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CHAPTER I

INTRODUCTION

The usual application of residue theory is to evaluate the definite

integrals of various types. It provides a straightforward, yet efficient, method to

compute these integrals. Another application of the residue theory is to find the

exact values of certain convergent infinite series. In particular we shall present

an application of the residue theory in the aspect of finding the exact values

of infinite series involving real roots of some transcendental equations and of

finite series involving the binomial coefficients. We also present some numerical

methods that can be used to confirm the legitimacy of our results.

1.1 Objectives

The main objectives of this study are

1. To show an alternative application of the residue theory.

2. To find the exact values of the sums involving real roots of some transcen-

dental equations.

3. To use the residue theory to evaluate the finite sums involving binomial

coefficients.

4. To compare the exact results with approximated ones using numerical

methods.

1.2 Organization of the study

We will organize this study into six chapters. An introduction of

the study is contained in Chapter 1. In the next chapter, we give the literature

reviews. In Chapter 3, we describe the theoretical background of this study. We
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separate two different types of sums in Chapter 4 and 5: one involving the real

roots of transcendental equations and the other involving binomial coefficients.

We conclude the study and discuss some open problems in the last chapter.
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CHAPTER II

LITERATURE REVIEW

In 1971, Ricardo [1] proposed the following theorem

Theorem 2.1 If |z| < (k−1)k−1

kk for some positive integer k > 1, then

∞∑
n=0

(
kn

n

)
zn =

1 + W

1− (k − 1)W
,

where W is the unique root of the equation w − z(1 + w)k = 0 inside the circle

|w| = 1
k−1

.

Ricardo proved this theorem using the residue theory. The method

of this proof inspires us to explore further the applications of the residue theory.

In 1982, Bak and Newman [2] introduced the application of the contour integral

method. They showed how to use the residue theorem to find infinite sums of

some rational expressions and to estimate the sums involving binomial coeffi-

cients. In 1997, Antimirov, Kolyshkin and Vaillancourt [3] considered infinite

series of the following forms

S1 =
∞∑

k=−∞

f(k), S2 =
∞∑

k=−∞

(−1)kf(k),

S3 =
∞∑

k=−∞

(−1)kf(k)eıak, S4 =
∞∑

k=−∞

f(k)eıak,

S5 =
∞∑

k=1

f(k), S6 =
∞∑

k=1

(−1)kf(k),

where f(z) = Pn(z)/Qm(z) with Pn(z) and Qm(z) being polynomials of degrees

n and m, respectively with m ≥ n + 2. Again, they used the residue theory to

obtain the exact values of these sums.
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CHAPTER III

THEORETICAL BACKGROUND

In this chapter, we give some basic knowledge and theoretical back-

ground that will be used throughout the thesis. We review some definitions and

theorems that relate to infinite sums and contour integrals.

3.1 Residue Theory

Definition 3.1 [4] A point z0 is called a singular point of a function f if f

fails to be analytic at z0 but is analytic at some point in every neighborhood of

z0. A singular point z0 is said to be isolated if, in addition, there is a deleted

neighborhood B′(z0, ε) of z0 throughout which f is analytic.

When z0 is an isolated singularity of a function f, there is a positive number R

such that f is analytic at each point z in the deleted neighborhood B′(z0, R).

Consequently, in that neighborhood f(z) is represented by the Laurent series

f(z) =
∞∑

n=0

an(z − z0)
n +

∞∑
m=1

bm

(z − z0)m
,

which converges uniformly on every compact subset of B′(z0, R). The coefficients

an, bm have certain integral representations. In particular,

bm =
1

2πi

∫
C

f(z)(z − z0)
m−1dz,

where C is any positively oriented simple closed contour around z0 and lying in

the punctured disk B′(z0, R). When m = 1, this expression for bm can be written

b1 =
1

2πi

∫
C

f(z)dz.

Definition 3.2 Let f(z) have a non-removable isolated singularity at the point

z0. Then f(z) has the Laurent series representation for all z in some punctured
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disk B′(z0, R). given by f(z) =
∞∑

k=−∞
an(z − z0)

n. The coefficient a−1 of 1
z−z0

is

called the residue of f(z) at z0.

Theorem 3.3 [3] Suppose that

(i) C is a simple closed contour, described in the counterclockwise direction;

(ii) Ck (k = 1, 2, . . . , n) are simple closed contour interior to C, all described in

the clockwise direction, that are disjoint and whose interiors have no points in

common.

If a function f is analytic on all of these contours and throughout the multiply

connected domain consisting of all points inside C and exterior to each Ck, then∫
C

f(z)dz +
n∑

k=1

∫
Ck

f(z)dz = 0.

Theorem 3.4 (Residue theorem)[4] Let C be a positively oriented simple closed

contour. If a function f is analytic inside and on C except for a finite number

of singular points zk (k = 1, 2, . . . , n) inside C, then∮
C

f(z)dz = 2πi

n∑
k=1

Res
z=zk

f(z). (3.1)

Proof. Let the point zk, k = 1, 2, . . . , n be centers of positively oriented circles

Ck which are interior to C and are so small that no two of them have points in

common. The circles Ck, together with the simple closed contour C, form the

boundary of a closed region throughout which f is analytic and whose interior is

a multiply connected domain. Hence by Theorem 3.3 (deformation of contours,)

we have ∫
C

f(z)dz −
n∑

k=1

∫
Ck

f(z)dz = 0.

This reduces to equation (3.1) because∮
C

f(z)dz = 2πiRes
z=zk

f(z) (k = 1, 2, . . . , n),

and the proof is complete.

Remark. The calculus of residue is the way to find the residue of the function

f(z) at the pole z = a of order k, which in general can be found by the following
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formula:

Res
z=a

f(z) = lim
z→a

1

(k − 1)!

dk−1

dzk−1

[
(z − a)kf(z)

]
. (3.2)

In this study, Pn(z) and Qm(z) are always polynomials of degree n and m, re-

spectively, with m > n.

As usual, the binomial coefficients are defined by(
n

m

)
=

{
n!

(n−m)!m!
, if n ≥ m ;

0, if n < m,

where n and m are nonnegative integers.

As a corollary to Theorem 3.4, we have a relationship between contour

integral and binomial coefficients as follows.

Corollary 3.5 [2] Given positive integers n and k with k ≤ n, then(
n

k

)
=

1

2πi

∫
C

(1 + z)n

zk+1
dz, (3.3)

where C is a unit circle centered at the origin.

Definition 3.6 [3] A system of closed paths Cn (n = 1, 2, 3, ...) is called regular

if the following three conditions are satisfied :

(a) The path C1 contains the point z = 0 and each path Cn lies

inside the region bounded by the path Cn+1.

(b) The distance, dn, from Cn to the origin increases without bound

as n increases.

(c) The quotient of the length, ln, of Cn to the distance dn remains

bounded; i.e., there exists a constant A > 0 such that

ln
dn

≤ A for all n ∈ N.

Theorem 3.7 [3] Let F (z) be an entire function such that the poles, γk, of F ′(z)
F (z)

tend to infinity as k →∞. Also let Ck be a regular system of paths. If

lim
k→∞

∮
Ck

Pn(z)

Qm(z)

F ′(z)

F (z)
dz = 0, (3.4)

then ∑
k

Res
z=γk

(
Pn(z)

Qm(z)

F ′(z)

F (z)

)
= −

∑
k

Res
z=zk

(
Pn(z)

Qm(z)

F ′(z)

F (z)

)
, (3.5)
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where zk are the zeros of the polynomial Qm(z) and zk 6= γl for all k and l.

Proof. By the residue theorem∮
Ck

Pn(z)

Qm(z)

F ′(z)

F (z)
dz = 2πi

(∑
k

Res
z=γk

[
Pn(z)

Qm(z)

F ′(z)

F (z)

]
+
∑

k

Res
z=zk

[
Pn(z)

Qm(z)

F ′(z)

F (z)

])
,

(3.6)

where γk are the pole of F ′(z)/F (z) and zk are the zeros of Qm(z) inside the path

Ck. Consider the limit of (3.6) as k →∞ and using (3.4), we obtain (3.5).
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CHAPTER IV

SUMMATION INVOLVING TRANSCENDENTAL
EQUATIONS

In this chapter, we study the exact values of infinite series involving

the real roots of some transcendental equations. We consider how to use the

residue theorem to find the summation. We exploit the method much further for

finding the sum and proving some interesting formulas. In what follows we let

f(z) = Pn(z)
Qm(z)

be a rational function with degree Pn(z) = n and degree Qm(z) = m

and m ≥ n + 2.

Theorem 4.1 Let f(z) = Pn(z)
Qm(z)

with m ≥ n + 2. If γk are the roots of equation

cot z = −Cz, where C is a constant with C ≥ −1, then

∞∑
k=−∞

f(γk) = −
∑

k

Res
z=zk

[
Pn(z)

Qm(z)

(
− sin z + Cz cos z + C sin z

cos z + Cz sin z

)]
, (4.1)

where zk are the zeros of the polynomial Qm(z).

Proof. Let

F (z) = cos z + Cz sin z.

Then

F ′(z) = − sin z + Cz cos z + C sin z.

Therefore,
F ′(z)

F (z)
=
− sin z + Cz cos z + C sin z

cos z + Cz sin z
.

Next we consider Ck to be the square with vertices Ak, Bk, Dk, Ek at the points(
± (2k+1)π

2
,± (2k+1)π

2

)
, for each k = 1, 2, . . . then Ck is the regular system of closed

paths. By the residue theorem, we obtain∮
Ck

Pn(z)

Qm(z)

F ′(z)

F (z)
dz = 2πi

[∑
k

Res
z=zk

(
Pn(z)

Qm(z)

F ′(z)

F (z)

)
+
∑

k

Res
z=γk

(
Pn(z)

Qm(z)

F ′(z)

F (z)

)]
,
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where zk are the poles of Pn(z)
Qm(z)

and γk are the poles of F ′(z)
F (z)

.

Next, we want to show that the integral on the left-hand side tends to zero as

k →∞.

Figure 4.1: The square path Ck

We have∣∣∣∣∣∣
∮
Ck

Pn(z)

Qm(z)

F ′(z)

F (z)
dz

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∮
Ck

Pn(z)

Qm(z)

− sin z + Cz cos z + C sin z

cos z + Cz sin z
dz

∣∣∣∣∣∣
≤

∮
Ck

∣∣∣∣ Pn(z)

Qm(z)

∣∣∣∣ |− sin z + C(z cos z + sin z)|
|cos z + Cz sin z|

|dz|

≤
∮
Ck

∣∣∣∣ Pn(z)

Qm(z)

∣∣∣∣ |−1 + C(z cot z + 1)|
|cot z + Cz|

|dz|

≤
∮
Ck

∣∣∣∣ Pn(z)

Qm(z)

∣∣∣∣ |C − 1|+ |C| |z cot z|
|Cz| − |cot z|

|dz|

≤
∮
Ck

∣∣∣∣ Pn(z)

Qm(z)

∣∣∣∣ |C−1|
|z| + |C| |cot z|

|C| − |cot z|
|z|

|dz| .

Since

|cot z|2 =
∣∣∣cos z

sin z

∣∣∣2 =
cos2 x + sinh2 y

sin2 x + sinh2 y
,

where z = x + iy and

cos2 x + sinh2 y

sin2 x + sinh2 y
≤ 1 + sinh2 y

sinh2 y
=

cosh2 y

sinh2 y
= coth2 y,

we have |cot z| ≤ coth π/2 = 1.090331411... for all z lying on the horizontal sides

of Ck.
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On the other hand, since

cos2 x + sinh2 y

sin2 x + sinh2 y
=

sinh2 y

1 + sinh2 y
≤ 1,

we have |cot z| ≤ 1 for all z lying on the vertical sides of Ck.

This shows that cot z is bounded in the square paths Ck and therefore there exists

M1 > 0 such that

|C−1|
|z| + |C| |cot z|

|C| − |cot z|
|z|

< M1.

Thus, ∣∣∣∣∣∣
∮
Ck

Pn(z)

Qm(z)

F ′(z)

F (z)
dz

∣∣∣∣∣∣ ≤ M1

∮
Ck

∣∣∣∣ Pn(z)

Qm(z)

∣∣∣∣ |dz|

≤ M1(8k + 4)πmax
z∈Ck

∣∣∣∣ Pn(z)

Qm(z)

∣∣∣∣ .
Since

∣∣∣∣ Pn(z)

Qm(z)

∣∣∣∣ ≤ A

|z|2
for some A > 0, it follows that

lim
z→∞

Pn(z)

Qm(z)
= 0.

Therefore, there exists M2 > 0 such that∣∣∣∣∣∣
∮
Ck

Pn(z)

Qm(z)

(
− sin z + Cz cos z + C sin z

cos z + Cz sin z

)
dz

∣∣∣∣∣∣ ≤ M2·max
z∈Ck

∣∣∣∣ Pn(z)

Qm(z)

∣∣∣∣→ 0 as k →∞.

Therefore ∑
k

Res
z=γk

(
Pn(z)

Qm(z)

F ′(z)

F (z)

)
= −

∑
k

Res
z=zk

(
Pn(z)

Qm(z)

F ′(z)

F (z)

)
.

Hence, we obtain the formula

∞∑
k=−∞

Pn(γk)

Qm(γk)
= −

∑
k

Res
z=zk

[
Pn(z)

Qm(z)

(
− sin z + Cz cos z + C sin z

cos z + Cz sin z

)]
.

Theorem 4.2 Let f(z) = Pn(z)
Qm(z)

with m ≥ n + 2. If γk are the roots of equation

csc z = −Cz, where C is a constant with C ≥ −1 ,then

∞∑
k=−∞

f(γk) = −
∑

k

Res
z=zk

[
Pn(z)

Qm(z)

(
Cz cos z + C sin z

1 + Cz sin z

)]
, (4.2)
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where zk are the zeros of the polynomial Qm(z).

Proof. Let

F (z) = 1 + Cz sin z.

Then

F ′(z) = Cz cos z + C sin z.

Therefore,
F ′(z)

F (z)
=

Cz cos z + C sin z

1 + Cz sin z
.

Similarly, we let Ck be the square with vertices Ak, Bk, Dk, Ek at the points(
± (2k+1)π

2
,± (2k+1)π

2

)
, then Ck is the regular system of closed paths.

We use the residue theorem to obtain that∮
Ck

Pn(z)

Qm(z)

F ′(z)

F (z)
dz = 2πi

[∑
k

Res
z=zk

(
Pn(z)

Qm(z)

F ′(z)

F (z)

)
+
∑

k

Res
z=γk

(
Pn(z)

Qm(z)

F ′(z)

F (z)

)]
,

where zk are the poles of Pn(z)
Qm(z)

and γk are the poles of F ′(z)
F (z)

.

Next, we want to show that the integral on the left-hand side tends to zero as

k →∞.

We have ∣∣∣∣∣∣
∮
Ck

Pn(z)

Qm(z)

F ′(z)

F (z)
dz

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∮
Ck

Pn(z)

Qm(z)

Cz cos z + C sin z

1 + Cz sin z
dz

∣∣∣∣∣∣
≤

∮
Ck

∣∣∣∣ Pn(z)

Qm(z)

∣∣∣∣ |Cz cot z + C)|
|csc z + Cz|

|dz|

≤
∮
Ck

∣∣∣∣ Pn(z)

Qm(z)

∣∣∣∣ |Cz cot z|+ |C|
|Cz| − |csc z|

|dz|

≤
∮
Ck

∣∣∣∣ Pn(z)

Qm(z)

∣∣∣∣ |C cot z|+
∣∣C

z

∣∣
|C| − |csc z|

|z|

|dz| .

From the proof of Theorem 4.1 we can see that cot z is bounded and therefore

we can easily show that csc z is also bounded. Since

|csc z|2 =
1

|sin z|2
=

1

sin2 x + sinh2 y
≤ 1

sinh2 y
<

1

y2
≤ 4

π2
< 1,
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We have ∣∣∣∣∣∣
∮
Ck

Pn(z)

Qm(z)

Cz cos z + C sin z

1 + Cz sin z
dz

∣∣∣∣∣∣→ 0 as k →∞.

Therefore, ∑
k

Res
z=γk

(
Pn(z)

Qm(z)

F ′(z)

F (z)

)
= −

∑
k

Res
z=zk

(
Pn(z)

Qm(z)

F ′(z)

F (z)

)
.

And hence,

∞∑
k=−∞

Pn(γk)

Qm(γk)
= −

∑
k

Res
z=zk

[
Pn(z)

Qm(z)

(
Cz cos z + C sin z

1 + Cz sin z

)]
.

Theorem 4.3 Let f(z) = Pn(z)
Qm(z)

with m ≥ n + 2. If γk are the roots of equation

sec z = −Cz, where C is a constant with C ≥ −1 ,then

∞∑
k=−∞

f(γk) = −
∑

k

Res
z=zk

[
Pn(z)

Qm(z)

(
−Cz sin z + C cos z

1 + Cz cos z

)]
, (4.3)

where zk are the zeros of the polynomial Qm(z).

Proof. Let

F (z) = 1 + Cz cos z.

Then

F ′(z) = −Cz sin z + C cos z.

Therefore,
F ′(z)

F (z)
=
−Cz sin z + C cos z

1 + Cz cos z
.

Similarly, we let Ck be the square with vertices Ak, Bk, Dk, Ek at the points(
± (2k+1)π

2
,± (2k+1)π

2

)
, then Ck is the regular system of closed paths.

We use the residue theorem to obtain that∮
Ck

Pn(z)

Qm(z)

F ′(z)

F (z)
dz = 2πi

[∑
k

Res
z=zk

(
Pn(z)

Qm(z)

F ′(z)

F (z)

)
+
∑

k

Res
z=γk

(
Pn(z)

Qm(z)

F ′(z)

F (z)

)]
,

where zk are the poles of Pn(z)
Qm(z)

and γk are the poles of F ′(z)
F (z)

.

Next, we want to show that the integral on the left-hand side tends to zero as
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k →∞.

We have ∣∣∣∣∣∣
∮
Ck

Pn(z)

Qm(z)

F ′(z)

F (z)
dz

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∮
Ck

Pn(z)

Qm(z)

−Cz sin z + C cos z

1 + Cz cos z
dz

∣∣∣∣∣∣
≤

∮
Ck

∣∣∣∣ Pn(z)

Qm(z)

∣∣∣∣ |−Cz tan z + C)|
|sec z + Cz|

|dz|

≤
∮
Ck

∣∣∣∣ Pn(z)

Qm(z)

∣∣∣∣ |Cz tan z|+ |C|
|Cz| − |sec z|

|dz|

≤
∮
Ck

∣∣∣∣ Pn(z)

Qm(z)

∣∣∣∣ |C tan z|+
∣∣C

z

∣∣
|C| − |sec z|

|z|

|dz| .

Similarly, it can be shown that tan z and sec z are bounded in the square paths

Ck and therefore there exists M1 > 0 such that

|C tan z|+
∣∣C

z

∣∣
|C| − |sec z|

|z|

< M1.

Thus ∣∣∣∣∣∣
∮
Ck

Pn(z)

Qm(z)

−Cz sin z + C cos z

1 + Cz cos z
dz

∣∣∣∣∣∣→ 0 as k →∞.

Therefore, ∑
k

Res
z=γk

(
Pn(z)

Qm(z)

F ′(z)

F (z)

)
= −

∑
k

Res
z=zk

(
Pn(z)

Qm(z)

F ′(z)

F (z)

)
.

And hence,

∞∑
k=−∞

Pn(γk)

Qm(γk)
= −

∑
k

Res
z=zk

[
Pn(z)

Qm(z)

(
−Cz sin z + C cos z

1 + Cz cos z

)]
.
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CHAPTER V

SUMMATION INVOLVING BINOMIAL
COEFFICIENTS

In this chapter we discuss the identities about the sum of binomial coefficients.

We start with the connection between the binomial coefficients and contour in-

tegral.Then we show how to evaluate the sum by using the residue theory.

Proposition 5.1 If n and m are positive integers, then the identity

n∑
k=m

(
n

k

)(
n−m

k −m

)
=

(
2n−m

n−m

)
(5.1)

holds for m ≤ n.

Proof. We note that(
n

k

)
is the coefficient of zk in (1 + z)n

and (
n−m

k −m

)
is the coefficient of

1

zk−m
in

(
1 +

1

z

)n−m

and if we consider the expansion of (1 + z)n
(
1 + 1

z

)n−m
, then we have

n∑
k=m

(
n

k

)(
n−m

k −m

)
being the constant term in (1 + z)n

(
1 +

1

z

)n−m

.

By using the residue theorem and letting C be a unit circle centered at the origin,

we obtain

n∑
k=m

(
n

k

)(
n−m

k −m

)
= Res

z=0

[
(1 + z)n

(
1 + 1

z

)n−m

z

]

=
1

2πi

∫
C

(1 + z)n

(
1 +

1

z

)n−m
dz

z

=
1

2πi

∫
C

(1 + z)2n−m

zn−m+1
dz.
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By Corollary 3.5, we have

1

2πi

∫
C

(1 + z)2n−m

zn−m+1
dz =

(
2n−m

n−m

)
.

Hence, the result follows.

Proposition 5.2 If n and m are positive integers, then the identity

n∑
k=0

(
n

k

)(
mn

k

)
=

(
(m + 1)n

mn

)
(5.2)

holds.

Proof. Similarly, we note that(
n

k

)
is the coefficient of zk in (1 + z)n

and (
mn

k

)
is the coefficient of

1

zk
in

(
1 +

1

z

)mn

and if we consider the expansion of (1 + z)n
(
1 + 1

z

)mn
, then we have

n∑
k=0

(
n

k

)(
mn

k

)
being the constant term in (1 + z)n

(
1 +

1

z

)mn

.

By the same argument as before, we have

n∑
k=0

(
n

k

)(
mn

k

)
=

1

2πi

∫
C

(1 + z)n

(
1 +

1

z

)mn
dz

z

=
1

2πi

∫
C

(1 + z)mn+n

zmn+1
dz.

By Corollary 3.5, we have

1

2πi

∫
C

(1 + z)mn+n

zmn+1
dz =

(
mn + n

mn

)
.

Hence, we get the result.

Proposition 5.3 If n is a positive integer and |z| < 1, then

∞∑
k=0

(
n + k

k

)
zk =

1

(1− z)n+1
. (5.3)
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Proof. From Corollary 3.5, we have(
n + k

k

)
=

1

2πi

∫
C

(1 + w)n+k

wk+1
dw.

So (
n + k

k

)
zk =

 1

2πi

∫
C

(1 + w)n+k

wk+1
dw

 zk

and

∞∑
k=0

(
n + k

k

)
zk =

1

2πi

∫
C

∞∑
k=0

(1 + w)n+kzk

wk+1
dw

=
1

2πi

∫
C

(1 + w)n

∞∑
k=0

[
(1 + w)z

w

]k

dw.

We sum the geometric series and use the residue theorem to obtain

∞∑
k=0

(
n + k

k

)
zk =

1

2πi

∫
C

(1+w)n

1−z

w − z
1−z

dw

= Res
w= z

1−z

[
(1 + w)n

1− z

]
=

1

(1− z)n+1
.

Proposition 5.4 If n is a positive integer, then

∑n

k=0
(−1)k

(
n

k

)2

=

{
0, if n is odd;

(−1)
n
2

(
n
n
2

)
, if n is even.

(5.4)

Proof. We note that(
n

k

)
is the coefficient of zk in the expansion of (1 + z)n

and

(−1)k

(
n

k

)
is the coefficient of

1

zk
in the expansion of

(
1− 1

z

)n

.

If we consider the expansion of (1 + z)n
(
1− 1

z

)n
, then we obtain that

n∑
k=0

(−1)k

(
n

k

)2

is the constant term in (1 + z)n

(
1− 1

z

)n

.



Fac. of Grad. Studies, Mahidol Univ. M.Sc. (Applied Mathematics) / 17

By using the residue theorem with C being a unit circle centered at the origin,

we have

n∑
k=0

(−1)k

(
n

k

)2

=
1

2πi

∫
C

(1 + z)n

(
1− 1

z

)n
dz

z

=
1

2πi

∫
C

(1 + z)n(z − 1)n

zn+1
dz

=
1

2πi

∫
C

(z2 − 1)n

zn+1
dz

= Res
z=0

[
(z2 − 1)n

zn+1

]
=

{
0, if n is odd;

(−1)
n
2

(
n
n
2

)
, if n is even.

Hence, we obtain the result.
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CHAPTER VI

CONCLUSION AND DISCUSSION

The purpose of this chapter is to accumulate all the main results that we have

proved in Chapter 4 and Chapter 5. In Chapter 4, we proved the theorem for

finding the sums involving the real roots of some transcendental equations by

using the residue theory. We obtain the following results.

Theorem 6.1 Let f(z) = Pn(z)
Qm(z)

with m ≥ n + 2. If γk are the real roots of

equation cot z = −Cz, where C is a constant with C ≥ −1, then

∞∑
k=−∞

f(γk) = −
∑

k

Res
z=zk

[
Pn(z)

Qm(z)

(
− sin z + Cz cos z + C sin z

cos z + Cz sin z

)]
,

where zk are the zeros of the polynomial Qm(z).

Theorem 6.2 Let f(z) = Pn(z)
Qm(z)

with m ≥ n + 2. If γk are the real roots of

equation csc z = −Cz, where C is a constant with C ≥ −1 ,then

∞∑
k=−∞

f(γk) = −
∑

k

Res
z=zk

[
Pn(z)

Qm(z)

(
Cz cos z + C sin z

1 + Cz sin z

)]
,

where zk are the zeros of the polynomial Qm(z).

Theorem 6.3 Let f(z) = Pn(z)
Qm(z)

with m ≥ n + 2. If γk are the real roots of

equation sec z = −Cz, where C is a constant with C ≥ −1 ,then

∞∑
k=−∞

f(γk) = −
∑

k

Res
z=zk

[
Pn(z)

Qm(z)

(
−Cz sin z + C cos z

1 + Cz cos z

)]
,

where zk are the zeros of the polynomial Qm(z).

In Chapter 5, we considered the sums of binomial coefficients and

proved the identities of these sums by using the residue theory. We obtain the

results:
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Proposition 6.4 If n and m are positive integers, then the identity

n∑
k=m

(
n

k

)(
n−m

k −m

)
=

(
2n−m

n−m

)
holds for m ≤ n.

Proposition 6.5 If n and m are positive integers, then the identity

n∑
k=0

(
n

k

)(
mn

k

)
=

(
(m + 1)n

mn

)
holds.

Proposition 6.6 If n is a positive integer and |z| < 1, then

∞∑
k=0

(
n + k

k

)
zk =

1

(1− z)n+1
.

Proposition 6.7 If n is a positive integer, then

∑n

k=0
(−1)k

(
n

k

)2

=

{
0, if n is odd;

(−1)
n
2

(
n
n
2

)
, if n is even.

.

Some examples now follow, using above theorems.

Example Find
∑∞

k=−∞
1

γk
2+1

where γk are all real roots of cot x = x.

Solution From equation (4.1) in Theorem 4.1 with C = −1, we obtain

∞∑
k=−∞

1

γk
2 + 1

= −
∑

k

Res
z=zk

[
1

z2 + 1

(
− sin z − (z cos z + sin z)

cos z − z sin z

)]
= −

[(
Res
z=i

+ Res
z=−i

)(
−2 sin z − z cos z

(z2 + 1)(cos z − z sin z)

)]
.

By computing the residue on the right-hand side, we obtain

∞∑
k=−∞

1

γk
2 + 1

= −
(
−2 sin i− i cos i

(2i)(cos i− i sin i)
+

2 sin i + i cos i

(−2i)(cos i− i sin i)

)
=

2 sin i + i cos i

i cos i + sin i
=

2 sinh 1 + cosh 1

sinh 1 + cosh 1
≈ 1.432332358.

Remark. Summation of the series will be confirmed by using the graph plotting

method.(see [3]) We plot the graph y = cot x and y = x in the same axes and

see that γk, which are the intersection points of two curves are the real roots of
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Figure 6.1: Positive roots of cot x = x

cot x = x.(Figure 2.) It follows from the graph that lim
k→∞

(γk+1 − γk) = π and

γk ≈ (k − 1)π, k ≥ 6. Then

∞∑
k=1

1

γk
2 + 1

=
1

γ1
2 + 1

+
1

γ2
2 + 1

+
1

γ3
2 + 1

+
1

γ4
2 + 1

+
1

γ5
2 + 1

+
∞∑

k=6

1

γk
2 + 1

,

where

γ1 ≈ 0.8603, γ2 ≈ 3.4256, γ3 ≈ 6.4373, γ4 ≈ 9.5293, γ5 ≈ 12.6453.

Hence,
∞∑

k=1

1

γk
2 + 1

≈ 1.432516821, which corresponds approximately to the

exact computation obtained above.

Moreover, it will be interesting if this concept can be extended to

other transcendental equations as well.
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