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Abstract
In this thesis, the experimental results of flow pattern and pressure gradient of air-water flowing
through the 180-degree vertical return bends are presented. The test sections are made of plexiglass
which inner diameters of 4, 5 and 8§ mm and curvature ratios of 3. 5 and 7. The influences of tube

inner diameter, tube curvature ratio and flow direction on flow pattern and pressure gradient are

investigated.

Bubbly, plug, slug. annular and gurgle flow are found in the present experiment. For upward flow
at a specific liquid superficial velocity (U, ). the transition line between slug flow and annular flow
shifts to a higher gas cuperficial velocity (Ug). The pipe diameter affects significantly the flow
patterns. By increasing the pipe diameters. the Iran;’.itions from slug flow to annular flow occur at
lower Ug. It should be noted that the bubbly flow p{attem is not found in the pipe of 4 mm diameter.
At the same U, of 4 and 5 mm pipe diameters, as the curvature ratios increase, the transitions from
slug flow to annular flow tend to occur at lower U,,. For 8 mm pipe diameter, all flow pattern

transitions in pipe with curvature ratio of 5 occur at lower U, than that of 3 and 7 respectively.

The effect of flow direction on pressure gradient is found that, the pressure gradicnt of fluid with
upward flow is higher than that with downward flow. For the pressure gradient m different sizes of
pipes, smaller pipes are found to have higher pressure gradient than larger ones. The curvature ratio
also affects pressure gradient. 1t is found that. the pressure gradient in the pipe with higher

curvature ratio is lower than that with lower curvature ratio.

The experimental pressure gradient data are compared with those obtained from three prediction
methods: the equation depending on each particular flow patterns, the Chisholm-B equation and the
Geary correlation. The pressure gradient calculated from the Geary correlation provided the best

agreement with experimental data.





