEM inversion, it has only one record which is published by Plessix & Mulder

(2008). The remainders are developed using non-linear conjugate gradient (NLCG)

inversion such as Gribenko & Zhdanov (2007), Newman & Boggs (2005), Commer &

Newman (2008) and Newman et al. (2010). After the end of 2010, there have been no

new publications about 3-D CSEM inversion.

Most of available 3-D CSEM modeling and inversions are developed using

a scattered-field or secondary field technique to avoid the singularity problem at the

source position. The scattered-field technique splits the total electric field or magnetic

field into 2 parts. The first part is the primary field which is the electric or magnetic

field of the simple model such as a homogeneous or 1-D layer model. The second part

is the scattered-field where is the response is scattered from the anomalous structure.

Here, we develop 3-D CSEM modeling to fit with the ModEM system in

the hope that it can be readily used. In the following section, we describe Maxwell’s

equations and how to solve Maxwell’s equations with the finite difference method. Then

we describe the basics of the ModEM system and summarize how to develop 3-D CSEM

modeling on the ModEM system.
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3.3 Maxwell’s Equations and the Governing Equations

In order to determine the electric or magnetic field, Maxwell’s equations are

necessary. Maxwell’s equations in the time domain are

Faraday’s law of induction

∇× e = −∂b

∂t
, (3.1)

Ampere’s circuital law

∇× h = σe + je, (3.2)

Gauss’s law for magnetism

∇ · b = 0, (3.3)

and Gauss’s law

∇ · d = ρ, (3.4)

where e is the electric field, h is the magnetic field, b = µh is the magnetic flux density,

d is the electric displacement, µ is the magnetic permeability, ρ is the volume charge

density, σ is the conductivity, and je is the external source current density.

To transform the EM field from the time domain to the frequency domain,

the Fourier transform is applied. To be compatible with ModEM (Egbert & Kelbert,

2012), the time dependent term is set as e−iωt and the corresponding Fourier transforms

are

F (ω) =

∫ +∞

−∞
f(t)eiωtdt. (3.5)

and

f(t) =
1

2π

∫ +∞

−∞
F (ω)e−iωtdω, (3.6)

where the upper case letter is a function in the frequency domain and lower case is a

function in the time domain.

Applying equation (3.5) to (3.1), (3.2), (3.3) and (3.4), we obtain Maxwell’s

equations in the frequency domain as

∇×E− iωµH = −K, (3.7)

and

∇×H− (σ − iωε) E = J, (3.8)

where E and H is electric field and magnetic fields, J and K are electric and magnetic

source, ε is dielectric permittivity and ω is angular frequency. For most geophysical

surveys, the frequency is very low such as 0.25-10 Hz in CSEM surveys or 100-0.001 Hz

for magnetotelluric surveys. Therefore, iωε can be neglected and equation (3.8) can be

reduced into

∇×H− σE = J. (3.9)
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Equation (3.7) or (3.8) are the first order Maxwell’s equations in the frequency domain.

To obtain EM responses at the surface, one must solve for the E and H fields simul-

taneously via the first order Maxwells equations. Solving the coupled system (3.8) and

(3.15) requires substantial computer memory (Mackie et al., 1994). Memory require-

ments can be significantly reduced by solving the second order Maxwell’s equations, in

E form,

∇× (∇×E)− iωµσE = −∇×K + J, (3.10)

or in H form

∇× (σ−1∇×H)− iωµH = −K +∇× (σ−1J). (3.11)

For passive source surveys such as magnetotelluric, magnetic, or airborne surveys, the

right hand sides of (3.10) and (3.11) are zero. For passive sources, both equations have

been used to develop EM modeling such as Smith (1996); Alumbaugh et al. (1996);

Newman & Alumbaugh (1997); Siripunvaraporn et al. (2005) for equation (3.10) and

Mackie et al. (1994); Uyeshima & Schultz (2000) for (3.11).

For active source surveys, only equation (3.10) has been used to develop

EM forward modeling because it is easier to exclude source-point singularities from

the numerical computations (e.g. Newman & Alumbaugh, 1995). The technique for

excluding source-point singularities is called scattered field or secondary field technique.

It assumes that E in equation (3.10) can be split into two parts

E = Ep + Es, (3.12)

where Ep is the primary electric field which can be evaluated analytically and Es is the

secondary electric field which can be computed by solving

∇×∇×Es − iωµσEs = iωµ(σ − σp)Ep, (3.13)

where σp is for the primary model. Equation (3.11) is quite close to equation (3.10)

except the term on the right hand side. The electric field from both equations have to

satisfy two boundary conditions that are

1. the normal component of σE must be continuous across each boundary

of the physical property distribution (σ1E
⊥
1 = σ2E

⊥
2 ) and

2. the parallel component of E must be continuous across each boundary

(E
‖
1 = E

‖
2).

To solve equation (3.10) or (3.13), a normal finite difference or finite volume

grid which defines the unknowns at the corners as in figure 3.10 cannot satisfy the

electric-field boundary condition and it produces inaccurate result. A staggered grid is

therefore necessary.
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Figure 3.10: Normal 3D finite difference or finite volume grid. Unknowns are defined
at the corners of the rectangular block.

3.4 Staggered Grid

Yee (1966) proposed a staggered grid for solving the boundary value prob-

lems of Maxwell’s equation. Staggered grid has two types as shown in figures 3.11 and

3.12. For the first type, three electric fields are defined at the edges of the cube and

three magnetic fields are defined at the faces of the cube (figure 3.11). The first type is

suitable for solving equation (3.10). In this case, the total magnetic field is computed

by

H =
1

iωµ
∇×E. (3.14)

This grid type is used by Alumbaugh et al. (1996) and Newman & Alumbaugh (1997)

for sideband electromagnetic 3D modeling and by Siripunvaraporn et al. (2005) and

Egbert & Kelbert (2012) for 3D magnetotelluric modeling.

Figure 3.11: Staggered Grid Type I. Three components of electric field are defined at
the edges on the cube and three components of magnetic field are defined at the face of
the cube. The grid type is suitable for solving equation (3.10).

The second grid type defines all three components of the magnetic field on

the edges of the cube and all three components of electric field at the face of the cube

(figure 3.12) and it is suitable for solving equation (3.13). In this case, the total electric
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field is then computed by

E =
1

σ
∇×H. (3.15)

Figure 3.12: Staggered Grid Type II. Three components of electric field are defined at
the faces on the cube and three components of magnetic field are defined at the edges
of the cube. The grid type is suitable for solving equation (3.13).

This grid type is used by Mackie et al. (1994) for 3D MT modeling, by Smith

(1996) for 3D EM modeling, by Uyeshima & Schultz (2000) for geomagnetic induction

in a heterogeneous sphere and by Streich (2009) for CSEM modeling. The comparison

of both grid types for MT data is done by Siripunvaraporn et al. (2002) and their

conclusion is that for fine grid discretization both algorithms generate nearly identical

solutions, but there are significant differences for a coarse grid discretization. On a

coarse grid, the first type generally produces a solution that is closer than the second

type to the exact solution. For ModEM, only the staggered grid type I is available for

solving 3D EM forward problem.

3.5 ModEM

ModEM or modular electromagnetic inversion system has been developed by

Prof. Gary Egbert and Anna Kelbert of Oregon State University. ModEM is developed

and designed under a general mathematical framework for solving frequency-domain

EM inverse problems as described in Egbert & Kelbert (2012).

For clearness we summarize the key points here. The unconstraint func-

tional or penalty functional for EM inverse problems is

P(m,d) = (d− f(m))T C−1
d (d− f(m)) + ν (m−m0)T C−1

m (m−m0) , (3.16)

where m is the conductivity-model vector, m0 is the prior conductivity-model vector

or initial guess model, d is the data vector, f(m) is the forward mapping, Cd is the

data covariance, Cm is the model covariance or regularisation term, and ν is a trade-off

parameter.
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The forward mapping requires solution of the frequency domain EM partial

differential equation (PDE) which is written as

Sme = b, (3.17)

where S is the PDE operator on the left hand side of equation (3.13), the subscript m

denotes the dependence of the PDE operator on the unknown model parameter, e is

the discrete EM field solution, and b is the forcing term that is the boundary condition

and/or source term. For ModEM, e represents only the electric field on the edges on

the staggered grid. Then the magnetic field h is computed by the simple transformation

operator T

h = Te. (3.18)

Simulated observations are computed from the solution e and/or m by

di = fi(m) = ψi (e(m),m) . (3.19)

Using the chain rule, a general expression for Jacobain matrix, J = ∂f(m)/∂m, is given

by

J = LS−1
m0

P + Q. (3.20)

In equation (3.20), the matrix

P = − ∂

∂m
(Sme0) |m=m0 (3.21)

gives the sensitivity of Sme0 to perturbations in the model parameters. P depends on

the numerical implementation and the model parametrization. We assume the forward

operator can be written as

Sme ≡ S0e + U (π(m) ◦Ve) . (3.22)

For equation (3.13), S0 is the discrete curl-curl operator, U ≡ iωµI, V ≡ I, I is the

identity matrix, π(m) ≡ σ(m) is a model mapping from the model parameter space to

the cell edges and ◦ denotes the component-wise multiplication of vectors. Therefore,

the explicit expression for the operator P is given by

P = −Udiag(Ve0)Πm0 . (3.23)

where Πm0 is the Jacobian of the model mapping π(m) evaluated at the background

model parameter m0.

The matrix L in equation (3.20) represents the linearised data functionals.

It can be decomposed into two matrixes as

L = ATΛT , (3.24)
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where columns of Λ are sparse vectors which represent evaluation functionals for point

observations of the electric and magnetic fields. The matrix A depends on the details

of the observation functionals (e.g., impedance, apparent resistivity, amplitude, phase)

which may combine magnetic and electric measurements from one or more locations.

When the evaluation functionals have an explicit dependence on the model parame-

ter, there is an additional term which is denoted Q in equation (3.20). The Jacobian

represents a linear mapping, giving the perturbation to data resulting from the model

perturbation (δd = Jδm). A gradient-based inversion uses this operator, along with

the transpose or adjoint (δm = JT δd). ModEM does not form J or the components

in equation (3.20) but rather implements the solver for the discrete system S−1
m , the

operators P, L, Q and the compound Jacobian operator J.

ModEM is organized into 5 layers and 3 levels as shown in figure 3.13. Each

layer has no intrinsic dependence on other layers of the system. The first layer is the

“Data Space” layer that is designed for handling and managing data vector d. Its

structure is fixed but suitable for supporting multivariate EM data. The data vector d

can handle multicomponent data via three attributes which are transmitter, data type

and receiver.

The transmitter attribute is uniquely used for defining the forward problem

that must be solved, including both the specific partial differential equation as well as

sources and boundary conditions. The data type and receiver are used to define the

measurement process that must be applied to the forward solution to get the response.

These attributes are treated abstractly at the “data space” layers. To preform modeling

or inversion, the actual information associated with these attributes are stored into the

dictionaries. The transmitter (TX) dictionary has an entry for each forward problem,

providing any data such as frequency, geometry or orientation of the source required

to setup and solve each forward problem. In the data type (DT) dictionary, each entry

defines general data functional types included in the inversion such as the impedance

and vertical field transfer function for MT. The information about site location, site

configuration or number of sites are provided through the entry of the receiver dictio-

nary. The lists of possible dictionary entries will depend on the application. For 3D

MT, the transmitter defines only the frequency and the data type defines the complex

impedance and apparent resistivity/phase. For 3D CSEM, the transmitter defines the

source orientation, position, moment, type and frequency while the data type defines

either the real/imaginary part or amplitude/phase of the EM field. For the receiver,

only the site orientation and position are defined for both 3D MT and 3D CSEM.

The second layer is level I of ModEM, which implements the inversion search

algorithm, handles parallelization of the inversion and manages computations with Ja-

cobian matrix J such as matrix-vector multiplications JTd and Jm. This level consists



Chatchai Vachiratienchai Controlled-Source Electromagnetic Inversion / 98

Figure 3.13: The schematic overview of ModEM. Individual modules are denoted by
boxes, with dependencies indicated by arrows. Some boxes are marked with symbols
to indicate the vectors and operators from Egbert & Kelbert (2012). The shaded small
boxes indicate which dictionaries are used in each module.

of 4 modules DataSens, SensComp, NLCG and MPI. DataSens module implements

multiplication by L, Q and its transpose through four routines. The first, Lmult, is

the linearized counterpart of the non-linear response ψ(e,m) and returns the pertur-

bation in the data for small perturbation in e and m, i.e., Lδe = δd. The second,

LmultT, implements the transpose of operator L and returns LT δd = δe. The third,

Qmult, computes the component of the data perturbation due to direct dependence of

ψ on model parameter m, which is Qδm = δd. The last one, QmultT, implements

transpose of Q and returns QT δd = δm. SensComp module puts all of L, S−1
m , P
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and Q together to implement the full Jacobian calculation. In contrast the DataSens

module deals with multiple objects. There are four public routines. The first, Jmult,

implements Jδm multiplication and returns δd. The second, JmultT, implements JTδd

multiplication and returns δm. The third, fwdPred, implements the full forward prob-

lem and returns the full predicted data for a given model parameter (d = f(m)). The

final routine, calcJ, is a routine for computing the full Jacobian matrix for all transmit-

ters, data type and receiver. The NLCG module provides non-linear conjugate gradient

inverse algorithm which is adopted from the standard Polak-Ribière algorithm (see fig-

ure 3.14 for pseudo-code). See section 3.6 more details. The MPI main module is

designed for parallelization forward, inverse and Jacobian calculation over transmitter,

data type and receiver. To minimize interaction, one processor is assigned as the mas-

ter and the rest as workers. The workers enter a queue inside MPI main and wait for

messages from the master. Only the master executes the actual inversion. To execute

any statement in parallel, the master enters MPI main and distributes messages to all

workers indicating tasks to perform. Thus, all MPI communication are hosted inside

MPI main.

The third layer is a interface layer which is the second level of ModEM. This

level provides modules for communicating between level I and level III. Each module

in this level is specific to an application. They extensively use transmitter, data type

and receiver dictionaries. Most of modifications from 3D MT to 3D CSEM are done at

this level. This layer consists of 4 main modules. The first one is SolnSpace where

the derived data type and its operator are defined. The derived data type is used to

represent e and b in the forward equation Sme = b. The operators defined in this

module are creation, destruction, I/O, copying, basic linear algebra and dot-product

operators. These fundamental operators are used by the module in Level I. The second

one is ForwardSolver which provides modules for the interface between the specific

application forward modeling routines and generic routines in Level I. They consist of

3 public routines which are initSolver for initializing main objects for solving forward

problem, exitSolver for deallocation and clean up and fwdSolver for computing the EM

field on the edge of the staggered grid. In CSEM, the background model, anomalous

model and primary field solution are set up at initSolver routine. Then the forcing

term b for the secondary field solution is set up at fwdSolver routine. Level III routine

(EMSolver) is called to compute the secondary field, which is added to the primary

field solution. Finally, the total field solution is returned by fwdSolver. The third one

is DataFunc which provides modules for computing the response from the forward

solution. There are three public routines which are dataRef for evaluating the non-

linear data functional ψj(e,m), Lrows and Qrows for computing linearizing data and

its counterpart. For CSEM, DataFunc are very simple, it only uses the routine in Level
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III (EMfieldInterp) to interpolate electric or magnetic field at the receiver positions.

The last one is SolverSens which implements multiplication by matrices P and PT .

The fourth layer is Level III of ModEM which provides fundamental tools

for EM modeling. This layer consists of 4 modules which are specific to a particular

numerical approach to discretize and solve the EM forward problem. For example, finite

difference vs. finite element, 2D MT vs. 3D MT, spherical vs. Cartesian geometry, all

require different instances of this group of modules. On other hand, the same set of

modules can be used for any source/receiver configurations with a particular approach.

For modify 3D MT to 3D CSEM, all of these modules are not changed. The first one is

Grid which defines the basic data type for representing the staggered grid. Attributes

of the object can be accessed by all routines in Level III modules. For higher level (I

and II) modules, they do not directly access internal attributes but they have to access

past instances of the object. The second one is EMField which defines the basic data

type for representing the EM field and also provides its basic operators such as creation,

deallocation, linear algebra, and dot product. The third one is EMSolver which is used

to evaluate the EM field from the discrete system of equations (3.10) or (3.13). The

iterative solver, quasi-minimum residual with a level-1 incomplete LU decomposition for

pre-conditioning, is applied for solving the discrete system. The fourth one is EMField

Interp which implements the interpolation function used to compute the electric and

magnetic fields at an arbitrary point within the model domain. These function are

represented by sparse vectors corresponding to volumes of the matrix Λ.

The last layer is the ModelSpace layer which is designed to decouple the

model parameterization and regularization from the remaining of the inversion. This

layer has one basic data type of which attributes are private and inaccessible from other

parts of inversion. This guarantees that the rest of the inversion is independent of any

specific details in model parameter implementation. There are three essential groups

of routines. The first group is the standard routine for creation, deallocation, I/O,

copying, and also for linear algebra and dot products. The second group is the group

for implementation model covariance Cm. The third group (denoted as ModelMap in

figure 3.13) consists of mapping between the model parameter and the EM field such

as the implementation of π(m), Π = ∂π/∂m and ΠT .

3.6 NLCG inversion

Non-linear conjugate gradient (NLCG) inversion is used in many geophysi-

cal inversions such as Newman & Alumbaugh (2000), Rodi & Mackie (2001), Commer

& Newman (2008) for magnetotelluric data and Kelbert et al. (2008) for global EM in-

duction. NLCG is directly applied to minimize the penalty functional (equation (3.16)).
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The advantage of NLCG is that there is no need to construct any large matrices (e.g.,

J, JT , Cm); only a product of J or JT with any vector is required (Siripunvaraporn,

2012). Because NLCG inversion needs less memory than other inversions, the NLCG

algorithm has been gaining popularity among developers as shown in many publications

in the past decade (Newman & Alumbaugh, 2000; Rodi & Mackie, 2001; Newman &

Boggs, 2004; Commer & Newman, 2008; Kelbert et al., 2008). There are two NLCG

Figure 3.14: Pseudo-code for non-linear conjugate gradient (NLCG) algorithm. Nota-
tion: f(m) represents the responses obtained from forward modeling; Pn and P ′n are
values of the penalty functional and its derivative at the nth iteration; mn, hn, gn are
vectors in the model space; α and β represent real scalars; other symbols are as in the
text (after Egbert, unpublished).

algorithms which are the Fletcher-Reeves (Fletcher & Reeves, 1964) algorithm and the

Polak-Ribière (Polak & Ribière, 1969) algorithm. The difference between both algo-

rithms is the method for evaluating the conjugate direction hn. For ModEM, NLCG is

developed by adapting the standard Polak-Ribière algorithm (see figure 3.14 for pseudo-

code). The major modification is the ν adaptation algorithm. For the original NLCG

inversion, ν is manually assigned by the user and it is constant for the whole inversion.
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When the convergence of the inversion stalls, the original NLCG inversion terminates

and returns the result. For ModEM, they add an automatic scheme for decreasing the

value of ν when the convergence of inversion stalls. That makes the new NLCG algo-

rithm better at data fitting than the original one. Although ModEM implements an

algorithm for adjusting the ν value, its result is still based on the initial value of ν.

Unlike Occam’s inversion, its damping factor is fully and automatically adjusted by a

search algorithm. The initial value of ν has almost no effect on the inverted result.

3.7 Adapting ModEM to CSEM

Here, we summarize the key modifications for adapting ModEM to work

with CSEM data. The first one is to add new data types in the data type dictionary

and new data functionals in the DataFunc module. The second one is to include new

attributes in the transmitter dictionary which are dipole type, electric dipole moment,

source position, and source orientation. The third one is to modify the ForwardSolver

to support the scattered-field formulation which consists of 7 steps. The first step is

the primary-model calculation to create a 1D layer model. Here, we use the weighted

average over a 2D section to evaluate the conductivity of the 1D model. The second step

is the anomalous-model calculation to create the secondary conductivity model. Because

ModEM solves equation (3.13) on the edge of staggered grid, we start by mapping the

cell conductivity to the edges and then subtracting conductivity model from the primary

model at the edges. The third step is the primary field calculation. At this step, we put

the 1D layer model into the 1D forward modeling developed by Key (2009) and then

map the results to the edges of the staggered grid. The fourth step is to create the force

term b. At this step, we create the forcing term b of equation (3.17) by following the

right hand side of equation (3.13). The fifth step is to calculate the scattered field Es.

After we prepared the essential parameter, we call the fwdSolver routine to obtain the

scattered field. The sixth step is to compute the total field E. At this step, we add

the primary field to the scattered field to get the total field at the edges of the grid.

The final step is to evaluate the response. Here, we use routines in EMfield Interp to

interpret and evaluate the electric or magnetic field at the receiver position.

3.8 Synthetic Test

Here, we test the accuracy and reliability of 3D CSEM forward modeling

and inversion on the synthetic model. All of these tests were run on IBM X3755 M3

workstation, using up to 21 processing cores with 104 GB total available memory.
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3.8.1 Forward Modeling

In this section, the 3D CSEM modeling is tested by comparing its results

with the results generated from a 1D forward modeling program (Key, 2009). The

synthetic model used in this test is inspired by the canonical model (figure 3.2). The

synthetic model consists of three homogeneous layers and one resistive anomaly. The

three layers are (1) 1010 Ω-m air layer, (2) 0.32 Ω-m ocean layer and (3) 1 Ω-m sediment

layer. One resistive layer is a 100 Ω-m layer intruding in the sediment at 700 m from

the seafloor. Its horizontal and vertical dimensions are 10 km × 10 km × 0.1 km as be

shown in figure 3.15.

Figure 3.15: The synthetic model for testing the accuracy of CSEM modeling. Figure
(a) is the top view at 1,000 m depth and figure (b) is the side view in the y-direction.
The white triangle represents the receiver position and the white dashed line is the tow
direction.

The resistivity model (figure 3.15) is discretized into 48 layers in the vertical

direction. The first ten layers are automatically added by ModEM, which are repre-

sented by air layers. The next 13 layers are used for simulating the 1175-m thick ocean.

The 700-meters top sediment are divided into 10 layers of which the smallest thickness

is 10m at the first layer and the largest thickness is 200m at the sixth layer. The 100-m

thick oil/gas layer is discretized into 4 uniform layers of thickness is 25 m. The thick-

nesses of the remaining layers continuously increases until reaching 20.8 km where the

Dirichlet boundary condition can be applied. For horizontal (x and y) directions, the

grid is uniformly discretized in the area 10 × 10 km. The grid size increases by the

factor of 2 for the outside.

In this test, there is one seafloor receiver placed at the center of the model as

indicated by the white triangle in figure 3.15. In this simulation, a 0.25 Hz x-horizontal

electric dipole is towed at 50 meters above the receiver in the x-direction. The dipole
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generates EM field every 100 meters starting from -3 km to 3 km as indicated by the

white dashed line in figure 3.15. Under this setting, the calculated responses can be

implied as the results from the 1-D model.

The reference 1-D data is generated from the 1-D model of which the grid

discretization and resistivity are summarized in table 3.1. Its vertical grid discretization

Table 3.1: The 1-D resistivity model corresponding to the synthetic model (figure 3.15).

no.
Depth Resistivity

no.
Depth Resistivity

[km] [Ω-m] [km] [Ω-m]
1 -1576 1.0e10 25 0.010 1.0
2 -590.1 1.0e10 26 0.025 1.0
3 -262.8 1.0e10 27 0.050 1.0
4 -153.5 1.0e10 28 0.100 1.0
5 -80.55 1.0e10 29 0.200 1.0
6 -31.95 1.0e10 30 0.400 1.0
7 -7.65 1.0e10 31 0.500 1.0
8 -2.250 1.0e10 32 0.600 1.0
9 -1.350 1.0e10 33 0.650 1.0
10 -1.200 1.0e10 34 0.700 100.0
11 -1.175 0.320 35 0.725 100.0
12 -1.150 0.320 36 0.750 100.0
13 -1.100 0.320 37 0.775 100.0
14 -1.000 0.320 38 0.800 1.0
15 -0.800 0.320 39 0.850 1.0
16 -0.500 0.320 40 0.900 1.0
17 -0.300 0.320 41 1.000 1.0
18 -0.200 0.320 42 1.300 1.0
19 -0.150 0.320 43 2.300 1.0
20 -0.100 0.320 44 3.800 1.0
21 -0.050 0.320 45 6.800 1.0
22 -0.025 0.320 46 10.80 1.0
23 -0.010 0.320 47 15.80 1.0
24 0.000 1.0 48 20.80 1.0

are the same vertical grid discretization that is used for the 3-D model. The reference

1-D data is represented by a solid black line in figure 3.16-3.19. Each figure consists of

6 data sets and 1 reference data. The first data set (u50) indicated by a diamond is the

result when the spacing of a uniform grid is 50 m. The total number of grid points in

the x and y directions is 208 and the number of model parameters is 2,076,672. The

calculation time is 1 hour 44 minutes. The second data set (u100) indicated by a circle

is the result when the spacing of the uniform grid is 100 m. The total number of grid

points in the x and y directions is 108 and the number of model parameters is 559,872.

The total calculation time is 28 minutes. The third one (u150) indicated by a plus is

the result when the spacing of the uniform grid is 150 m. The total number of grid

points in the x and y directions is 75 and the number of model parameters is 270,000.

The total calculation time is 14 minutes. The fourth one (u200) indicated by a cross
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is the result when the spacing is equal to 200 m. The total number of grid points in

the x and y directions is 58 and the number of model parameters is 161,472. The total

calculation time is 9 minutes. The fifth data set (u250) indicated by a square is the

result when the spacing is equal to 250 m. The total number of grid points in the x and

y directions is 48 and the number of model parameters is 110,592. The total calculation

time is 6 minutes. The last data set (u500) indicated by a right-point triangle is the

result when the spacing is equal to 500 m. The total number of grid points in the x and

y directions is 28 and the number of model parameter is 37,632. The total calculation

time is 2 minutes. The calculation time, the number of model parameter and grid for

all these data sets are also summarized in table 3.2.

Table 3.2: The number of grid in x or y direction, the total number of model parameter
and its calculation time for evaluating sounding curve for the synthetic model (figure
3.15).

No. Grid No. Model Parameter CPU Time [min.]

u50 208 2,076,672 104
u100 108 559,872 28
u150 75 270,000 14
u200 58 161,472 9
u250 48 110,592 6
u500 28 37,632 2

Figure 3.16 represents the amplitude of the inline (x-direction) electric field

for various uniform grids. Most of them can produce an accurate response when the

offset is greater than 2 km. For a zero offset (transmitter above receiver), all of them

cannot produce an accurate result. The minimum error at zero offset is about 71%

evaluated by the 50m uniform grid. When offset increases, the relative error reduces

and it is less than 1% when the offset is greater than 0.7 km for u50, 1.7 km for u100

and u150, 2.5 km for u200 and 2.7 km for u250. The relative error of u500 is always

greater than 1%. These situation also occurs in the other data types as shown in figure

3.17 for the phase of the inline electric field, figure 3.18 for the amplitude of broadside (y)

magnetic field and figure 3.19 for the phase of broadside magnetic field. The minimum

distances of which the relative error is less than 1% or 2% are reported in table 3.3 and

3.4, respectively.

Although u50 produces the most accurate result, its calculation time is

greater than 1 hours for the forward modeling calculation and it is impractical for

inversion. While u500 spends only 2 minutes, its result is accurate when the offset is

greater than 3 km. As discussed in the previous section, the information of the top

layer sediment is measured in the offset 0-2.0 km for the inline (x) electric field and
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Table 3.3: The minimum offset of which its relative error is less than 1%. Ex is the inline
electric field of which the sounding curves are represented in figure 3.16 for amplitude
and figure 3.17 for phase. By is broadside magnetic field of which sounding curves are
represented in figure 3.18 for amplitude and figure 3.19 for phase.

Ex u50 u100 u150 u200 u250 u500

Applitude > 0.7 km > 1.7 km > 1.7 km > 2.5 km > 2.7 km -
Phase > 0.6 km > 1.1 km > 1.1 km > 1.6 km > 1.7 km -

By u50 u100 u150 u200 u250 u500

Applitude > 0.4 km > 0.8 km > 1.6 km > 1.9 km > 2.6 km -
Phase > 0.7 km > 0.8 km > 1.0 km > 1.9 km > 2.8 km -

Table 3.4: The minimum offset for which its relative error is less than 2%. Ex is inline
electric field of which the sounding curves are represented in figure 3.16 for amplitude
and figure 3.17 for phase. By is broadside magnetic field of which sounding curves are
represented in figure 3.18 for amplitude and figure 3.19 for phase.

Ex u50 u100 u150 u200 u250 u500

Applitude > 0.5 km > 1.0 km > 1.1 km > 2.1 km > 2.3 km > 2.8 km
Phase > 0.4 km > 0.8 km > 0.7 km > 1.4 km > 1.5 km > 2.8 km

By u50 u100 u150 u200 u250 u500

Applitude > 0.4 km > 0.6 km > 1.1 km > 1.3 km > 1.7 km -
Phase > 0.6 km > 0.8 km > 0.9 km > 1.3 km > 1.6 km -

0-1.3 km for the broadside (y) magnetic field. With the 500m uniform grid, the top

layer information is lost.

To solve the problem, we create two non-uniform grids based on the uniform

grid study. The first and second grids are created based on the distances in table 3.3

and 3.4, respectively. The first non-uniform (nu01) grid consists of 94 grid points in x

and y directions which are the 50m grid for 0-1.2 km, the 150m grid for 1.2-2.4 km, the

200m grid for 2.4-3.0 and the 250m grid for the remains. The total number of model

parameters is 424,128. The amplitude and phase plot of the first non-uniform grid are

shown in figure 3.20-3.23 as circles. The second non-uniform (nu02) grid consists of 88

grid points in x and y directions which are the 50m grid for 0-1.0 km, the 100m grid for

1.0-1.2 km, the 150m grid for 1.2-2.1 km, the 200m grid for 2.1-2.5 and the 250m grid

for the remainders. Total number of model parameters is 371,712. The amplitude and

phase plot of the second non-uniform grid are shown in figure 3.20-3.23 as pluses.

Both non-uniform grids take about 21 minutes to compute the response.

Most of them fit quite well with the reference data. Their relative error is less than 2%

when the offset is greater than or equal to 500 m. In figure 3.24-3.27, the relative error

versus offset are plotted and the black solid lines represent 500m offset. Although both
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non-uniform grids can reduce the number of model parameter and calculation time, the

relative error at 0m offset is still about 71%. To solve this problem, we created a new

non-uniform grid based on nu02. The new non-uniform (nu03) grid consists of 104

grid points in the x and y directions which are a 10m grid for 0-0.1 km for 0-100m, a

50m grid for 0.1-1.2 km, a 150m grid for 1.2-2.4 km, a 200m grid for 2.4-3.0 and a 250m

grid for the remainders. The total number of model parameters is 519,168 and the CPU

time is 26 minutes. Its amplitude and phase plot are shown in figure 3.20-3.23 and its

relative errors are plotted in figure 3.24-3.27 as a right-point triangle.

By refining the grid between 0-0.1 km with a 10m grid, the relative errors of

the inline electric field significantly reduce in 0.1-3.0 km as well. The maximum error is

reduced from 71% to 4.3%. For the amplitude of broadside magnetic field, the relative

errors increase after the grid is refined but they are less than 2% after 500m as shown

in figure 3.26.

Following this study, the forward modeling can produce accurate results

when the grid nearby the receiver is 10m. This is impractical for a real CSEM survey.

For the real CSEM survey, the study area is greater than 10 km and it consists of

numerous transmitters and receivers. The 100m and 150m grids are more practical

than for a 10m grid, although they produce accurate results after 1.7 km. In the next

section, we use a 100m grid model to test the reliability of the NLCG inversion.

3.8.2 Inversion

In this section, we test the reliablity of 3D CSEM inversion with a two-blocks

model which consists of one conductive (0.1 Ω-m) and one resistive (10 Ω-m) anomaly

placed at the surface of a 1 Ω-m homogeneous sediment. The conductive anomaly is

placed at south of the resistive anomaly as shown in figure 3.28. Both anomalies have

the same horizontal and vertical dimensions which are 1.2 × 2.2 × 0.4 km. In this test,

the two-blocks model is discretized with a 100m uniform grid in both N-S and E-W

directions. The total number of grid points in the N-S or E-W direction is 32. For the

vertical direction, the vertical grid in table 3.1 is used; therefore the total number of

model parameters is 49,152.

In this test, 105 receivers are placed at the seafloor. A receiver is placed

every 100 meters in the N-S direction and every 500 meters in the E-W direction as

shown by white lines in figure 3.28a. In this simulation, three frequencies (0.25, 1, and

4 Hz) are used and the N-S horizontal-electric dipole is towed over with the leftmost,

rightmost and mid lines of the receivers 50 meters from the seafloor. In each line, the

transmitter generates an EM field every 200 m or 11 positions/line. The total number of

data points is 5,148 (2079 for electric field in the N-S direction, 2079 for magnetic field

in the E-W direction, 495 for electric field in the E-W direction and 495 for magnetic
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field in the N-S direction).

NLCG inversion is used to inverse this data set. In these tests, we set the

error bar as 1% of the data and we use a 1D homogenous sediment model as the prior

model mprior. The initial RMS is about 200. NLCG inversion starts searching from

ν = 1.0. Inversion terminates after 10 iterations and it cannot reach the target RMS (1

RMS). The final RMS is about 22 and its inverse result is shown in figure 3.29. Resistive

and conductive anomalies can be recovered by the inversion but the shapes and values

are quite different from the actual model (figure 3.28). This might be an effect of the

initial value of ν. We try to vary the initial value ν but most of them diverge. The

result shown in figure 3.28 is the best result that NLCG inversion can do. This is the

major disadvantage of NLCG inversion. For NLCG inversion, the convergent rate and

inverted result strongly depend on ν. To obtain reliable results from NLCG inversion,

the inversion user has to manually vary ν (Siripunvaraporn, 2012).

3.9 Conclusion

Here, we develop a 3-D CSEM forward modeling and inversion based on

the scattered-field technique. All of the developments are done on the ModEM system.

By applying the scattered-field technique to the ModEM system, we can develop an

accurate 3-D CSEM forward modeling but a very fine grid near the receiver position is

required. For the inversion, the NLCG algorithm coming with the ModEM system can

function for 3-D CSEM data but it has stability concerns and it is not practical for real

applications. All of this work is preliminary. To improve stability and reliability of 3-D

CSEM modeling and inversion, further work is required.
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Figure 3.16: The amplitude of the inline (x) electric field for the synthetic model (figure
3.15) when the 0.25 Hz x-direction horizontal electric dipole is towed at 50 meters above
the seafloor receiver. The solid line is the reference data evaluated by the 1-D forward
modeling program (Key, 2009), the diamond, circle, plus, cross, square and right-point
triangle symbols are the numerical results from the 50m, 100m, 150m, 200m, 250m and
500m uniform grids, respectively.

Figure 3.17: The phase of the inline (x) electric field for the synthetic model (figure
3.15) when 0.25 Hz x-direction horizontal electric dipole is towed at 50 meters above
the seafloor receiver. The solid line is the reference data evaluated by the 1-D forward
modeling program (Key, 2009), the diamond, circle, plus, cross, square and right-point
triangle symbols are the numerical results from the 50m, 100m, 150m, 200m, 250m and
500m uniform grids, respectively.
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Figure 3.18: The amplitude of the broadside (y) magnetic field for the synthetic model
(figure 3.15) when 0.25 Hz x-direction horizontal electric dipole is towed at 50 meters
above the seafloor receiver. The solid line is the reference data evaluated by the 1-
D forward modeling program (Key, 2009), the diamond, circle, plus, cross, square and
right-point triangle symbols are the numerical results from the 50m, 100m, 150m, 200m,
250m and 500m uniform grid model, respectively.

Figure 3.19: The phase of the broadside (y) magnetic field for the synthetic model (figure
3.15) when the 0.25 Hz x-direction horizontal electric dipole is towed at 50 meters above
the seafloor receiver. The solid line is the reference data evaluated by the 1-D forward
modeling program (Key, 2009), the diamond, circle, plus, cross, square and right-point
triangle symbols are the numerical results from the 50m, 100m, 150m, 200m, 250m and
500m uniform grids, respectively.
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Figure 3.20: The amplitude of the inline (x) electric field for the synthetic model (figure
3.15) when the 0.25 Hz x-direction horizontal electric dipole is towed at 50 meters above
the seafloor receiver. The solid line is the reference data evaluated by the 1-D forward
modeling program (Key, 2009), the circle, plus and left-point triangle symbols are the
numerical results from the first, second and third non-uniform grids, respectively.

Figure 3.21: The phase of the inline (x) electric field for the synthetic model (figure
3.15) when 0.25 Hz x-direction horizontal electric dipole is towed at 50 meters above
the seafloor receiver. The solid line is the reference data evaluated by the 1-D forward
modeling program (Key, 2009), the circle, plus and left-point triangle symbols are the
numerical results from the first, second and third non-uniform grids, respectively.
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Figure 3.22: The amplitude of the broadside (y) magnetic field for the synthetic model
(figure 3.15) when 0.25 Hz x-direction horizontal electric dipole is towed at 50 meters
above the seafloor receiver. The solid line is the reference data evaluated by the 1-D
forward modeling program (Key, 2009), the circle, plus and left-point triangle symbols
are the numerical results from the first, second and third non-uniform grids, respectively.

Figure 3.23: The phase of the broadside (y) magnetic field for the synthetic model (figure
3.15) when 0.25 Hz x-direction horizontal electric dipole is towed at 50 meters above
the seafloor receiver. The solid line is the reference data evaluated by the 1-D forward
modeling program (Key, 2009), the circle, plus and left-point triangle symbols are the
numerical results from the first, second and third non-uniform grids, respectively.
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Figure 3.24: The error of the Ex amplitude for the synthetic model (figure 3.15) when
0.25 Hz x-direction horizontal electric dipole is towed at 50 meters above the seafloor
receiver. The solid lines represent the 500m offset, the circle, plus and left-point triangle
symbols are the numerical results from the first, second and third non-uniform grids,
respectively.

Figure 3.25: The error of the Ex phase for the synthetic model (figure 3.15) when
0.25 Hz x-direction horizontal electric dipole is towed at 50 meters above the seafloor
receiver. The solid lines represent the 500m offset, the circle, plus and left-point triangle
symbols are the numerical results from the first, second and third non-uniform grids,
respectively.
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Figure 3.26: The error of the By amplitude for the synthetic model (figure 3.15) when
0.25 Hz x-direction horizontal electric dipole is towed at 50 meters above the seafloor
receiver. The solid lines represent the 500m offset, the circle, plus and left-point triangle
symbols are the numerical results from the first, second and third non-uniform grids,
respectively.

Figure 3.27: The error of the By phase for the synthetic model (figure 3.15) when
0.25 Hz x-direction horizontal electric dipole is towed at 50 meters above the seafloor
receiver. The solid lines represent the 500m offset, the circle, plus and left-point triangle
symbols are the numerical results from the first, second and third non-uniform grids,
respectively.



Fac. of Grad. Studies, Mahidol Univ. Ph.D. (Physics) / 115

Figure 3.28: The two-blocks model for testing the reliability of CSEM inversion. The
0.1 Ω-m conductive and 10 Ω-m resistive anomalies are placed at the surface of 1 Ω-m
sediment. The conductive anomaly is placed at the south of the resistive anomaly. Both
anomalies have the same horizontal and vertical dimensions which are 1.2 × 2.2 × 0.4
km. The white lines in figure (a) represent the lines of the receiver.
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Figure 3.29: The inverted result is generated by NLCG inversion when ν = 1.0.
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