TABLE OF CONTENTS

	Page
TABLE OF CONTENTS	i
LIST OF TABLES	ii
LIST OF FIGURES	iv
INTRODUCTION	1
LITERATURE REVIEW	8
MATERIALS AND METHODS	23
Materials	23
Methods	25
RESULTS AND DISCUSSION	35
Part I: Clean up step	35
Part II: Superheated water extraction	56
CONCLUSION	104
LITERATURE CITED	106
APPENDIX	111

LIST OF TABLES

Table		Page
1	Factor levels and design matrix in the full factorial design for SWE	28
2	Peak area and recovery of NDEA and NPYR obtained from liquid-	
	liquid extraction coupled with centrifugation	36
3	Comparison of peak area ratio and recovery of each analyte in SW	
	extract from frankfurter obtained by different trapping solvents	38
4	Peak area ratio obtained from 2 mL each of dichloromethane	
	extraction after SWE	39
5	% Recoveries of the nitrosamines extracted from SW extract by using	
	2 mL dichloromethane trapping solvent in different extraction step	41
6	Effect of NaCl addition on extraction efficiencies of nitrosamines	43
7	Effect of type of solvent system for SPE on the yield of extracted	
	nitrosamines	48
8	Effect of volume of 60% ethyl ether in dichloromethane on extraction	
	efficiencies of nitrosamine compounds	53
9	Optimization of some conditions of clean up and preconcentration step	55
10	A comparison of nitrosamine extraction efficiencies from fortified	
	frankfurter by using typical water and superheated water at 120 °C	57
11	Peak area ratio of each analyte to its internel standard for every	
	5 mL of aqueous extract	60
12	Effect of dynamic time for extraction on the product yields of	
	nitrosamine	62
13	A comparison between % recovery of all nitrosamine compounds	
	for each batch experiment designed by full fractorial design	65
14	Three way analysis of variance for analyzing three factor: flow rate,	
	static time and temperature	70

LIST OF TABLES (Continued)

Table		Page
15	Main effect and their interaction effects to the recovery of	
	nitrosamines	74
16	Optimized conditions of superheated water extraction	90
17	% Recovery of nitrosamines obtained from a SWE-SPE under	
	the optimum conditions	92
18	Peak area ratio of analytes to internal standard in a mass range	
	of 10-30 ng injected for NDEA and NPIP and 15-30 ng injected	
	for NMOR and NPYR	96
19	Peak area ratio of each analyte obtained from ten times extraction	
	for measuring the standard deviation (S _B)	99
20	Statistical values from each regression line of analyte and their	
	calculated detection limits	99
21	Comparison between various methods for determination of	
	nitrosamines	102
Append	lix Table	
1	Physical properties of selected nitrosamines	112
2	Chemicals list	117
3	Computed values for the dielectric constant of water at temperature	
	between 100 and 370 °C	118
4	Vapor pressure of water from boiling point, 100 to critical	
	point, 373°C	120
5	Pressure conversion	121

LIST OF FIGURES

Figure	P	age
1	General formula of nitrosamines	1
2	Example of nitrosamine compounds	2
3	Nitrosation: NDMA formation	2
4	Metabolic activation on N-nitrosodialkylamines	3
5	Temperature influence on physical properties of water	6
6	Schematic of superheated water extraction	24
7	Effect of trapping organic solvent on extraction efficiencies of	
	nitrosamines	38
8	Effect of the volume of dichloromethane trapping solvent on	
	the nitrosamine compounds	39
9	Quantities of analytes extracted in 1 step and 2 step using	
	dichloromethane with a total volume of 2 mL	41
10	Effect of NaCl addition on extraction efficiencies of nitrosamines	43
11	Comparison of different eluting solvent systems	49
12	A comparison between each analytes extracted by SPE at different	
	percentage of ethyl ether in DCM	49
13	GC chromatogram of the extracted nitrosamine obtained by using	
	different ttypes of eluting solvent	50
14	Effect of volume of 60% ethyl ether-DCM on the yield of nitrosamines	54
15	Effect of extraction temperature on the yield of the extracted compounds	
	from frankfurters by SWE	58
16	GC chromatogram of nitrosamine extract obtained at room temperature	59
17	GC chromatogram obtained from SWE	59
18	Relationship between fractional collecting volume against the	
	peak area ratio for each nitrosamine	61

LIST OF FIGURES (Continued)

Figure	P	Page
19	Graphs of relationship between dynamic extraction times against	
	the peak area ratio for all nitrosamine compounds	62
20	Interval plot of % recovery of nitrosamines versus flow rate, static	
	time and temperature	68
21	Temperature effect for % recovery of nitrosamines	76
22	Static time effect for % recovery of nitrosamines	78
23	Flow rate effect for % recovery of nitrosamines	79
24	Temperature*static time interaction plot for % recovery of nitrosamines	83
25	Temperature*flow rate interaction plot for % recovery of nitrosamines	83
26	Static time*flow rate interaction plot for % recovery of nitrosamines	85
27	Surface plot of % recovery of NDEA versus temperature and static time	87
28	Surface plot of % recovery of NPIP versus temperature and static time	87
29	Surface plot of % recovery of NPYR versus temperature and static time	88
30	Surface plot of % recovery of NDEA versus temperature and flow rate	89
31	Surface plot of % recovery of NPIP versus temperature and flow rate	89
32	Surface plot of % recovery of NPYR versus static time and flow rate	90
33	Mass spectrum of extracted nitrosamine by using superheated	
	water coupled with solid-phase extraction under optimal conditions	93
34	Calibration curve of NDEA	96
35	Calibration curve of NPYR	97
36	Calibration curve of NPIP	97
37	Calibration curve of NMOR	98
Append	lix Figure	
1	The phase diagram of water as a fuction of the temperature and	
	pressure	119

LIST OF FIGURES (Continued)

Appendix Figure		Page
2	The dielectric constant of pure water comparing to mixing water	
	with methanol or acetonitrile by changing temperature	122
3	Photograph of superheated water apparatus	123
4	GC-MS chromatogram (SIM mode) of extracted nitrosamine	
	compounds by using superheated water coupled with	
	solid-phase extraction under optimal condition	125