

การควบคุมอุณหภูมิอากาศภายในอาคารให้คงที่ สำหรับห้องที่สำคัญคือห้องน้ำและห้องน้ำที่เปิดเมื่อจากเป็นส่วนที่สำคัญในการถ่ายเทความร้อนระหว่างอุณหภูมิอากาศภายในและอุณหภูมิภายนอกอาคาร งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาอิทธิพลของวัสดุมวลสารและของเปิดที่มีผลต่อความแตกต่างของอุณหภูมิภายในอาคารรูปทรงปิรามิดทั้งในแนวราบและแนวตั้ง และวิเคราะห์เปรียบเทียบค่าการถ่ายเทความร้อนภายในอาคารรูปทรงปิรามิด ของผังที่มีค่าความเป็นอุณหภูมิที่ต่างกัน โดยการสร้างหุ่นจำลองรูปทรงปิรามิดที่ใช้วัสดุแตกต่างกัน 3 ชนิด ได้แก่ ผังเหล็กเคลือบสังกะสี มีค่า R เท่ากับ $1.01 \text{ hr.ft}^2.^\circ\text{F} / \text{Btu}$ ผังยิปซัมสองชั้น มีค่า R เท่ากับ $1.61 \text{ hr.ft}^2.^\circ\text{F} / \text{Btu}$ และผังระบบชนวน มีค่า R เท่ากับ $12.88 \text{ hr.ft}^2.^\circ\text{F} / \text{Btu}$ และจำลองสภาพการทดลองเป็น 3 กรณี ได้แก่ เปิดช่องแสง ปิดช่องแสง เปิดช่องแสงปรับอากาศ โดยมีชั้นตอนการศึกษา 2 ชั้นตอน คือ 1) เก็บข้อมูลอุณหภูมิทั้งในแนวราบและแนวตั้ง 2) วิเคราะห์ข้อมูลโดยการวิเคราะห์เปรียบเทียบอุณหภูมิอากาศ

จากการศึกษาพบว่า กรณีเปิดช่องแสงของผังทุกประเภท มีอุณหภูมิอากาศภายในสูงกว่าอุณหภูมิอากาศภายนอก กรณีปิดช่องแสงของผังทุกประเภท มีอุณหภูมิอากาศภายในสูงกว่าอุณหภูมิอากาศภายนอกแต่ต่ำกว่ากรณีเปิดช่องแสง โดยผังเหล็กวีดอลอนและผังยิปซัมสองชั้นมีค่าความแตกต่างของอุณหภูมิอากาศภายในสูงสุด 2 องศาเซลเซียส และผังระบบชนวนมีค่าความแตกต่างของอุณหภูมิอากาศภายในสูงสุด 13 องศาเซลเซียส ผังชนวนมีอุณหภูมิอากาศในที่ความสูงจากพื้น 15 เซนติเมตร มีอุณหภูมิต่ำกว่าอุณหภูมิอากาศภายในที่ความสูงจากพื้น 30 45 และ 60 เซนติเมตร โดยอุณหภูมิในระดับล่างจะต่ำกว่าอุณหภูมิในระดับสูงประมาณ 0.5 องศาเซลเซียส สามารถเปิดช่องแสงปรับอากาศ พบว่าผังเหล็กวีดอลอน และผังยิปซัมสองชั้น สามารถควบคุมอุณหภูมิอากาศภายในที่ระดับความสูงจากพื้น 2 เซนติเมตรให้อยู่ในเขตสภาวะน่าสบายได้ในช่วงเวลา 18.00-09.00 น. จำนวน 15 ชั่วโมง ผังระบบชนวน สามารถควบคุมอุณหภูมิอากาศคงที่ ที่ระดับความสูงจากพื้น 2 เซนติเมตรให้อยู่ในเขตสภาวะน่าสบายได้เกือบทั้งวัน

ผลการวิจัยพบว่า ขนาดของช่องเปิดมีผลต่อการถ่ายเทความร้อนภายในอาคาร อาคารที่มีวัสดุมวลสารน้อย และช่องเปิดขนาดใหญ่ จะมีปริมาณความร้อนเข้ามากภายในอาคารมาก ถ้าอาคารมีช่องเปิดขนาดเล็ก สามารถรับแสงได้เพียงพอต่อการใช้งาน แต่ถ้าช่องแสงมีขนาดที่เหมาะสม ทำให้ความร้อนเข้ามาในอาคารได้น้อย และมีแสงจากภายนอกเพียงพอต่อการใช้งานจะประหยัดพลังงานในอาคารเป็นจำนวนมาก และเพื่อให้ได้อาคารที่ประหยัดพลังงานควรพิจารณาเลือกใช้ผังที่มีค่า R ที่เหมาะสม ($R\text{-Value} = 12.88 \text{ hr.ft}^2.^\circ\text{F} / \text{Btu}$) และขนาดของช่องเปิดควรมีประมาณร้อยละ 5 ของพื้นที่เปลือกอาคาร

The crucial factors in stabilizing indoors temperature are wall materials and openings as they play an important part in the heat transfer. This study aims at analyzing the effects of materials and openings on the difference of temperatures measured on both vertical and horizontal planes in a pyramidal-shaped building, and comparing heat transfer rates of walls with various insulating properties. Three pyramidal-shaped models were constructed using different materials—a corrugated metal sheet R-Value 0.94 $\text{hr.ft}^2 \text{ F/Btu}$, double layered gypsum R-Value 2.47 $\text{hr.ft}^2 \text{ F/Btu}$ and an insulated wall R-Value 13.12 $\text{hr.ft}^2 \text{ F/Btu}$. Three different conditions were simulated — openings open, openings closed, and air-conditioned openings open. The study was conducted in 2 steps, starting with the collection of temperatures on horizontal and vertical planes; and the temperature data comparative analysis.

The study found that when the openings were open, indoor temperature was higher than that outside whereas when the openings were closed, indoor temperature was still higher than outside, but not as much as when the openings were open. The corrugated metal sheet and double-layered gypsum walls showed the highest temperature variance at 2 degree Celsius while the insulated wall showed a difference of indoor temperature at 13 degree Celsius. The temperature measured at the height of 15 centimeters from the ground was lower than the temperatures measured at 30, 45, and 60 centimeters from the ground by 0.5 degree. When the air-conditioned openings were open, the corrugated metal sheet and double-layered gypsum walls could control indoor temperature at the height of 2 centimeters from the ground to be in comfort condition for 15 hours during 18.00-09.00. The insulated walls, on the other hand, could stabilize temperature at the height of 2 centimeters from the ground to be in comfort condition for most of the day.

The finding show that the glass fenestration size affect building heat transfer. The low mass building with large glass fenestration will allow high building heat transfer. On the other hand, the low mass building with small glass fenestration will allow low building heat transfer. The recommended R-Value for energy saving building should be $12.88 \text{ hr.ft}^2 \text{ F/Btu}$ and glass fenestration size should have approximately 5 % of useable area.