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To calculate planar surface object, this research proposes image warping to 

top view algorithm. The sensor attached to a camera is used to compensate the 

camera’s orientation in real time. In practice, the alignment of sensor and camera is 

imperfect. This error makes the calculated area size inaccurate. To address this 

problem, calibration between camera and sensor is required by using Iterative Least 

Square method. However, the imperfect alignment also causes the time shifts 

between the camera and sensor. This is due to the computer system added the 

unknown latency between sending data. In this contribution, the arrangement 

processes needs to be identified to reduce the elapsed timing. Then, the extrinsic 

parameters derived from calibrated sensor and pre-computed intrinsic parameter will 

be used to generate a homography matrix. In top view image, we can directly count 

the number of target pixel. Finally, we will also find the relationship between 

rotation angle and size of each pixel in real-world unit with calculating percentage 

accuracy of this method. The experimental results show top view target area size 

generated from the tilted camera using information from the orientation sensor in 

real time. 

 

     /  /  
 

Student’s signature 
  

Thesis Advisor’s signature   



ACKNOWLEDGEMENTS 
 

I would like to grateful thank and deeply indebted to Dr. Miti Ruchanurucks 

my thesis advisor from Kasetsart University, Dr. Supakorn and Dr. Thitiporn from 

National Electronics and Computer Technology Center, and Dr. Makoto Sato from 

Tokyo Institue of Technology for giving me a great suggestion. 

 

This research is supported in part by Center for Promoting Research and 

Development of Satellite Image Applications in Agriculture and Thailand Advanced 

Institute of Science and Technology (TAIST), National Science and Technology 

Development Agency (NSTDA), Tokyo Institute of Technology and Kasetsart 

University for financial support. 

 

 I am thankful all of my friends, especially, Mr. Nueng Jarunroungrok who 

fulfill other parts of this project and whom I can refer to whenever is needed or 

necessary for the extempore situation. Here, I am very appreciative to Ms. 

Pornprawee, our official, as well for all of kindnesses to answer questions and remind 

me to complete each work in time.   

 

Surangrak Sutiworwan 

                 June 2012



 

 

i 

 

 

TABLE OF CONTENTS 
 

Page 

 

TABLE OF CONTENTS            i 

LIST OF TABLES                       ii 

LIST OF FIGURES           iii 

LIST OF ABBREVIATIONS                   viii 

INTRODUCTION           1 

OBJECTIVES            4 

LITERATURE REVIEW          5 

MATERIALS AND METHODS   21 

Materials          21 

Methods          22 

RESULTS AND DISCUSSION        51 

 Results           51 

Discussion          80 

CONCLUSION AND RECOMMENDATION      81 

Conclusion          81 

Recommendation         81 

LITERATURE CITED         82 

APPENDICES          86 

Appendix A Razor 9DOF IMU AHRS V1.1      87 

Appendix B IMU_Razor9DOF.py interface with Vpython   110 

Appendix C Warping image to top view code with C language  115 

Appendix D CP210x USB to UART Bridge VCP Drivers   119 

Appendix E 9DOF Schematic       121 

CIRRICULUM VITAE        124

    



 

 

ii 

 

 

 

LIST OF TABLES 

 

Table Page 

  

1 Experimental Parameter 51 

2 The number of pixel from target area, while varying pitch angle and 

number of sheets. 66 

3 The area in real world unit that is pre-calibrated, while varying pitch 

angle and number of sheets. 68 

4 Percent accuracy 71 

5 The number of pixel from target area, while varying pitch angle and 

number of sheets after using ILS method. 73 

6 The area in real world unit that is pre-calibrated, while varying pitch 

angle and number of sheets. 75 

7 Percent accuracy 77 

 
 
 
 
 
 



 

 

iii 

 

 

 

LIST OF FIGURES 

 

Figure Page 

  

1 Photograph showing testing of the OBFAM 5 

2 Contents of China crop watch system using remote sensing. 6 

3 GVG field sampling system. 7 

4 The camera with orientation sensor was attached on the top of vehicle. 8 

5 The image is captured from GVG system. 8 

6 The vehicle in its final state in the testing field 9 

7 The world coordinate system and a ground target: O-X-Y-Z is the 

robot coordinate system; p(x,y,0) is a ground target in the world 

coordinate system. 10 

8 Machine vision navigation system model 11 

9 Viewing angle less than 50° 11 

10 Image on omnidirectional camera 12 

11 Four sets of corresponding points between (a) the reference points of 

the input image and (b) the calibration pattern points of the output 

image. 13 

12 Rear view cameras in automobiles (a) Original image from Actual 

camera (b) Top view image from Virtual camera. 14 

13 Rear view cameras in automobiles method  (a) large and regular 

pattern  method and  (b) non-aligned small elemental pattern method. 15 

14 Homography optimization procedures. 15 

15 Distortion correction of wide angle camera. 16 

16 Top view is generated using camera mounted on a vehicle (a) Input 

image and (b) top view image. 17 

17 Structure of top view system; Part I: Initialization by software, Part II: 

Transformation ASIC/FPGA by hardware.    18 

  

  



 

 

iv 

 

 

 

LIST OF FIGURES (Continued) 

 

Figure  Page 

   

18 Framework of the Vehicle Lateral Position Estimation Method. 19 

19 Transforming to the top view for (a) present frame by using HB and 

(b)  next frame by using HN.  19 

20 

21 

Snapshot of Bird view output                                      

 No color balance (left image) and with color balance (right image)                   

20 

23 Pinhole Camera Model. 24 

24 New frontal image plane 25 

25 Relation of object and camera coordinate: Roll (α), Yaw (γ) and Pitch 

(β) are the rotation around the Zc-Yc-Xc axis respectively. 28 

26 Pitch and Roll angle are 30
o
and 48

o 29 

27 Undistortion Process: (a) Input image (b) Undistort image 31 

28 Chessboard pattern. 31 

29 The result of cvFindChessboardCorners(), 

cvDrawChessboardCorners()  and chessboard coordinate. 32 

30 Orientation sensor (9DOF) incorporates four sensors which can 

become an Attitude and Heading Reference System (AHRS). 33 

31 GUI with Vpython interface for calibrate sensor. 34 

32 The coordinate of an orientation sensor that is attached to a web 

camera in front view 35 

33 The coordinate of an orientation sensor that is attached to a web 

camera in side view 35 

34 The coordinate of an orientation sensor that is attached to a web 

camera in   side view 38 

35 Warping to top view from (a) input image to (b) the top view output 

image by translation parameters (t1, t2, t3), are set to (0, 0, fx /2). 43 

 

20 



 

 

v 

 

 

 

LIST OF FIGURES (Continued) 
 

Figure  Page 

   

36 Warping to top view from (a) input image in right tilt to (b) the top 

view output image and (c) input image in left tilt to (d) the top view 

output image by translation parameters (t1, t2, t3), are set to  

(cx, cy, fx /2). 44 

37 Warping to top view from (a) input image to (b) the top view output 

image by translation parameters (t1, t2, t3), are set to (0, 0, fx /2) and 

shift in x and y direction after warping. 45 

38 RGB color model 46 

39 A red sheet, 70cm x 46.2cm, as target surface area. 47 

40 After warping to (a) top view, (b) counting red color pixel is used. 47 

41 Counting target color pixel schemes 48 

42 Linear graph which can be written in linear equation shows relation  

between pitch angle and area in pixel unit. 48 

43 Extract black-white-black-white features 48 points on chessboard 

using cvcalibrateCamera2() function at difference scene 54 

44 Warping from (a) perspective view to (b) top view by using feature 

on chessboard. 60 

45 The pitch angle of camera is manually varied from 10 degree to 80 

degree   that are captured from perspective view 61 

46 The top view images are generated by orientation sensor information  

that are varied from 10 degree to 80 degree  61 

47 Perspective view while pitch angle is (a) 20
o
 (b) 70

o
   62 

48 Warping to top view is generated by orientation sensor information 

while pitch angle is (a) 20
o
 (b) 70

o
   62 

49 The top view images are generated by orientation sensor information  

that are varied from 10 degree to 80 degree  64 

   

 



 

 

vi 

 

 

 

LIST OF FIGURES (Continued) 

 

Figure 
 

Page 

   

50 The top view images are generated by orientation sensor information  

at 20, and 70 degree  64 

51 Relation between pitch angle and pixel numbers of the same object 

varied from 10-80 degree 67 

52 Relation between pitch angle and area size in real world using 1 

reference object 69 

53 Relation between pitch angle and area size in real world using 2 

reference objects.   69 

54 Relation between pitch angle and area size in real world using 3 

reference objects. 70 

55 Relation between pitch angle and area size in real world using 4 

reference objects. 70 

56 Relation between pitch angle and system accuracy with reference 

object 1, 2, 3, 4.  72 

57 Relation between pitch angle and pixel numbers of the same object 

varied from 20-80 degree after using ILS. 74 

58 Relation between pitch angle and area size in real world using 1,2,3, 

4 reference objects. 76 

59 Relation between pitch angle and system accuracy with reference 

object 1, 2, 3, 4. After using ILS 78 

60 Relation between pitch angle and the average of percent accuracy 

before and after when using ILS method 78 

61 Relation between height and pixel area multipled by n*n factor 79 

 

 

 

 



 

 

vii 

 

 

 

LIST OF FIGURES (Continued) 

 

Appendix Figure 

 

Page 

D1 The CP2102 system diagram 120 

E1 9DOF Razor v14 schematic: LPRS530AL, ADXL345, 

LY530ALM, HMC5043. 122 

E2 9DOF Razor v14 schematic: ATmega328 123 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

viii 

 

 

 

LIST OF ABBREVIATIONS 
 

9DOF   = 9 Degrees of Freedom 

AHRS  = Attitude and Heading Reference System 

ASIC   = Application Specific Integrated Circuit 

CCWS  = China Crop Watch System with Remote Sensing 

DCM   = Direct Cosine Matrix 

FPGA   = Field Programmable Gate Array 

GIS   = Geographic Information System  

GPS   = Global Positioning System 

GVG   = GIS, VIDEO and GPS  

IDE   = Integrated Development Environment 

OpenCV = Open Computer Vision library  

RGB   = Red, Green, and Blue 

SAD  = Sum of Absolute Difference 

VGGVS = Vehicle & GIS & GPS & Video System  

XML  = Extensible Markup Language 



 
 

1 

 

 

PLANAR SURFACE AREA CALCULATION USING CAMERA 

AND ORIENTATION SENSOR  

 

INTRODUCTION 

 

Around 75 percent of the world’s poor people live in rural areas. Most of them 

are involved in farming. Agricultural development in these areas is often constrained 

by issued of access to appropriate technologies. Many countries and agricultural 

systems thus remain mired in underdevelopment and face major barriers to the use of 

knowledge and innovation for development (Asenso-Okyere et al., 2008). To 

calculate the amount of agricultural product is an arduous work of harvesting field 

crops. Field survey and satellite image are commonly used for this computation. The 

satellite image is a favorite media for creating land use and land cover maps which are 

used to estimate the agricultural area, a period of growths, a harvest time and classify 

each type of crop.  A ground survey is still an essential part for the agricultural 

product estimation. A field survey is usually performed by human. However, the 

problem of using field survey is that it uses a lot of man-power, time, and expense. 

Even in remote sensing of satellite image is sensitive to weather. Also a scheme to 

perform image classification of satellite data is inadequate (Dengxin.D et al., 2011).  

Therefore, to reduce time and cost, automatic ground survey system has been 

proposed for crop calculation. 

 

The method of video-based ground survey system may be installed on the 

vehicle moving around the cropland and uses images captured from that video 

camera.  Recently, In China, Crop Watch System with Remote Sensing uses their 

algorithm with applying Vehicle & GIS & GPS & Video System (VGGVS) for 

navigation, data collection, and computation.  On the top of a vehicle, this method 

attaches a camera and an orientation sensor together in order to control the estimation 

precision. A camera rotation is adjusted by a motor and receives an angel from the 

sensor. While the camera is receiving the angel information, the motor needs to be 

perpendicular with ground plane all the time. Therefore, the motor adjusting is 
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necessary for the algorithm. However, there has many disadvantages of adjusting the 

motor for example it is costly and large, as well as requires high power consumption 

and high maintenance. 

 

In our work, the motor shall be removed to reduce the system size and cost. 

The systems have to apply image warping algorithm instead. Warping transforms a 

perspective image to its top view image from which crop area can be estimated 

systematically and easily. This transformation requires multiple inputs so called 

homography. Homography based on the orientation sensor has to be derived to 

generate a top view image transformation similar to (LinBo et al, 2009), (H. Kano et 

al, 2008). One crucial parameter of homography matrix is rotation information. The 

rotational information is acquired from an orientation sensor ultimately, image 

warping algorithms using homography matrix based on the sensor are proposed. 

Then, counting the number of pixel on the top view image followed by calculating the 

actual area size in the real world has to be performed in the real time.  

 

The camera model in OpenCV (open source computer vision library) is used 

as it has many good features, such as the precise calibration results, efficient 

computing, a fast computing speed, etc. as discussed in as discussed in (Wang, Y. M 

2010), (Yuan Xin et al, 2011),. It is used as a reference throughout this work. For 

each frame of image, the homography matrix can be derived with camera’s intrinsic 

and extrinsic parameters. Camera calibration technique is used to identify intrinsic 

parameters as in (OpenCV 2.0 documentation), whereas extrinsic parameters are 

derived in real-time using information from an orientation sensor. Furthermore, our 

contribution also finds a relationship between the top view pixel size and the actual 

area size. 

 

However, the problem of this calculation causes from an imperfect alignment 

between the camera and the sensor. First problem is about the position alignment.  

Coordinates of x, y z, from camera must be parallel with coordinates x, y, z from 

sensor. Iterative Least Square (ILS) method (Ziraknejad. N ,2007),  is used to solve 

this problem. Second problem is about aligning the camera and the orientation sensor 
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data in time. The computer system adds unknown latencies to the data when acquiring 

an image or reading sensor data (Frahm, J.-M, 2003). We need to identify how to 

reduce this different time between camera data and sensor. Finally, height from 

camera to ground should be able to be varied. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

4 

 

 

OBJECTIVES 

 

Our proposed scheme of area calculation system focuses on image warping to 

top view using orientation sensor. For area calculation, the sensor is used to 

compensate the unknown / varied video camera’s orientation. Our assumptions are 

among the area to be estimated is planar surface. Then, we can estimate the size of an 

area by computer vision methods. The objectives consist of 5 steps. 

 

1.  The system size and cost consumption need to be reduced. The motor could 

be eliminated. Image warping to top view is applied instead information from the 

sensor is used for a warping image algorithm instead of motor adjusting. 

 

2.  The top view image is generated using orientation sensor information in 

real time. 

 

3.  The orientation between the camera and the sensor is calibrate for 

achieving high precision planar surface area calculation. 

 

4. The height of the camera from the planar surface is variable. 

 

5. A number of the target pixels are mapped to planar surface area in real 

world unit in order to approximate the area size. 
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LITERATURE REVIEW 

 

1.  Field Survey System 

 

There is another way to calculate agricultural area. It is called called on-board field 

area meter (OBFAM) that equipped with an azimuth sensor and a distance sensor to 

provide measured area data for agricultural machinery. This system utilizes a simple 

compass for measuring azimuth angle and a proximity switch for measuring distance.  

 

 To measure the azimuth angle, it is performed by detecting the magnet of the 

earth and the distance sensor is mounted on the wheel shaft of the vehicle. As the 

wheel shaft is rotating, a square-wave signal is generated. Then, the vehicle moves 

from a starting point along the contour of the field to calculate the cultivated area by 

using the counter embedded in the W78E516 microprocessor as shown in Figure 1. 

 

 

Figure 1  Photograph showing testing of the OBFAM. 

 

Source:  Yuang et al. (2010) 
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2.  A Video Base Field Survey System on a Vehicle within China Crop Watch 

System  

 

Wu et al. (2006), Wang et al. (2006) and Tian et al. (2004) proposed China Crop 

Watch System with Remote Sensing (CCWS). This algorithm applied Vehicle & GIS 

& GPS & Video System (VGGVS) for navigation implementation, image data 

collection and crop proportion computation. CCWS consists of seven models: crop 

growth monitoring, drought monitoring, grain production estimation, crop production 

prediction, crop planting structure inventory, cropping index monitoring, and grain 

supply–demand balance and early-warning (Figure 2). The monitoring can be carried 

out on different scales or levels ranging from a county through a province and the 

whole country to the main producing countries in the world. 

 

 

 

Figure 2  Contents of China crop watch system using remote sensing.  

 

Source:  Wu et al. (2006) 
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A new crop surveys and analyzes system for VGGVS, which uses video 

capture camera and GPS receiver to integrate GIS, VIDEO and GPS (GVG) into a 

notebook computer (Figure 3). When GVG is activated, it saves pictures and at the 

same time, system notes the position with long/lat format and geographical attribute 

under the support of GPS and GIS, all data are memorized into database 

automatically. On account of the GVG catch all data in same time, it’s far more 

effective than those traditional fieldwork methods and so easy to handle, only one 

person can do all jobs in the car. 

 

 

 

Figure 3  GVG field sampling system.  

 

Source:  Tian et al. (2004) 

 

A camera with orientation sensor was attached on the top of vehicle that is 

fixed height as Figure 5, In order to control the estimation precision. The sensor 

monitors the camera rotation. Then the camera is adjusted by motor which received a 

camera rotation angle from the sensor. In Crop Watch System with Remote Sensing in 

China algorithm, the camera that captures input as Figure 5 needs to be perpendicular 

with ground plane all the time. Hence, the adjusting motor is necessary for the 

algorithm.  
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Figure 4  The camera with orientation sensor was attached on the top of vehicle.  

 

Source: Wang et al. (2006) 

 

 

 

Figure 5  The image is captured from GVG system.  

 

Source: Tian et al. (2004) 
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3.  Another Agricultural Field Robot 

 

Doing agricultural task by remote sensing is becoming more and more expensive. 

This motivates to build a robot capable of navigating in a plantation for performing 

agricultural tasks. It composed of four parts: computer, micro mobile vehicle, Charge 

Couple Device (CCD), and navigation sensor. as shown in Figure 6.  

  

 

 

Figure 6  The vehicle in its final state in the testing field. 

 

Source: Richard et al. (2008) 

 

 The camera is fixed on the top of the robot, and pointing to the ground. 

Because agricultural robots often operate in farm field with limited elevation changes, 

it is acceptable to simplify the model from a 3D space to a 2D plane (as shown in Fig. 

7) to reduce computational load. We can calibrate the camera using 2D image 

coordinates and 2D world coordinates. 
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Figure 7  The world coordinate system and a ground target: O-X-Y-Z is the robot  

                 coordinate system; p(x,y,0) is a ground target in the world coordinate  

                 system. 

 

Source: Guoquan et al. (2010) 

 

When the micro vehicle is moving, CCD captures the images of crop rows 

continuously, navigation baselines can be obtained after image processing and Hough 

transform in a computer.  Then according to the guidance information, the computer 

sends the anticipant oriented-wheel control angle to mobile vehicle. At the same time, 

system accepts the feedback information in order to adjust the mobile vehicle more 

effectively, as is shown in Figure 8. 
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Figure 8  Machine vision navigation system model. 

 

Source: Cui-Jun et al. (2010) 

 

 The problem is that webcams typically have a viewing angle of less than 50° 

which would make it necessary to mount the camera at an approximate height of 

150cm as shown in Figure 9. That means the CCD is fixed on the top of the robot all 

the time.  

 

 

Figure 9  Viewing angle less than 50°. 

 

Source: Jose et al. (2006) 
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 There is a solution which is using omnidirectional camera as show in Figure 

10.  There are several advantages. First more and longer rows can be capture. Second, 

it sees plants beside the robot which may give better estimate of alignment error. 

Finally it sees behind the robot which gives the opportunity to achieve better 

calculation area. Among the omnidirectional cameras there are both cameras with 

fisheye lens (Figure 10a) ans with catadioptric lens (Figure 10b). The major difference 

is the range of azimuthal view. A fisheye lens starts from zero which means it sees 

straight ahead, and end somewhere above 90. The catadioptric lens on the other side 

cannot see straight ahead due to its construction, but it has a wider range above 90.     

 

The image analysis on omnidirectional images can be categorized in two 

groups, those who require the image to be unwrapped and those who are applied 

directly on the omnidirectional image. The unwrapping is a time consuming process 

and for real-time applications on a mobile robot the latter is to prefer. The algorithms 

used in this work do not need the images to be unwrapped. However, in an 

agricultural scene the robot is moving in uneven terrain and the tilt is required to 

estimate the position of the robot.  A drawback of using this is that it does not deal 

with tilt.  

 

 

 

Figure 10  Image on omnidirectional camera. 

 

Source: Stefan et al. (2010) 
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4.  Warping to Top view application  

 

Image warping is the process of digitally manipulating an image. It may be 

used for correcting image distortion as well as for creative purposes. The same 

techniques are equally applicable to video. In general, the homography matrix or 2D-

to-2D projective matrix could be found by four sets of corresponding points between 

the reference points of the input image as Figure 11a and the calibration pattern points 

of the output image as Figure 11b. Many researches generated homography matrix 

from four sets of corresponding points of corner of chessboard. 

 

 

(a)                                              (b) 

 

Figure 11  Four sets of corresponding points between (a) the reference points of the  

               input image and (b) the calibration pattern points of the output image.  

 

Source: Kano et al. (2008) 

 

Probably one most easily seen application of image warping is automobile’s 

rear camera. The number of rear view backup cameras being installed in automobiles 

is increasing. The main use of such camera is to show the blind spots of vehicles, 

however, it is difficult to correctly perceive distances by simply viewing as Figure 6a 

because of the perspective effect of the camera. Kano et al. (2008) applied the top 

view image transformation for their perceiving distance methods as Figure 12b.  
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(a)                                       (b) 

 

Figure 12  Rear view cameras in automobiles (a) Original image from Actual camera                                    

                  (b) Top view image from Virtual camera.  

 

Source: Kano et al. (2008) 

 

In their algorithms the camera is assumed no rotation. The algorithms were 

proposed to eliminate the perspective effects for helping driver parking. They 

compare large and regular pattern method as Figure 13a and non-aligned small 

elemental pattern method as Figure 13b. These algorithms use smaller elemental 

patterns and place them at arbitrary positions on the road’s surface. All of the element 

patterns are the same and are square in shape. Starting from an initial homography 

computed using one of the element patterns, the tentative homography matrix is 

optimized by iteratively minimizing the error function, taking into account all 

patterns. 
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   (a)                                       (b) 

 

Figure 13  Rear view cameras in automobiles method  (a) large and regular pattern  

      method and  (b) non-aligned small elemental pattern method.  

 

Source: Kano et al. (2008) 

 

The procedure for optimizing the homography is shown in Figure 14. In the 

first step, one of the element patterns is selected. In the second step, a homography 

matrix that transforms the selected pattern into a fixed size square is computed. 

Finally, this matrix is used as the initial value of an iterative process. 

 

 

 

Figure 14  Homography optimization procedures.  

 

Source: Kano et al. (2008) 
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In the experiment, these algorithms use the rear view camera that its pitch 

angle is fixed at 45 degrees. The lens distortion is corrected as Figure 15. After that, 

they use non-aligned small elemental pattern method and show the result as Figure 16. 

 

 

 

Figure 15  Distortion correction of wide angle camera.  

 

Source: Kano et al. (2008) 
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(a)                                      (b) 

 

Figure 16  Top view is generated using camera mounted on a vehicle (a) Input image  

      and (b) top view image.  

 

Source: Kano et al. (2008) 

 

Luo et al. (2009) implemented homography matrix in hardware. Whole system 

as Figure 17 is composed of two parts, a soft processor and a FPGA/ASIC hardware. 

The software part is used to initiate system and control the data flow, while the 

hardware implementation is used to perform the repetitive tasks. Part I is to calculate 

transformation matrix as an initialization of whole system. Part II is the 

transformation module which transfers input original video into top view. Part I is 

implemented by software purely. Part II is an ASIC or a FPGA-based hardware 

module. Because they only need to calculate the transformation matrix once while 

initializing system, Part I doesn’t need to implement by hardware. It can be 

implemented by an embedded system or a special off-line program. If they get the 

transformation matrix, Part II can transfer input images into top view images by using 

the hardware structure. The perspective transformation has to be done repetitively, 

pixel by pixel, and frame by frame, so that it’s better to implemented by hardware. 
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Figure 17  Structure of top view system; Part I: Initialization by software,  

      Part II: Transformation ASIC/FPGA by hardware.  

 

Source: Luo et al. (2009) 

 

Teshima et al. (2006) proposed Vehicle Lateral Position Estimation Method 

Based on Matching of Top View Images. The algorithm as Figure 18 obtained 

homography matrix for calculating the sum of absolute different (SAD) between 

present and next frame image. The camera attached on the vehicle captures the front 

view images to find the vehicle lateral position. Computation of a next frame 

homography matrix depends on the hypothesis vehicle direction angle and the vehicle 

speed.  The input frames are converted to the top view images according to the 

homography HN and HP as shown in Figure 19. 
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Figure 18  Framework of the Vehicle Lateral Position Estimation Method.  

 

Source: Teshima et al. (2006) 

 

 

       (a)                                         (b) 

 

Figure 19  Transforming to the top view for (a) present frame by using HB and (b)   

       next frame by using H.  

 

Source: Teshima et al. (2006) 
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Zhonlong et.al (2011), and Bijo et.al (2011) proposed Bird’s eye view parking 

assistance systems that provide a driver an overhead view of the car and its 

surroundings. This method integrates multiple image from a video captures by the 

camera stitched around a vehicle as show in Figure 20, 

 

 

 

 

 

 

 

 

 

Figure 20  Snapshot of Bird view output. 

 

Source: Zhonlong et.al (2011) 

 

The system uses multiple fish eye camera that have to do distortion correction. 

Moreover, color balancing and picture enchantment are performed to improve bird 

eye view images as show in Figure 21 

 

  

 

 

 

 

 

 

 

Figure 21  No color balance (left image) and with color balance (right image) 

 

Source: Bijo et.al. (2011)   
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MATERIALS AND METHODS 
 

Materials 
 

Hardware 

1.  Computer set 

2.  Orientation sensor (9 Degrees of Freedom) 

3.  CCD Camera 

 

Software 

1.  Microsoft Visual C++ 2008 Express Edition software 

2.  OpenCV (Open Computer Vision) library  

3.  MATLAB Simulation software 

4.  Microsoft Excel software 

5.  Vpython  

6.  Arduino 

 

etc. 

1.  Chessboard (a camera calibration pattern) 

2.  Reference planar area 
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Methods 

 

1.  System Overview 

 

Our hardware system consists of a camera attached to an orientation sensor, 

both connected to a computer. The camera is used to capture images of planar surface 

areas in different angles. In this work, we focus on how to generate top view image 

from perspective view image using the orientation information. This relies on 

software algorithms. 

 

For calculating the area, images are captured in the perspective view. The 

captured image’s quality is improved by removing the lens’s distortion in the 

undistortion process. Effect of perspective view changing can be reduced by 

transforming every image to a certain top view image. Therefore, an image warping 

technique is introduced to visualize a perspective view to a top view. The technique 

requires calculation of a homography matrix, which consists of three components: 

intrinsic matrix, translation vector, and rotation matrix.  

 

As the rotation matrix is varied in real time, so we derive it using the 

orientation sensor that is installed to parallel with the ground. The problem is that the 

coordinates of orientation sensor and camera are not perfectly aligned.  To acquire the 

corrected rotation matrix, iterative least square method is used for solving this 

problem. After that the undistorted images are transformed to the top view image by 

applying the homography matrix image warping technique. Color threshold can be 

used to detect area of interest. The number of detected pixel is then map to area size in 

real world unit. This methodology is organized into three steps as shown in Figure 22. 
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Figure 22  System Overview. 

 

2.  Pre-Processing Step 

 

The transformation matrix from perspective to top view is called homography 

matrix which consists of intrinsic matrix (M), extrinsic matrix (rotation and 

translation [R|T]). Intrinsic and distortion matrix, mentioned previously are generated 

by a camera calibration process. Extrinsic matrix is generated by the orientation 

sensor.  

 

Homography matrix is a transformation matrix from a perspective view to a 

top view which consists of intrinsic matrix (M) and extrinsic matrix ([R|T]). Intrinsic 

parameters (M) and distortion matrix (D) are generated by camera calibration process. 

Extrinsic parameters, in general, translation vector (T) and rotation matrix (R) can be 

derived by the camera calibration as well. However, we address a problem of 

translational parameters (T) in homography matrix (H). We found out that two (out of 

three) translation parameters make the output image unorganized if Roll angle change. 

So instead of doing translation directly in the homography matrix, a separate 

translation vector would be applied after the image was warped to top view. We will 
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explain the basic of calibration first, and will show how to further calculate extrinsic 

matrix for moving camera later. 

 

2.1  Pinhole Camera Model 

 

From Gary and Adrian (2008), simple model as Figure 23, “light is 

envisioned as entering from the scene, but only a single ray enters from any particular 

point. In a physical pinhole camera, this point is projected onto an imaging surface. 

For our idealized pinhole camera, the distance from the pinhole aperture to the screen 

is precisely the focal length (f).” A similar triangle theory is used for pinhole camera 

model as Equation 1. 

 

 

 

Figure 23  Pinhole Camera Model. 

 

Source: Gary and Adrian (2008) 

 

Z

X
fx          (1) 

 

Simplification as Figure 24, Gary and Adrian (2008) said “a point Q is 

projected onto the image plane by the ray passing through the center of projection, 

and the resulting point on the image is q. The image plane is really just the projection 

screen pushed in front of the pinhole.”  
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Figure 24  New frontal image plane. 

 

Source: Gary and Adrian (2008) 

 

Normally, principal point is not the center of the imager, so a pixel can be 

represented as Equation 2 for x axis and Equation 3 for y axis. 

 

xx c
Z

X
fx       (2) 

yy c
Z

Y
fy       (3) 

 

   2.2  Camera Calibration 

 

   2.2.1  Intrinsic and Extrinsic matrix 

 

    Camera Calibration is the process of determining the parameters 

of the camera setup. The intrinsic parameters are those specific to the camera, such as 

the focal length, principal point and lens distortion. These parameters can be 

determined by camera calibration, as proposed by Zhang et al. (2006). Extrinsic 

parameters refer to the 3D position and orientation of the camera. Calibration is often 

the primary step of many vision applications as it allows systems to determine a 

relationship between what appears on an image and where it is located in the world. 
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Knowledge of the camera calibration matrix is required for many basic image 

processing operations such as the removal of radial distortion.  

 

According to the pinhole model, the camera performs a perspective projection 

of a 3D point onto an image point located on a retinal plane. Using homogenous 

coordinates, the projective relation between a 3D point and its image can be expressed 

as Equation 4. 

 |sq M R T Q          (4) 

 

The 3x4 matrix
 

[ | ]M R T   is the projection matrix. It relates world points to 

image points according to the camera location with respect to the reference frame, 

represented by a rotation matrix R  and a translation vectorT . The rotation parameter 

 mnr  and translation parameter  mt  is used to describe the rigid motion of an object 

in front of still camera. It can be written as Equation 5. 

11 12 13 1

21 22 23 2

31 32 33 3

0

0

1 0 0 1
1

x x

y y

X
x f c r r r t

Y
s y f c r r r t

Z
r r r t

 
       
       
       
            

 

   (5) 

 

 

Where, 

[ , , ,1]tQ X Y Z  is the coordinate of a 3D points in the world coordinate space. 

[ , ,1]tq x y  is the coordinate of the projection points in pixels. 
 

 

M  is called a camera matrix, or a matrix of intrinsic parameters. The intrinsic 

parameters are those specific to the camera, such as the focal length ( ,  x yf f ) which is 

expressed in pixel-related units, the principal point ( ,x yc c ) which is equivalent to the 

center of the image.  
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[ | ]R T  is called a matrix of extrinsic parameters. It is used to describe the 

camera motion around a static scene, or vice versa, rigid motion of an object in front 

of still camera. The rotation of camera is first around the z-axis, then around the new 

position of the y-axis, and finally around the new position of the x-axis. This research 

focuses on the rotation matrix as Equation 6. 

z y xR R R R      (6) 

Or,  
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Where, 

 

(8) 

 

 

Note that if this rotation matrix based on openCV library, it will be like this. 
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Where, 

 

(10) 

 

 

The angular orientation can be specified by three angles: Roll (α), Yaw (γ) and 

Pitch (β) are the rotation around the Zc-Yc-Xc axis respectively. If we set an object 

and the camera coordinate as Figure 25, rotating object coordinate (Zp-Yp-Xp axis) to 

each camera coordinate (Zc-Yc-Xc axis) can be known from the rotation angles which 

were acquired from the orientation sensor attached on the camera.  
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Figure 25  Relation of object and camera coordinate: Roll (α), Yaw (γ) and Pitch (β)  

                   are the rotation around the Zc-Yc-Xc axis respectively. 

 

In contrast, we can find each rotational angle (roll, pitch, yaw) by finding from 

the element of rotation matrix R in eq.(6). Note that this calculation based on equation 

(7) 

 31
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33
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





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Here is finding rotational angel based on openCV as in equation (9) 
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


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


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In this research, Yaw angle’s rotation does not affect the size of the area after 

warping to top view as shown in Figure 26, and then the rotation of camera around the 

y-axis (RY) can be neglected.  
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(a) perspective view                         (b)  top view 

 

Figure 26  Pitch and Roll angle are 30
o
and 48

o
. 

 

The rotation of camera is first around the z-axis (roll), then around the new 

position of the x-axis (pitch). From Equation 7, it can be reduced to Equation 13. 
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From Equation 9, it can be reduced to Equation 14. 
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The rotation angles from orientation sensor information, roll and pitch in 

degree unit, are offset to camera’s rotation, α and β, as Equation 15 and Equation 16 

that the direction of pitch from sensor is opposite the direction from camera. 

 

α = roll       (15) 

β = pitch-90     (16)    

 

A translation vector (T) which each row is a translation axis of X, Y and Z 

respectively as Equation 17. However, changing the roll angle affects some 
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parameters in translation vector (T), so it makes the output image unorganized. We 

will discuss the solution further after warping image. 

 

 1 2 3

t
T t t t       (17) 

 

 In this research, we will use cvCalibrateCamera2() to find the intrinsic matrix, 

and cvFindExtrinsicCameraParams2() to find extrinsic matrix.  

 

2.2.2  Undistortion Process 

 

We describe the two main lens distortions and how to model them. 

Radial distortions arise as a result of the shape of lens, whereas tangential distortions 

arise from the assembly process of the camera as a whole. For radial distortions, the 

distortion is zero at the center of the imager and increases as we move toward the 

periphery which can be expressed as Equation 18 and Equation 19. For tangential 

distortions, it is due to manufacturing defects resulting from the lens not being exactly 

parallel to the imaging plane. Tangential distortion is modeled as Equation 20 and 

Equation 21.  

2 4 6

1 2 3(1 )correctedx x k r k r k r   
    

(18) 

2 4 6

1 2 3(1 )correctedy y k r k r k r        (19) 

2 2

1 22 ( 2 )correctedx x p xy p r x          (20) 

2 2

1 22 ( 2 )correctedy y p xy p r y          (21) 

 

Figure 27a shows the input image and Figure 28b shows the after undistortion 

process image. For OpenCV, these five distortion matrix: 
1 2 1 2 3[ ]D k k p p k  is defined.  
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           (a)                                          (b) 

 

Figure 27   Undistortion Process: (a) Input image (b) Undistort image.  

 

Source: Gary and Adrian (2008) 

 

2.2.3  Chessboard pattern 

 

The calibration object is used in OpenCV which is a flat grid of 

alternating black and white squares that is usually called a chessboard as Figure 28.  

 

 

 

Figure 28  Chessboard pattern.  

 

The corners of black and white squares that width and height are 8 and 6 

points is found by using cvFindChessboardCorners() to locate the corners of the 

chessboard. Result of cvDrawChessboardCorners() can project where these corners 
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were found (small circles on corners) and in what order they belong (as indicated by 

the lines between circles). Chessboard coordinate are illustrated as Figure 29. 

 

 

 

Figure 29  The result of cvFindChessboardCorners(), cvDrawChessboardCorners()  

       and chessboard coordinate. 

 

2.3  Orientation Sensor 

 

The orientation sensor (9DOF Razor IMU as Figure 30) incorporates four 

sensors which can become an Attitude and Heading Reference System (AHRS) that 

composes of  

 

• LY530AL (single-axis gyro for Yaw angle) and LPR530AL (dual-axis gyro 

for Pitch and Roll angle) measure the angular velocity in three dimension.  

• ADXL345 (triple-axis accelerometer) measures the acceleration.  

• HMC5843 (triple-axis magnetometer) is tilt compensated in Yaw axis. 
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Figure 30  Orientation sensor (9DOF) incorporates four sensors which can become an  

                   Attitude and Heading Reference System (AHRS). 

 

The 9DOF board is programmed by using Razor 9DOF IMU AHRS V1.1 Lite 

version for AT328/AT168 as Appendix A for ATmega328 with DCM algorithm on 

the 8MHz Arduino bootloader by Arduino IDE. The outputs of all sensors are 

processed by an on-board ATmega328. Outputs of all sensors processed by on-board 

ATmega328 and sent out via a serial stream which is set COM port and bit rate to 

57600 bps.  

 

The pattern of output serial stream show as !ANG:roll,pitch,yaw. For example, 

!ANG:35.61,10.13,-70.48 mean roll=35.61, pitch 10.13 and yaw -70.48 in degree 

unit. Interface with Vpython is the python programming language plus a 3D graphics 

module called "Visual" originated by Scherer, 2000. Vpython makes it easy to create 

navigable 3D displays and animations, even for those with limited programming 

experience. Because it is based on python, it also has much to offer for experienced 

programmers and researchers. In this research, Vpython code as Appendix B is used 

that output is illustrated as Figure 31. 
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Figure 31  GUI with Vpython interface for calibrate sensor. 

 

2.4  Camera and Orientation sensor Calibration 

 

The orientation sensor is attached to a high-resolution web camera or web 

cam as Figure 32 and Figure 33. A web cam is a video camera which feeds its images 

in real time to a computer or computer network, often via USB, Ethernet or Wi-Fi. Its 

common use as a video camera for the World Wide Web gave the webcam its name. 

Other popular usages include security surveillance and computer vision. The 

coordinate of camera and orientation sensor must be calibrated together. The three 

outputs which consist of roll (-180 to 180 degree), pitch (-90 to 90 degree) and yaw   

(-180 to 180 degree) from orientation sensor will be transformed to camera’s rotation 

for warping to top view algorithm.   
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Figure 32  The coordinate of an orientation sensor that is attached to a web camera in  

 front view. 

 

 

 

Figure 33  The coordinate of an orientation sensor that is attached to a web camera in  

  side view. 

 

However, the problem of this calculation causes from an imperfect alignment 

between the camera and the sensor. First problem is about the position alignment.  

Coordinates of x, y z, from camera must be parallel with coordinates x, y, z from 
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sensor. Iterative Least Square (ILS) method [11] is used to solve this problem. Second 

problem is about aligning the camera and the orientation sensor data in time. The 

computer system adds unknown latencies to the data when acquiring an image or 

reading sensor data [12]. We need to identify how to reduce this different time 

between camera data and sensor.  

 

2.4.1. Iterative Least Square (ILS) 

 

The least square method is a very popular technique which is used 

to compute estimations of parameters and to fit a function to a set of data. It exists 

with several variations: Its simpler version is called ordinary least squares (OLS), a 

more sophisticated version is called weighted least squares (WLS), which often 

performs better than OLS because it can modulate the importance of each observation 

in the final solution. Recent variations of the least square method are alternating least 

squares (ALS) and partial least squares (PLS). 

 

 Our experiment use of OLS as it is the oldest (and still most frequent).  It was 

a linear regression. It often happens that Ax = b has no solution. The usual reason is: 

too many equations (m is greater than n). Unless all measurements are perfect, b is 

outside that column space. We cannot always get the error e = b-Ax down to zero 

When e is zero, x is an exact solution to Ax = b. When the length of e is as small as 

possible, x̂  is a least squares solution. Our goal in this section is to compute x̂  and 

use it. 

 

When Ax= b has no solution, multiply by A
T
 and solve A

T
A x̂ = A

T
b. This 

seems it is like the pseudo inverse. However, the generalized inverse matrix requires 

the determination non-zero. Thus, our method will use matrix as it is the pseudo 

inverse. 

 

To compensate for imperfect alignment, from Equation 1, rotation matrix (R) 

is acquired from the sensor coordinate must be transferred to that of the camera 

coordinate using a correction matrix (Roffset). In our experiment, we will correct the 

error of Rx as the pitch affected the area size.  In our calibration, the world coordinates 
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(Q) and the imager coordinate (q) are known. The intrinsic matrix (M) and translation 

vector (T) are pre-defined. In Equation 22, we need to find Rxoffset for correcting Rsensor 

to Rcamera.  Iterative Least Square (ILS) technique [8] is applied to find Rxoffset as 

follow. 

sensoroffsetcamera RxRxRx      (22) 

 

Equation 22 can be represented as Equation 23 which consists of 9 unknown 

parameters. We rearrange Equation 23  as Equation 24. 
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 Alternatively Equation 25 can be written as Equation 26, where i is the i
th 

sample in the data collection process. 
 

199919 ][][][   ONM ii
 . (25) 

 

To estimate 9 parameters in O, it can be determined in a least-squares sense. 
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The large number of sample significantly increases the system accuracy. Thus, 

to update Equation 26 after every control point is collected, Iterative Least Squares 

method [8] is applied as in Equation 27.   
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After O is calculated, it means the imperfect alignment can be corrected by 

getting O rearranged in the form of Rxoffset before multiply Rxoffset back into Equation 

22. And then, apply it in homography matrix for warping image more accurate. 

 
2.4.2. Time alignment 

 

  As programming codes run in sequential, we have to identify the 

elapsed time between reading data from sensor and capturing an image from camera 

as ideally, it should be acquired the data from both sensors at the same time. In this 

research, every time of 100 ms, Timer Ticker will be called to start warping process 

as in Figure 25. During Finding Camera Interface process, it takes long interval time 

to select the camera, so this process is not considerate to align the time shift. 

Therefore. We should start next process, Reading Angle process when the Capturing 

image process finishes. This is due to more different duration time causing more 

errors in querying data, so we need to capturing data from camera before reading data 

from sensor. It seems to be making these two processes running at the same time.    

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 34  The coordinate of an orientation sensor that is attached to a web camera in  

  side view. 
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 After we adjust the time alignment while acquiring data between sensor and 

camera, it seems that we reduce this time delay to reading the data that make warping 

image algorithm more accurate. 

 ` 

3.  Processing Step 

 

3.1 Homography matrix 

 

When the object is a plane, a simpler formulation becomes available. 

Since the world coordinate system can be set anywhere, it can be conveniently 

positioned on the plane, such that latter has zero Z coordinate. From Equation  5, we 

consider Z is zero which can written as Equation  28. 

sq HQ      (28) 

Or, 

11 12 1

21 22 2

31 32 3

0

0

1 0 0 1 1

x x

y y

x f c r r t X

s y f c r r t Y

r r t

       
       


       
              

    

Where,  

[ , ,1]tQ X Y  is top view output pixels. 

[ , ,1]tq x y  is perspective view input pixels.
 

s  is Scale factor.
 

H  is 3x3 Homography matrix which can written as Equation  29. 
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    (29)
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3.2  Warping to top view 

 

3.2.1. Using chessboard 

 

 cvFindExtrinsicCameraParams2() function returns a rotation 

matrix (R) derived from Rz, Ry, Rx multiplied together as in Equation 6. This 

function also return translation vector, but in Equation 29, we select the first two 

columns as it is a planar surface. Thus, based on Equation 7  from openCV library, the 

homography matrix (H) using chessboard are shown in Equation 30 
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

(30)
 

 

 Note that this matrix comes from 3 angels (Rz,Ry,Rx) but our experiment uses 

only 2 angel ( pitch, roll). Thus, we will find each angel by using Equation 12 and 

derive new homography matrix (H) that multiplied 2 rotation matrixes (Rz, Rx). 
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                  (31) 

 

 This parameter H will be putted it into cvWarpPerspective() function to do 

warping image. In the other hand, openCV provide a library that can calculate this 

value by using cvFindHomography(). 

 

3.2.2. Using orientation sensor in real-time 

 

  Rotation matrix (R) in equation (7) will receive Roll (α), Pitch 

(β), and Yaw (γ) angels from orientation sensor, then the homography will be 

calculated as following. 
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(32) 

 

The problem of this homorgraphy matrix is about translation vector. We have 

to set this value beforehand. 

 

As pitch angel affected the area size, and roll angel affected the current view, 

we will receive these two angels from sensor and calculate the rotation matrix which 

uses only Rz, Rx as in Equation 14. From Equation 17, translation parameters (t1, t2, 

t3) are set to (0, 0, fx /2). Finally, we will get homography matrix (H) from the sensor 

as in Equation 33. 
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              (33)
 

 

In warping to top view, the output is top view output pixels (Q) and the input 

is perspective input pixels. Hence, homography matrix is inverted to multiply with 

input pixels (q). From Equation 31 can be written as Equation 34  

(assume that A = H
-1

). 

 

1sQ H q Aq            (34) 

In matrix form, 
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Or, 
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 So that, 

11 12 13

31 32 33

21 22 23

31 32 33

a x a y a
X

a x a y a

a x a y a
Y

a x a y a

 


 

 


 

 

 

From Equation 34, we can derive aij as 
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OpenCV provide a function that calculate top view image pixel (Q) for us 

automatically, cvWarpPerspective(), by inputting homography matrix (H) and original 

image. However, cvWarpPerspective() does not require inverse homography matrix 
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as an input. Therefore, we will find a new homography matrix which will be 

discussed in the next topic.  

 

3.3  Setting translation vector for the warped image to be viewable 

 

cvWarpPerspective() can generate real time top view image using rotation 

parameters   from the orientation sensor information. For translation parameters (t1, t2, 

t3), are set to (0, 0, fx /2). Setting t3, zoom, to fx /2 makes the top view image covers as 

many pixels in its original image as possible. This is preferable as we are going to 

apply the top view image for area calculation. However, the top view image is not a 

center of image as Figure 35. 

 

  

(a)                                          (b) 

 

Figure 35  Warping to top view from (a) input image to (b) the top view output image  

by translation parameters (t1, t2, t3), are set to (0, 0, fx /2). 

 

In order to make a top view image to the center, for translation parameters 

(t1, t2, t3), should be set to (cx, cy, fx /2). For t1 and t2, shift, normally it is used to shift 

the warped image to be viewable. However, doing so introduces distorted perspective 

when roll angle changes as Figure 36. 
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(a)                                          (b) 

 

  

(c)                                          (d) 

 

Figure 36  Warping to top view from (a) input image in right tilt to (b) the top view  

output image and (c) input image in left tilt to (d) the top view output  

image by translation parameters (t1, t2, t3), are set to (cx, cy, fx /2). 

 

To remove the roll distortion effect, translation parameters (t1, t2, t3), are 

set to (0, 0, fx /2). Then, the warped image is shifted to be viewable later. Hence, shift 

in x and y direction will be performed separately from the homography, for the value 

of cx, cy, respectively as Equation 35. 

 

1Q SH q      (35) 
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Where,  
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 is a shift matrix and it can be inverted as 1
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. 

 

But cvWarpperspective() function in OpenCV library need homography 

matrix as an input. Hence, the shift matrix should be adjusted by using multiplication 

of invertible matrix properties. Now, the new homography matrix with shift is shown 

as Equation 36. 

 

 
1

1 1SH HS


       (36) 

 

After using Equation 36 as a comprehensive homography matrix, it can 

remove the roll distortion effect and the warped image is set to be viewable as  

Figure 37.  

 

  

       (a)                                                   (b) 

 

Figure 37  Warping to top view from (a) input image to (b) the top view output image  

by translation parameters (t1, t2, t3), are set to (0, 0, fx /2) and shift in x and  

y direction after warping. 
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4.  Post-Processing Step  

 

 4.1  The RGB color model 

 

After image warping to top view, an image processing called thresholding 

is required to counting feature color pixels. After that, mapping pixels area to real world 

unit is proposed.  

 

From Wikipedia, “The RGB color model as Figure 28 is an additive color 

model in which red, green, and blue light are added together in various ways to 

reproduce a broad array of colors. The main purpose of the RGB color model is for 

the sensing, representation, and display of images in electronic systems, such as 

televisions and computers, though it has also been used in conventional photography. 

Before the electronic age, the RGB color model already had a solid theory behind it, 

based in human perception of colors.”  

 

“Every image is a set of pixels and each pixel represents a color. In the RGB 

model, the color of each pixel is stored in terms of three components: Red, Green, and 

Blue. By adjusting the values of the R, G, and B components, a wide variety of colors 

can be generated.” Hence, if we need only red pixel the color threshold can be used. 

 

 

 

Figure 38  RGB color model. 

 

Source: Wikipedia 
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 4.2  Red color pixels counting scheme 

 

In this research, we verify the system accuracy by estimating an area of 

red sheets with known size. Figure 29 is shows the red sheet, 70cm x 46.2cm.  

 

 

 

Figure 39  A red sheet, 70cm x 46.2cm, as target surface area. 

 

After warping to top view as Figure 40(a), counting color pixel is performed. 

The scheme is shown in Figure 41. First, initialize count parameter to zero and read 

next image pixel. Second, check if all pixels are counted or not. If not, then, color 

threshold is performed on the present pixel, to verify if it is the target area. In the 

threshold process, count parameter is increased and the pixel is marked white if it is 

the target area. Otherwise, mark it as black. This is just to generate an output that is 

easy to view, as shown in Figure 40(b). 

  

  

(a)                                          (b) 

 

Figure 40  After warping to (a) top view, (b) counting red color pixel is used. 
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Figure 41  Counting target color pixel schemes.  

  

4.3  Mapping equation 

 

After counting color pixel, we found from experimental result that the area 

size in pixel unit and the pitch angle has linear relationship approximately. In other 

words, the target area would get larger in the image when we rotate the camera to 

higher pitch value. 

 

 

 

Figure 42  Linear graph which can be written in linear equation shows relation  

                  between pitch angle and area in pixel unit. 
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Finally, the number of target pixels is mapped to area size in real world unit by 

a pre-calibrated equation. Such warping equation is derived by Equation 37. The 

calibration requires a known area (T) and its corresponding number of pixels (y). By 

rule of three, unknown area (Area) can be estimated from its corresponding number of 

pixels (P). 

2

2

( ) ( )

( ) ( )

Area cm P pixel

T cm y pixel
      (37) 

 

Remember from Figure 40 that depends on pitch angle (β). Hence Equation 

37can be replaced by Equation 38. Where, gradient (m) and intercept (c) of linear 

equation can be known from a pre-calibrated equation.  

 

2
2 ( ) ( )

( )
P pixel T cm

Area cm
m c





                 (38) 

 

4.4  Percentage Accuracy 

 

We determine our system by using these equations.  

 

2 2

2

( ) ( )
% 100%

( )

Area cm KnownArea cm
Error

KnownArea cm


 

              

(39) 

 

% 100 %Accuracy Error           (40) 

 

4.5  Scaling Factor of Height 

 

To perform this algorithm practically, height from camera to the ground should 

be able to be varied. In our algorithm, height (h) is inversely proportional to the area 

size in pixel unit (P). In other words, as the height increases, area size in pixel unit will 

decrease. If the system increases n times of the height used to calibrate Equation 40, 
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area size should be decreased by n*n. Therefore, we will scale this area by multiplying 

the result of pixel unit with n*n, resulting in Equation 41.  

 

          (41) 
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RESULTS AND DISCUSSION 

 

Results 

 

Our experiments consist of three phases. Pre-processing step consists of 

camera calibration, undistortion. Processing step consists of warping to top view 

using chessboard (to test concept) and using orientation sensor in real-time. Post-

processing step consists of comparing the warped image with the ground truth and 

mapping factor from pixel to actual area size. Our method was implemented in C 

programming language using OpenCV library. The technique requires calculation of a 

homography matrix, which consists of three parameters: intrinsic matrix, translation 

vector, and rotation matrix. Rotation matrix is uncontrolled in real time.  The 

parameters are in Table 1. 

 

Table 1  Experimental Parameter. 

 

Parameters Values 

  
Pitch angle 20-80 degree 

Intrinsic parameters 
fx =1038.71, fy =1037.18 

cx = 471.87, cy =361.42 

 
Distortion parameters 

k1=-0.243, k2=0.14, k3=0 

p1=-0.0031 p2= -0.004836 

Translation vector t1=0, t2=0, t3= fx /2 

Image dimensions 640 x 480 

Bitmap size 900 KB 

Target area 46.2 x 70  cm
2
 

A known area  9312  cm
2
 

  
 

In this experiment, the camera is calibrated offline. The relationship between 

camera and orientation sensor is also derived offline whereas the orientation sensor is 
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//Find chessboard corners: 

       int found = cvFindChessboardCorners( 

                image, board_sz, corners, &corner_count,  

                CV_CALIB_CB_ADAPTIVE_THRESH | 

CV_CALIB_CB_FILTER_QUADS ); 

 

used to provide rotation angle in real time. Then, homography matrix is formed based 

on the intrinsic and extrinsic information. The results illustrate the relationship 

between pitch angle’s rotation and size of an area after the top view image was 

warped. In the experimental setup, the pitch angle was manually varied from 20 

degree to 80 degree 

 

1.  Intrinsic Parameters 

 

Intrinsic  matrix composes of  4  parameters (fx,fy,cx,cy)  that  are found from 

calibrating camera with using OpenCV library. For finding these parameters, we  will 

follow these steps. 

 First, we will find the chessboard corner that this function checks all corners 

are completely found or not. 

 

 

 

 

 

 

 

 After all corners are found, we will convert the image to gray image to find the 

sub pixel to get more accurate in corner. 
 

 

 

 

 

 

 

 

  

Then, This function draws the chessboard corners. 
 

 

 

 

 

 

  

Next, we will find the image point and object point by using this for loop. If 

we cannot find all corners from the image, we will set that picture to be gray. 

 

 

 
 

//Get Subpixel accuracy on those corners 

       cvCvtColor(image, gray_image, CV_BGR2GRAY); 

       cvFindCornerSubPix(gray_image, corners, corner_count,  

                  cvSize(11,11),cvSize(-1,-1), cvTermCriteria(     

                  CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 30, 0.1 )); 

 

//Draw it 

       cvDrawChessboardCorners(image, board_sz, corners,  

                  corner_count, found); 
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//CALIBRATE THE CAMERA! 

  cvCalibrateCamera2( 

      object_points, image_points, 

      point_counts,  cvGetSize( image ), 

      intrinsic_matrix, distortion_coeffs, rotation_vectors, 

translation_vectors,0);  //CV_CALIB_FIX_ASPECT_RATIO 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, finds the camera intrinsic which the input is object_points, 

image_points, and point_counts.  

 

 

 

 

 

 

 

 

This program will be identifying the corners on a chessboard pattern by using 

cvCalibrateCamera2() function. This funxtion estimates the calibration parameters 

and extract black-white-black-white features 48 points as shown in Figure 33 

(width=8, height=6). Then, our program identifies how many numbers of different 

views that is suitable for using those intrinsic values. The result shows in Table3 

 

// If we got a good board, add it to our data 

       if( corner_count == board_n ) { 

          cvShowImage( "Calibration", image ); //show in color if 

we did collect the image 

          step = successes*board_n; 

          for( int i=step, j=0; j<board_n; ++i,++j ) { 

             CV_MAT_ELEM(*image_points, float,i,0) = corners[j].x; 

             CV_MAT_ELEM(*image_points, float,i,1) = corners[j].y; 

             CV_MAT_ELEM(*object_points,float,i,0) = j%board_w; 

             CV_MAT_ELEM(*object_points,float,i,1) = j/board_w; 

             CV_MAT_ELEM(*object_points,float,i,2) = 0.0f; 

          } 

          CV_MAT_ELEM(*point_counts, int,successes,0) = board_n;     

          successes++; 

          printf("Collected our %d of %d needed chessboard 

images\n",successes,n_boards); 

 

       } 

  else{ 

   cvShowImage( "Calibration", gray_image );} //Show 

Gray if we didn't collect the image 

    }  
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Figure 43  Extract black-white-black-white features 48 points on chessboard using cv  

                   calibrateCamera2() function at difference scene. 

 

Outputs of camera calibration are saved in Extensible Markup Language 

(XML) file, which is a set of rules for encoding documents in machine-readable form. 

After that, read the saved file to acquire all of parameters. Here, we show the result of 

cvCalibratecamera2() function. 

 

 

 

 

 

 

 

 

 

<?xml version="1.0"?> 

-<opencv_storage>  

-<Intrinsics type_id="opencv-matrix">  

<rows>3</rows>  

<cols>3</cols>  

<dt>f</dt>  

<data> 5.35105896e+002 0. 3.12345947e+002 0. 5.33465515e+002 

2.38924026e+002 0. 0. 1.</data> 

</Intrinsics2>  

</opencv_storage> 
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2.  Extrinsic Parameters 

 

 As we mentioned in the previous chapter, extrinsic parameters consists of 

rotational matrix and translation vector. This section shows the result of these values 

using chessboard and using orientation sensor in the real time. 

 

2.1  Rotation Matrix 

 

2.1.1 Using chessboard 

 

After we got the object point and image point found from previous 

step, we use those values with intrinsic matrix as it is inputs of the following function, 

then it return rotation vector, translation vector. Finally, changing the rotation vector 

into rotation matrix has to be performed. 

 

 

 

 

 

 

We reference this code from OpenCV library, but our program uses pitch 

angle that is affected the area size. Therefore, we have to look into an element of the 

rotation matrix to extract roll, pitch, yaw angle from this library as in equation (12). 

<?xml version="1.0"?> 

-<opencv_storage>  

-<Distortion type_id="opencv-matrix"> 

 <rows>4</rows> 

 <cols>1</cols> 

 <dt>f</dt>  

<data> 5.15903160e-002 -4.88530621e-002 2.15528603e-003 

9.97108873e-004</data> 

</Distortion2>  

</opencv_storage> 

// Calibrate the camera 

cvFindExtrinsicCameraParams2(object_points,image_points,intrinsic_

matrix,distortion_coeffs,rotation_vec

tors,translation_vectors,0); 

cvRodrigues2(rotation_vectors,rotation_matrix,0); 



 
 

56 

 

 

 

 

 

 

 

After we get xAngle, yAngle and zAngle from the sensor, we will put it into 

Rx, Ry and Rz followed in equation (10).  The OpenCV library returned rotation 

matrix R same as we multiplied each rotation matrix (Rx,Ry,Rz) and  then, input 

these values to compute the homography matrix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To be practical, we use orientation sensor to acquire xAngle, yAngle and 

zAngle 

 

 

xAngle = atan(CV_MAT_ELEM( *rotation_matrix, float, 2, 1 /   

CV_MAT_ELEM( *rotation_matrix, float, 2, 2 )); 

yAngle = -asin(CV_MAT_ELEM( *rotation_matrix, float, 2, 0 )); 

zAngle = atan(CV_MAT_ELEM( *rotation_matrix, float, 1, 0 )/ 

CV_MAT_ELEM( *rotation_matrix, float, 0, 0 )); 

CV_MAT_ELEM( *Rx, float, 0, 0 )=1.0;    

CV_MAT_ELEM( *Rx, float, 0, 1 )=0.0;    

CV_MAT_ELEM( *Rx, float, 0, 2 )=0.0; 

CV_MAT_ELEM( *Rx, float, 1, 0 )=0.0;     

CV_MAT_ELEM( *Rx, float, 1, 1 )=cos(xAngle);  

CV_MAT_ELEM( *Rx, float, 1, 2 )=-sin(xAngle); 

CV_MAT_ELEM( *Rx, float, 2, 0 )=0.0;    

CV_MAT_ELEM( *Rx, float, 2, 1 )=sin(xAngle);  

CV_MAT_ELEM( *Rx, float, 2, 2 )=cos(xAngle); 

 

CV_MAT_ELEM( *Ry, float, 0, 0 )=cos(yAngle);  

CV_MAT_ELEM( *Ry, float, 0, 1 )=0.0;    

CV_MAT_ELEM( *Ry, float, 0, 2 )=sin(yAngle); 

CV_MAT_ELEM( *Ry, float, 1, 0 )=0.0;    

CV_MAT_ELEM( *Ry, float, 1, 1 )=1.0;    

CV_MAT_ELEM( *Ry, float, 1, 2 )=0.0; 

CV_MAT_ELEM( *Ry, float, 2, 0 )=-sin(yAngle);  

CV_MAT_ELEM( *Ry, float, 2, 1 )=0.0;    

CV_MAT_ELEM( *Ry, float, 2, 2 )=cos(yAngle); 

   

CV_MAT_ELEM( *Rz, float, 0, 0 )=cos(zAngle);  

CV_MAT_ELEM( *Rz, float, 0, 1 )=-sin(zAngle);  

CV_MAT_ELEM( *Rz, float, 0, 2 )=0.0; 

CV_MAT_ELEM( *Rz, float, 1, 0 )=sin(zAngle);  

CV_MAT_ELEM( *Rz, float, 1, 1 )=cos(zAngle);  

CV_MAT_ELEM( *Rz, float, 1, 2 )=0.0; 

CV_MAT_ELEM( *Rz, float, 2, 0 )=0.0;    

CV_MAT_ELEM( *Rz, float, 2, 1 )=0.0;    

CV_MAT_ELEM( *Rz, float, 2, 2 )=1.0; 
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2.1.2 Using orientation sensor in real-time 

 

We receive rotational angle from serial port with baud rate equal to 

57600 and set flow control to be Xon/Xoff. The source code for burning this board via 

Aduino, see on Appendix A. 

 

Next, we can exact the data from serial port by using this following code. It 

sets the timer reading the data every 100 millisecond.  

 

 

 

 

 

 

 

 

 

Then, we put the reading angle from sensor (roll(z), pitch(x), yaw(y)) in the 

following code based on Equation 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

while (this->timer1->Enabled){ 

this->m_data = this->serialPort1->ReadLine(); 

 if(this->m_data->Trim()->StartsWith("#YPR=")){    

  this->m_data = this->m_data->Replace("#YPR=",","); 

this->m_getdata = this->m_data->Split(','); 

  if (this->m_getdata->Length==4){ 

   roll = Convert::ToDouble(this->m_getdata[3]); 

   pitch = Convert::ToDouble(this->m_getdata[2]); 

   yaw = Convert::ToDouble(this->m_getdata[1]); 

  } 

 } 

} 
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Finally, multiplying these three matrix together to get the matrix R for 

performing a warping image further. 

 

2.2 Translation Vector 

 

We will use following inverse matrix that we have mentioned in equation 

(33). While using orientation sensor, we set translation vector as the initial step (0, 0, 

0.5fx). It means that we adjust the size of image view to be viewable beforehand.  

 

 

 

 

 

 

CV_MAT_ELEM( *Rx, float, 0, 0 )=1.0;   

CV_MAT_ELEM( *Rx, float, 0, 1 )=0.0;  

CV_MAT_ELEM( *Rx, float, 0, 2 )=0.0; 

CV_MAT_ELEM( *Rx, float, 1, 0 )=0.0;  

CV_MAT_ELEM( *Rx, float, 1, 1 )=cos(xAngle);  

CV_MAT_ELEM( *Rx, float, 1, 2 )=-sin(xAngle); 

CV_MAT_ELEM( *Rx, float, 2, 0 )=0.0;  

CV_MAT_ELEM( *Rx, float, 2, 1 )=sin(xAngle);  

CV_MAT_ELEM( *Rx, float, 2, 2 )=cos(xAngle); 

 

CV_MAT_ELEM( *Ry, float, 0, 0 )=cos(yAngle);  

CV_MAT_ELEM( *Ry, float, 0, 1 )=0.0;   

CV_MAT_ELEM( *Ry, float, 0, 2 )=sin(yAngle); 

CV_MAT_ELEM( *Ry, float, 1, 0 )=0.0;   

CV_MAT_ELEM( *Ry, float, 1, 1 )=1.0;   

CV_MAT_ELEM( *Ry, float, 1, 2 )=0.0; 

CV_MAT_ELEM( *Ry, float, 2, 0 )=-sin(yAngle);  

CV_MAT_ELEM( *Ry, float, 2, 1 )=0.0;   

CV_MAT_ELEM( *Ry, float, 2, 2 )=cos(yAngle); 

   

CV_MAT_ELEM( *Rz, float, 0, 0 )=cos(zAngle);  

CV_MAT_ELEM( *Rz, float, 0, 1 )=-sin(zAngle);  

CV_MAT_ELEM( *Rz, float, 0, 2 )=0.0; 

CV_MAT_ELEM( *Rz, float, 1, 0 )=sin(zAngle);  

CV_MAT_ELEM( *Rz, float, 1, 1 )=cos(zAngle);  

CV_MAT_ELEM( *Rz, float, 1, 2 )=0.0; 

CV_MAT_ELEM( *Rz, float, 2, 0 )=0.0;   

CV_MAT_ELEM( *Rz, float, 2, 1 )=0.0;   

CV_MAT_ELEM( *Rz, float, 2, 2 )=1.0; 
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3.  Warping to top view using chessboard  

      

Place the chessboard on the planar surface area as Figure 44(a). Each sub-

square of chessboard have width x length as 2.8 cm x 2.8 cm. To generate the top 

view as Figure 44(b), the algorithm runs as follows. 

 

1. Read the intrinsic and distortion matrix derived earlier in camera calibration 

process. Then undistort an input image. 

 

2. Find a known object on the ground plane (in this case, a chessboard). Detect 

corner points at sub pixel accuracy (black-white-black-white feature). 

 

3. Enter the found points, at least four point, into cvFindHomography() function 

to compute the homography matrix H, that relates such input view and its top view. 

 

4. Use cvWarpPerspective() function with flags CV_INTER_LINEAR + 

CV_WARP_INVERSE_MAP + CV_WARP_FILL_OUTLIERS to obtain a frontal 

parallel (top view) view of the ground plane. 

 

The output in XML file of homography matrix by using cvFindHomography() 

function is as below 

 

H: !!opencv-matrix rows: 3 cols: 3 dt: f 

data: [ 31.82570457, -2.84891891, 234.61930847, 0.34437224, 28.99610901, 

162.04414368, 6.99729368e-004, -8.76668375e-003, 18. ] 

 

 

 

CV_MAT_ELEM( *T, float, 0, 0 )=1;   // T(inverse) 

CV_MAT_ELEM( *T, float, 0, 1 )=0; 

CV_MAT_ELEM( *T, float, 0, 2 )=-cx; 

CV_MAT_ELEM( *T, float, 1, 0 )=0; 

CV_MAT_ELEM( *T, float, 1, 1 )=1; 

CV_MAT_ELEM( *T, float, 1, 2 )=-cy; 

CV_MAT_ELEM( *T, float, 2, 0 )=0; 

CV_MAT_ELEM( *T, float, 2, 1 )=0; 

CV_MAT_ELEM( *T, float, 2, 2 )=1; 
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This mean homography matrix is 

 

31.23 2.85 234.62

0.34 28.99 162.04

0.0007 0.0088 18

H

 
 


 
  

 
 

  

(a)      (b) 

 

Figure 44  Warping from (a) perspective view to (b) top view by using feature on  

chessboard. 

 

 

4.  Warping to top view using orientation sensor in real-time 

 

   Practically, we cannot always have chessboard placed on target areas. So the 

orientation sensor is used to provide rotation angle. Then, homography is formed 

based on the rotation information. Roll and Pitch angles are acquired through serial 

port, COM port, from the orientation sensor. After that, multiply rotation matrix, 

concatenated by translation vector, with intrinsic matrix. Resulting in homography 

matrix is shown in Equation 33. Because of roll and yaw angle’s rotation does not 

affect the size of the area. Hence, we will focus only relationship between Pitch angle 
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and area size in pixel unit. In the experimental setup, the pitch angle was manually 

varied from 10 to 80 degree as Figure 45. 

 

 

 

Figure 45  The pitch angle of camera is manually varied from 10 degree to 80 degree  

                  that are captured from perspective view. 

 

After that, orientation sensor information is used for warping every image to 

the top view as Figure 46.  

 

 

 

Figure 46  The top view images are generated by orientation sensor information  

                   that are varied from 10 degree to 80 degree. 
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Focusing on Figure 47(a) and 47(b), it shows the perspective view at 20 and 

70 degree pitch angle respectively. Figure 48(a) and 48(b) shows the top view warped 

image at 20 and 70 degree respectively. The area size after warping to top view 

increases along with the pitch angle. 

 

  

(a)                                                           (b) 

 

Figure 47  Perspective view while pitch angle is (a) 20
o
 (b) 70

o
.  

 

  

(a)                                                           (b) 

 

Figure 48  Warping to top view is generated by orientation sensor information while  

                  pitch angle is (a) 20
o
 (b) 70

o
.   
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R=MulMat3x3(Rz,Rx); //roll*pitch 

r11=CV_MAT_ELEM(*R,float,0,0); 

r12=CV_MAT_ELEM(*R,float,0,1); 

r13=CV_MAT_ELEM(*R,float,0,2); 

 

r21=CV_MAT_ELEM(*R,float,1,0); 

r22=CV_MAT_ELEM(*R,float,1,1); 

r23=CV_MAT_ELEM(*R,float,1,2); 

  

r31=CV_MAT_ELEM(*R,float,2,0); 

r32=CV_MAT_ELEM(*R,float,2,1); 

r33=CV_MAT_ELEM(*R,float,2,2); 

 

t1=0; 

t2=0; 

t3=0.5*fx;  // fx=fy from intrinsic parameter 

float normalize=(float) 1.0; 
 

  

CV_MAT_ELEM( *H, float, 0, 0 )=normalize*(fx*r11 + cx*r31);  

CV_MAT_ELEM( *H, float, 0, 1 )=normalize*(fx*r12 + cx*r32); 

CV_MAT_ELEM( *H, float, 0, 2 )=normalize*(fx*t1 + cx*t3); 

CV_MAT_ELEM( *H, float, 1, 0 )=normalize*(fy*r21 + cy*r31); 

CV_MAT_ELEM( *H, float, 1, 1 )=normalize*(fy*r22 + cy*r32); 

CV_MAT_ELEM( *H, float, 1, 2 )=normalize*(fy*t2 + cy*t3); 

CV_MAT_ELEM( *H, float, 2, 0 )=normalize*r31; 

CV_MAT_ELEM( *H, float, 2, 1 )=normalize*r32; 

CV_MAT_ELEM( *H, float, 2, 2 )=t3; 

CV_MAT_ELEM( *T, float, 0, 0 )=1;   // T(inverse) 

CV_MAT_ELEM( *T, float, 0, 1 )=0; 

CV_MAT_ELEM( *T, float, 0, 2 )=-cx; 

CV_MAT_ELEM( *T, float, 1, 0 )=0; 

CV_MAT_ELEM( *T, float, 1, 1 )=1; 

CV_MAT_ELEM( *T, float, 1, 2 )=-cy; 

CV_MAT_ELEM( *T, float, 2, 0 )=0; 

CV_MAT_ELEM( *T, float, 2, 1 )=0; 

CV_MAT_ELEM( *T, float, 2, 2 )=1; 

     

H_Sensor=MulMat3x3(H,T);   // H*T(inverse) 

   

Bitmap^ outImage2; 

   

if(warpI == true && cntRecord == 0 ){  

cvWarpPerspective(Img,warpingImg,H_Sensor,CV_INTER_LINEAR | 

CV_WARP_INVERSE_MAP | 

CV_WARP_FILL_OUTLIERS); 

 

outImage2 = gcnew Bitmap(warpingImg->width, 

warpingImg->height,warpingImg-

>widthStep,System::Drawing::Imaging::Pixe

lFormat::Format24bppRgb,System::IntPtr(wa

rpingImg->imageData)); 

this->outputImage->Image = gcnew Bitmap(outImage2);   
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5.  Comparing the warped image with the ground truth  

      

The warped image will be compared with the ground truth by using a scheme 

as shown Figure 41. The number of red pixels, at 20 and 70 degree, respectively, is 

shown in Figure 49.  

 

 

 

Figure 49  The top view images are generated by orientation sensor information  

                   that are varied from 10 degree to 80 degree.  

 

Figure 50(a) and 51(b) shows the number of red pixels at 20 and 70 degree 

respectively. The area size in pixel unit after warping to top view will increase by 

depends on the pitch angle. 

 

  

(a)                                                           (b) 

 

Figure 50  The top view images are generated by orientation sensor information at 

20, and 70 degree.  
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This codes count the number o red pixel compared with some number of 

theshold. There are 3 chennels in a pixel (blue, green, red). If chennel3 (red) has 

values more than chennel1 (green) plus 80, and if chennel3 (red) also has values more 

than chennel0 (blue) plus 80, the count oixel can be performed. 

 

 

In this paper’s experiment, we compare accuracy before and after using 

iteratve least square method (ILS) as in the section 5.1 and 5.2. During experiment 

data collecttion,  height between ground plane and camera is fixed. After that we vary 

the height and  find the result as in the last section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for(i=0;i < (height);i++) for(j=0;j <(width);j++) 

  { 

/*As I told you previously you need to select pixels which are 

more red than any other color 

Hence i select a difference of 29(which again depends on the 

scene). (you need to select randomly and test*/ 

 

if(((data[i*step+j*channels+2]) > (50+data[i*step+j*channels+1])) 

&& ((data[i*step+j*channels+2]) > 

(50+data[i*step+j*channels+0]))){ 

   

datar[i*stepr+j*channelsr]=255; 

countpixel=(countpixel+1);} 

 

else{ 

 datar[i*stepr+j*channelsr]=0; 

 noncountpixel=(noncountpixel+1);} 

  

  

 PercentG=countpixel;//*100.0/(countpixel+noncountpixel)); 

} 
 



 
 

66 

 

 

5.1 Experiment result before using ILS method 
 

In our previous work, we varied angle between 10 to 80 degree and collect 

data using 1, 2, 3 , and 4 reference objects as shown in Table 2. 
 

Table 2  The number of pixel from target area, while varying pitch angle and number     

               of sheets. 

 

Pitch angle Area1(pixel) Area2(pixel) Area3(pixel) Area4(pixel) 

20 699 1330 2085 2778 

22.5 829 1672 2315 3354 

25 969 1942 3174 4233 

27.5 1194 2294 3474 4827 

30 1399 2672 4310 5828 

32.5 1496 3025 4835 6589 

35 1770 3329 5142 7585 

37.5 1979 4043 6260 8282 

40 2229 4482 6601 9058 

42.5 2553 4936 7552 9975 

45 2829 5463 8305 10926 

47.5 3074 5847 9149 11694 

50 3336 6810 9717 13620 

52.5 3533 7072 11041 14144 

55 3819 7595 11912 15190 

57.5 4044 8031 12372 16062 

60 4284 8490 13070 16980 

62.5 4729 9162 14002 18324 

65 4959 9716 14872 19432 

67.5 5129 10125 15342 20250 

70 5333 10433 16065 20866 

72.5 5562 10996 17581 21992 

75 5747 11357 18198 22714 

77.5 5958 11807 18692 23614 

80 6334 12946 18559 25892 
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After we get the experiment data from the Table 2, we polt it on to the graph. 

The result shows the relation between pitch angle and the area size in pixel unit. 

 

 
 

Figure 51   Relation between pitch angle and pixel numbers of the same object varied    

                   from 10-80 degree. 

 

The result is shown in Figure xx. At 10 to 20 degree, there are a lot of errors. 

Therefore, to find the average accurate of both previous work and the present one are 

considered angles only 20 to 80 degree. Accuracy of our previous system is equal to 

94.82% and it will be shown here that the accuracy can be improved. 
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Table 3  The area in real world unit that is pre-calibrated using images with 2 sheets,  

               while varying pitch angle and number of sheets. 

 

Pitch angle Area1(cm
2
) Area2(cm

2
) Area3(cm

2
) Area4(cm

2
) 

20 3590.251572 7025.841228 10717.17616 13663.95741 

22.5 3116.990652 6429.2591 8668.016132 12264.28018 

25 2873.414634 5870.244655 9346.287483 12317.92145 

27.5 2922.908529 5712.42365 8429.453413 11664.65637 

30 2916.010982 5656.932997 8892.966972 12041.75313 

32.5 2714.902022 5569.869975 8677.64325 11890.25654 

35 2844.284777 5423.055825 8165.725603 12149.22364 

37.5 2853.359786 5905.462018 8914.439201 11925.32775 

40 2914.349823 5933.434852 8520.082217 11845.83768 

42.5 3053.448276 5974.772596 8913.185448 11948.60778 

45 3117.796241 6090.979202 9029.035186 12073.01068 

47.5 3141.09551 6042.411475 9219.653602 11991.84951 

50 3177.423573 6558.040646 9125.118233 13029.36757 

52.5 3151.158339 6375.882384 9707.319199 12679.52294 

55 3202.669357 6436.769591 9845.315796 12811.34452 

57.5 3200.099833 6421.206189 9647.221684 12789.88224 

60 3209.040794 6424.714526 9645.983919 12805.38209 

62.5 3362.853687 6580.859368 9808.79552 13124.44363 

65 3356.313569 6641.242371 9914.530413 13252.0245 

67.5 3311.635215 6601.513575 9756.147829 13179.21344 

70 3291.874776 6502.340936 9765.52301 12987.03695 

72.5 3288.561023 6563.761314 10235.79733 13115.08605 

75 3260.55191 6504.511633 10165.7663 13001.59756 

77.5 3248.897597 6498.865068 10035.15401 12994.82726 

80 3324.723916 6858.667497 9590.330704 13718.68342 

 



 
 

69 

 

 

 

 

Figure 52  Relation between pitch angle and area size in real world using 1 reference  

                  object. 

 

 
 

Figure 53  Relation between pitch angle and area size in real world using 2 reference  

                  objects. 
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Figure 54  Relation between pitch angle and area size in real world using 3 reference  

                  objects. 

 

 

 

Figure 55  Relation between pitch angle and area size in real world using 4 reference  

                  objects. 
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Table 4  Percent accuracy. 

 

Pitch 

angle 
Area1(%) Area2(%) Area3(%) Area4(%) Avg.(%) 

20 88.9841 91.3753 89.5364 86.3174 89.05336 

22.5 96.3819 99.4010 89.3425 69.8132 88.7347 

25 88.8501 90.7582 96.33361 75.2761 87.80455 

27.5 90.3805 88.3182 86.8836 67.8918 83.36859 

30 90.1673 87.4603 91.6611 71.62505 85.22846 

32.5 83.9487 86.1142 89.4417 69.8908 82.3489 

35 87.9494 83.8444 84.1653 65.7677 80.43175 

37.5 88.2300 91.3027 91.8824 71.7979 85.80332 

40 90.11595 91.7352 87.8177 68.6217 84.57269 

42.5 94.4170 92.3743 91.8695 71.7878 87.61222 

45 96.4068 94.1709 93.0636 72.7209 89.0906 

47.5 97.12726 93.4200 95.0283 74.2562 89.95799 

50 98.2505 98.6079 94.0539 73.4948 91.10183 

52.5 97.43845 98.5757 99.9451 78.1839 93.53583 

55 99.0312 99.5171 98.5228 79.2953 94.09164 

57.5 98.9517 99.2765 99.4353 77.6999 93.8409 

60 99.2282 99.3307 99.4226 77.6899 93.9179 

62.5 96.0156 98.2551 98.8992 79.0012 93.04282 

65 96.2178 97.3215 97.8094 79.8528 92.80043 

67.5 97.5994 97.9357 99.4418 78.5772 93.38858 

70 98.2104 99.4690 99.3452 78.6527 93.91937 

72.5 98.3128 98.5194 94.4980 82.4403 93.4427 

75 99.1789 99.4355 95.2198 81.8763 93.92768 

77.5 99.5393 99.5228 96.5661 80.8243 94.11316 

80 97.1946 93.95999 98.8490 77.2417 91.81135 

 
94.7251 94.8001 94.3614 75.6239 89.87765 
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Figure 56  Relation between pitch angle and system accuracy with reference object 1,  

                  2, 3 ,4.  
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5.2  Experiment result after using ILS method  

 

Table 5  The number of pixel from target area, while varying pitch angle and number     

              of sheets after using ILS method. 

Pitch angle Area1(pixel) Area2(pixel) Area3(pixel) Area4(pixel) 

20 580 1384 2274 2911 

22.5 752 1718 2918 3641 

25 931 2052 3675 4664 

27.5 1099 2515 4296 5455 

30 1382 2954 5450 6751 

32.5 1663 3532 6181 7832 

35 1890 4121 7157 9110 

37.5 2190 4619 8171 10358 

40 2514 5246 9149 11612 

42.5 2811 5992 10022 13105 

45 3090 6345 11244 14381 

47.5 3374 7063 12031 15979 

50 3950 7854 13394 17295 

52.5 4215 8483 14447 18546 

55 4545 9297 15760 20239 

57.5 4915 10021 16537 22012 

60 5279 10968 17798 23636 

62.5 5559 11865 18927 25005 

65 6008 12939 20004 26746 

67.5 6126 13908 20958 28299 

70 6482 14543 21784 29694 

72.5 6766 15011 22815 30951 

75 7191 15764 23304 31760 

77.5 7357 16076 24320 32836 

80 7786 17084 25225 33771 
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Figure 57  Relation between pitch angle and pixel numbers of the same object varied  

                   from 20-80 degree after using ILS. 
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Table 6  The area in real world unit that is pre-calibrated, while varying pitch angle              

and number of sheets after using ILS method. 

 

Pitch angle Area1(cm
2
) Area2(cm

2
) Area3(cm

2
) Area4(cm

2
) 

20 15361.09 40167.7 14457.22 26391.37 

22.5 5395.453 11842.49 11008 16474.73 

25 3863.143 8025.462 9856.026 14060.51 

27.5 3207.688 6865.928 8937.772 12330.11 

30 3110.978 6193.951 9261.698 12205.38 

32.5 3046.613 6011.585 8877.771 11798.36 

35 2919.05 5902.764 8901.501 11762.05 

37.5 2923.548 5711.192 8961.296 11700.93 

40 2955.183 5706.03 8973.141 11659.42 

42.5 2951.715 5817.512 8889.585 11842.19 

45 2931.838 5562.818 9103.163 11813.46 

47.5 2919.783 5644.872 8958.547 12031.98 

50 3141.942 5767.199 9232.455 12020.86 

52.5 3101.995 5761.127 9269.572 11969.39 

55 3112.114 5872.765 9457.92 12191.02 

57.5 3146.524 5916.683 9321.258 12430.12 

60 3173.125 6078.809 9457.438 12561.89 

62.5 3149.078 6196.093 9512.521 12551.02 

65 3218.173 6387.953 9537.151 12718.19 

67.5 3111.988 6510.788 9503.598 12783.71 

70 3131.196 6472.87 9417.834 12775.02 

72.5 3115.454 6367.669 9424.388 12710.45 

75 3163.141 6387.377 9216.039 12475.51 

77.5 3097.695 6234.371 9224.618 12360.66 

80 3143.812 6352.763 9192.075 12204.05 
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Figure 58  Relation between pitch angle and area size in real world using 1,2,3, 4  

                   reference objects. 

 

 We found that there are a lot of error between 20-30 degree, so to fine 

accuracy, we use 30-80 degree. 
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Table 7  Percent accuracy. 

 

Pitch 

angle 
Area1(%) Area2(%) Area3(%) Area4(%) Avg.(%) 

20 -294.881 -447.031 44.74636 -12.5593 -177.431 

22.5 26.17741 9.238286 81.78697 67.3105 46.12829 

25 75.54308 70.72387 94.1578 86.75489 81.79491 

27.5 96.65954 89.40193 95.98123 99.30821 95.33773 

30 99.77518 99.7737 99.45981 98.3036 99.32808 

32.5 98.15118 96.8361 95.33688 95.02548 96.33741 

35 94.04155 95.08318 95.59172 94.73301 94.86236 

37.5 94.18646 91.99729 96.23385 94.24074 94.16459 

40 95.20564 91.91415 96.36105 93.90643 94.34682 

42.5 95.09392 93.70992 95.46376 95.37846 94.91151 

45 94.45353 89.60725 97.75734 95.14704 94.24129 

47.5 94.06517 90.92899 96.20432 96.90703 94.52638 

50 98.77764 92.89947 99.14578 96.81753 96.91011 

52.5 99.93539 92.80166 99.54438 96.40295 97.1711 

55 99.73859 94.59996 98.43299 98.18799 97.73988 

57.5 98.63001 95.30739 99.90058 99.8863 98.43107 

60 97.77304 97.91895 98.43817 98.82499 98.23879 

62.5 98.54775 99.80821 97.84664 98.91252 98.77878 

65 96.32173 97.10128 97.58214 97.56611 97.14282 

67.5 99.74265 95.12261 97.94246 97.03838 97.46153 

70 99.12383 95.73341 98.86347 97.1084 97.70728 

72.5 99.631 97.42801 98.79308 97.6285 98.37015 

75 98.09468 97.11056 98.96949 99.5207 98.42386 

77.5 99.79687 99.57521 99.06162 99.55432 99.497 

80 98.71738 97.66812 98.71214 98.29295 98.34765 

 
97.60968 95.3774 97.8877 97.1135 96.99707 
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Figure 59  Relation between pitch angle and system accuracy with reference object 1,  

                  2, 3 ,4. After using ILS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 60  Relation between pitch angle and the average of percent accuracy before  

                   and after when using ILS method. 
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5.3 Varying Height 

 

The result of (15), varying height, is illustrated in Figure 6 where h is varied 

from 70-490 cm. One can see that n*n*P is almost a constant with accuracy of 

95.28%. Such accuracy implies that reliability to use (15) would be reduced a little 

when height other than one used during calibration is required. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 61  Relation between height and pixel area multipled by n*n factor. 
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Discussion 

 

From experimental result, we cannot always have chessboard placed on target 

areas. So the orientation sensor is used to provide rotation angle. Only pitch angle 

affects output area size, in top view. Roll and yaw angle’s rotation does not affect the 

size of the area. Hence, focus only relationship between pitch angle and area size in 

pixel unit.  

 

In this thesis, the use of pitch angle range is from 20 to 80 degrees because 

from 0 to 20 degrees, there is some warping error, and from 80 to 90 degrees, there 

some the sensor problems. Results indicate that pitch angle range from 30 to 80 

degrees produce the highest accuracy. The averaged accuracy of the range is 97.86%. 
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CONCLUSION AND RECOMMENDATION 

 Conclusion 

  

To achieve the precision crop area calculation using camera and orientation 

sensor, we apply a top view image warping algorithm instead of directly adjusting the 

moving of motor. In order to do so, the homography matrix is computed to transform 

the input image into its top view image. The intrinsic parameters can be calibrated 

offline, relationship between camera and sensor is also derived offline, whereas the 

rotation angel received from sensor is provided in real time. 

 

For the problem caused by imperfect alignment between camera and sensor, 

we employ Iterative Least Square (ILS) method for solving it. Finally, a number of the 

target pixels will be map to planar surface area in real world unit in order to 

approximate the area. Both the warping and the mapping depend largely on pitch 

angle derived from the orientation sensor. The average of percent accuracy which is 

varied pitch angle from 30 to 80 degree is 97.86% 

 

 

 Recommendation 

 

The present experiment is based on images of known object from video 

camera and rotational information from orientation sensor. In the future we aim to 

achieve area calculation of agricultural crop field. In doing so, classification is 

required to extract crop area instead of just counting target color pixels. Furthermore 

the system should be linked to a GPS system to cross validate with Satellite data.
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Appendix A 

 

Razor 9DOF IMU AHRS V1.1 Lite version for AT328/AT168 
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Source:  http://code.google.com/p/sf9domahrs/downloads/list 

 

SD9DOF_AHRS.pde  

 

// Sparkfveun 9DOF Razor IMU AHRS 

// 9 Degree of Measurement Attitude and Heading Reference System 

// Firmware v1.0 Released under Creative Commons License  

// Code by Doug Weibel and Jose Julio 

// Based on ArduIMU v1.5 by Jordi Munoz and William Premerlani, Jose Julio and 

Doug Weibel 

// Axis definition:  

// X axis pointing forward (to the FTDI connector) 

// Y axis pointing to the right  

// and Z axis pointing down. 

// Positive pitch : nose up 

// Positive roll : right wing down 

// Positive yaw : clockwise 

/* Hardware version - v13 ATMega328@3.3V w/ external 8MHz resonator High 

Fuse DA Low Fuse FF ADXL345:  

Accelerometer HMC5843: Magnetometer 

LY530: Yaw Gyro 

LPR530: Pitch and Roll Gyro 

       Programmer : 3.3v FTDI 

        Arduino IDE : Select board  "Arduino Duemilanove w/ATmega328" */ 

// This code works also on ATMega168 Hardware 

#include <Wire.h> 

// ADXL345 Sensitivity(from datasheet) => 4mg/LSB   1G => 1000mg/4mg = 256 

steps 

// Tested value : 248 

#define GRAVITY 248  //this equivalent to 1G in the raw data coming from the 

accelerometer  
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#define Accel_Scale(x) x*(GRAVITY/9.81)//Scaling the raw data of the accel to 

actual acceleration in meters for seconds square 

#define ToRad(x) (x*0.01745329252)  // *pi/180 

#define ToDeg(x) (x*57.2957795131)  // *180/pi 

 

// LPR530 & LY530 Sensitivity (from datasheet) => (3.3mv at 3v)at 3.3v: 3mV/º/s, 

3.22mV/ADC step => 0.93 

// Tested values : 0.92 

#define Gyro_Gain_X 0.92 //X axis Gyro gain 

#define Gyro_Gain_Y 0.92 //Y axis Gyro gain 

#define Gyro_Gain_Z 0.92 //Z axis Gyro gain 

#define Gyro_Scaled_X(x) x*ToRad(Gyro_Gain_X) //Return the scaled ADC raw 

data of the gyro in radians for second 

#define Gyro_Scaled_Y(x) x*ToRad(Gyro_Gain_Y) //Return the scaled ADC raw 

data of the gyro in radians for second 

#define Gyro_Scaled_Z(x) x*ToRad(Gyro_Gain_Z) //Return the scaled ADC raw 

data of the gyro in radians for second 

 

#define Kp_ROLLPITCH 0.02 

#define Ki_ROLLPITCH 0.00002 

#define Kp_YAW 1.2 

#define Ki_YAW 0.00002 

 

/*For debugging purposes*/ 

//OUTPUTMODE=1 will print the corrected data,  

//OUTPUTMODE=0 will print uncorrected data of the gyros (with drift) 

#define OUTPUTMODE 1 

 

//#define PRINT_DCM 0     //Will print the whole direction cosine matrix 

#define PRINT_ANALOGS 0 //Will print the analog raw data 

#define PRINT_EULER 1   //Will print the Euler angles Roll, Pitch and Yaw 
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#define ADC_WARM_CYCLES 50 

#define STATUS_LED 13  

int8_t sensors[3] = {1,2,0};  // Map the ADC channels gyro_x, gyro_y, gyro_z 

int SENSOR_SIGN[9] = {-1,1,-1,1,1,1,-1,-1,-1};  //Correct directions x,y,z - gyros, 

accels, magnetormeter 

float G_Dt=0.02;    // Integration time (DCM algorithm)  We will run the integration 

loop at 50Hz if possible 

long timer=0;   //general purpuse timer 

long timer_old; 

long timer24=0; //Second timer used to print values  

int AN[6]; //array that store the 3 ADC filtered data (gyros) 

int AN_OFFSET[6]={0,0,0,0,0,0}; //Array that stores the Offset of the sensors 

int ACC[3];          //array that store the accelerometers data 

int accel_x; int accel_y; int accel_z; 

int magnetom_x; int magnetom_y; int magnetom_z; 

float MAG_Heading; 

float Accel_Vector[3]= {0,0,0}; //Store the acceleration in a vector 

float Gyro_Vector[3]= {0,0,0};//Store the gyros turn rate in a vector 

float Omega_Vector[3]= {0,0,0}; //Corrected Gyro_Vector data 

float Omega_P[3]= {0,0,0};//Omega Proportional correction 

float Omega_I[3]= {0,0,0};//Omega Integrator 

float Omega[3]= {0,0,0}; 

// Euler angles 

float roll; float pitch; float yaw; 

float errorRollPitch[3]= {0,0,0};  

float errorYaw[3]= {0,0,0}; 

unsigned int counter=0; 

byte gyro_sat=0; 

float DCM_Matrix[3][3]= {  {1,0,0  } ,{ 0,1,0  },{ 0,0,1  }};  

float Update_Matrix[3][3]={{0,1,2},{3,4,5},{6,7,8}}; //Gyros here 

float Temporary_Matrix[3][3]={{0,0,0  } ,{  0,0,0  },{0,0,0  }}; 

 //ADC variables 
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volatile uint8_t MuxSel=0; 

volatile uint8_t analog_reference; 

volatile uint16_t analog_buffer[8]; 

volatile uint8_t analog_count[8]; 

 

void setup() 

{  

  Serial.begin(57600); 

  pinMode (STATUS_LED,OUTPUT);  // Status LED 

   

  Analog_Reference(DEFAULT);  

  Analog_Init(); 

  I2C_Init(); 

  Accel_Init(); 

  Read_Accel(); 

  Serial.println("Sparkfun 9DOF Razor AHRS"); 

  digitalWrite(STATUS_LED,LOW); 

  delay(1500); 

   // Magnetometer initialization 

  Compass_Init(); 

    // Initialze ADC readings and buffers 

  Read_adc_raw(); 

  delay(20); 

    for(int i=0;i<32;i++)    // We take some readings... 

    { 

     Read_adc_raw(); 

     Read_Accel(); 

     for(int y=0; y<6; y++)   // Cumulate values 

        AN_OFFSET[y] += AN[y]; 

      delay(20); 

    } 
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  for(int y=0; y<6; y++) 

    AN_OFFSET[y] = AN_OFFSET[y]/32; 

   AN_OFFSET[5]-=GRAVITY*SENSOR_SIGN[5]; 

   

  //Serial.println("Offset:"); 

  for(int y=0; y<6; y++) 

   Serial.println(AN_OFFSET[y]); 

   delay(2000); 

  digitalWrite(STATUS_LED,HIGH); 

  Read_adc_raw();     // ADC initialization 

  timer=millis(); 

  delay(20); 

  counter=0; 

} 

 

void loop() //Main Loop 

{ 

  if((millis()-timer)>=20)  // Main loop runs at 50Hz 

  { 

    counter++; 

    timer_old = timer; 

    timer=millis(); 

    if (timer>timer_old) 

       G_Dt = (timer-timer_old)/1000.0;     

// Real time of loop run. We use this on the DCM algorithm (gyro integration time) 

    else 

      G_Dt = 0; 

     

    // *** DCM algorithm 

    // Data adquisition 

    Read_adc_raw();   // This read gyro data 

    Read_Accel();     // Read I2C accelerometer 
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        if (counter > 5)  // Read compass data at 10Hz... (5 loop runs) 

      { 

      counter=0; 

      Read_Compass();    // Read I2C magnetometer 

      Compass_Heading(); // Calculate magnetic heading   

      } 

     // Calculations... 

    Matrix_update();  

    Normalize(); 

    Drift_correction(); 

    Euler_angles(); 

    // *** 

       printdata(); 

    //Turn off the LED when you saturate any of the gyros.   

if((abs(Gyro_Vector[0])>=ToRad(300))||(abs(Gyro_Vector[1])>=ToRad(300))||(abs(

Gyro_Vector[2])>=ToRad(300))) 

      { 

      if (gyro_sat<50) 

        gyro_sat+=10; 

      } 

    else 

      { 

      if (gyro_sat>0) 

        gyro_sat--; 

      } 

   

    if (gyro_sat>0) 

      digitalWrite(STATUS_LED,LOW);   

    else 

      digitalWrite(STATUS_LED,HIGH);   

    } 

   } 
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ADC.pde 

 

/*We are using an oversampling and averaging method to increase the ADC 

resolution. Now we store the ADC readings in float format*/ 

void Read_adc_raw(void) 

{ 

  int i;  uint16_t temp1;     uint8_t temp2;     

    // ADC readings... 

  for (i=0;i<3;i++) 

    { 

      do{ 

        temp1= analog_buffer[sensors[i]];           // sensors[] maps sensors to correct order  

        temp2= analog_count[sensors[i]]; 

        } while(temp1 != analog_buffer[sensors[i]]);  // Check if there was an ADC 

interrupt during readings... 

         if (temp2>0) AN[i] = (float)temp1/(float)temp2;     // Check for divide by zero  

        } 

  // Initialization for the next readings... 

  for (int i=0;i<3;i++){ 

    do{ 

      analog_buffer[i]=0; 

      analog_count[i]=0; 

      } while(analog_buffer[i]!=0); // Check if there was an ADC interrupt during 

initialization... 

  } 

} 

float read_adc(int select) 

{ 

  if (SENSOR_SIGN[select]<0) 

    return(AN_OFFSET[select]-AN[select]); 
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  else 

    return(AN[select]-AN_OFFSET[select]);  

} 

//Activating the ADC interrupts.  

void Analog_Init(void) 

{ 

 ADCSRA|=(1<<ADIE)|(1<<ADEN); 

 ADCSRA|= (1<<ADSC); 

} 

void Analog_Reference(uint8_t mode) 

{  analog_reference = mode;} 

//ADC interrupt vector, this piece of code 

//is executed everytime a convertion is done.  

ISR(ADC_vect) 

{ 

  volatile uint8_t low, high; 

  low = ADCL; 

  high = ADCH; 

  if(analog_count[MuxSel]<63) { 

        analog_buffer[MuxSel] += (high << 8) | low;   // cumulate analog values 

        analog_count[MuxSel]++; 

  } 

  MuxSel++; 

  MuxSel &= 0x03;   //if(MuxSel >=4) MuxSel=0; 

  ADMUX = (analog_reference << 6) | MuxSel; 

  // start the conversion 

  ADCSRA|= (1<<ADSC); 

} 
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Compass.pde 

 

// Local magnetic declination 

// I use this web : http://www.ngdc.noaa.gov/geomagmodels/Declination.jsp 

#define MAGNETIC_DECLINATION -6.0    // not used now -> magnetic bearing 

 

void Compass_Heading() 

{ 

  float MAG_X; 

  float MAG_Y; 

  float cos_roll; 

  float sin_roll; 

  float cos_pitch; 

  float sin_pitch; 

   

  cos_roll = cos(roll); 

  sin_roll = sin(roll); 

  cos_pitch = cos(pitch); 

  sin_pitch = sin(pitch); 

  // Tilt compensated Magnetic filed X: 

  MAG_X = 

magnetom_x*cos_pitch+magnetom_y*sin_roll*sin_pitch+magnetom_z*cos_roll*sin

_pitch; 

  // Tilt compensated Magnetic filed Y: 

  MAG_Y = magnetom_y*cos_roll-magnetom_z*sin_roll; 

  // Magnetic Heading 

  MAG_Heading = atan2(-MAG_Y,MAG_X); 

} 
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DCM.pde 

/**************************************************/ 

void Normalize(void) 

{ 

  float error=0; 

  float temporary[3][3]; 

  float renorm=0; 

   

  error= -Vector_Dot_Product(&DCM_Matrix[0][0],&DCM_Matrix[1][0])*.5; //Equation 

19 

 

  Vector_Scale(&temporary[0][0], &DCM_Matrix[1][0], error); //Equation 19 

  Vector_Scale(&temporary[1][0], &DCM_Matrix[0][0], error); //Equation 19 

   

  Vector_Add(&temporary[0][0], &temporary[0][0], &DCM_Matrix[0][0]);//Equation 19 

  Vector_Add(&temporary[1][0], &temporary[1][0], &DCM_Matrix[1][0]);//Equation 19 

   

  Vector_Cross_Product(&temporary[2][0],&temporary[0][0],&temporary[1][0]); // c= a x 

b //Equation 20 

   

  renorm= .5 *(3 - Vector_Dot_Product(&temporary[0][0],&temporary[0][0])); //Equation 21 

  Vector_Scale(&DCM_Matrix[0][0], &temporary[0][0], renorm); 

   

  renorm= .5 *(3 - Vector_Dot_Product(&temporary[1][0],&temporary[1][0])); //Equation 21 

  Vector_Scale(&DCM_Matrix[1][0], &temporary[1][0], renorm); 

   

  renorm= .5 *(3 - Vector_Dot_Product(&temporary[2][0],&temporary[2][0])); //Equation 21 

  Vector_Scale(&DCM_Matrix[2][0], &temporary[2][0], renorm); 

} 



 
 

98 

 

 

/**************************************************/ 

void Drift_correction(void) 

{ 

  float mag_heading_x; 

  float mag_heading_y; 

  float errorCourse; 

  //Compensation the Roll, Pitch and Yaw drift.  

  static float Scaled_Omega_P[3]; 

  static float Scaled_Omega_I[3]; 

  float Accel_magnitude; 

  float Accel_weight; 

   

   

  //*****Roll and Pitch*************** 

 

  // Calculate the magnitude of the accelerometer vector 

  Accel_magnitude = sqrt(Accel_Vector[0]*Accel_Vector[0] + 

Accel_Vector[1]*Accel_Vector[1] + Accel_Vector[2]*Accel_Vector[2]); 

  Accel_magnitude = Accel_magnitude / GRAVITY; // Scale to gravity. 

  // Dynamic weighting of accelerometer info (reliability filter) 

  // Weight for accelerometer info (<0.5G = 0.0, 1G = 1.0 , >1.5G = 0.0) 

  Accel_weight = constrain(1 - 2*abs(1 - Accel_magnitude),0,1);  //   

 

  Vector_Cross_Product(&errorRollPitch[0],&Accel_Vector[0],&DCM_Matrix[2][0]); 

//adjust the ground of reference 

  Vector_Scale(&Omega_P[0],&errorRollPitch[0],Kp_ROLLPITCH*Accel_weight);  

Vector_Scale(&Scaled_Omega_I[0],&errorRollPitch[0],Ki_ROLLPITCH*Accel_weig

ht); 
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Vector_Add(Omega_I,Omega_I,Scaled_Omega_I);      

   //*****YAW*************** 

  // We make the gyro YAW drift correction based on compass magnetic heading 

  

  mag_heading_x = cos(MAG_Heading); 

  mag_heading_y = sin(MAG_Heading); 

  errorCourse=(DCM_Matrix[0][0]*mag_heading_y) - 

(DCM_Matrix[1][0]*mag_heading_x);  //Calculating YAW error 

  Vector_Scale(errorYaw,&DCM_Matrix[2][0],errorCourse); //Applys the yaw 

correction to the XYZ rotation of the aircraft, depeding the position. 

    Vector_Scale(&Scaled_Omega_P[0],&errorYaw[0],Kp_YAW);//.01proportional of 

YAW. 

  Vector_Add(Omega_P,Omega_P,Scaled_Omega_P);//Adding  Proportional. 

   Vector_Scale(&Scaled_Omega_I[0],&errorYaw[0],Ki_YAW);//.00001Integrator 

  Vector_Add(Omega_I,Omega_I,Scaled_Omega_I);//adding integrator to the 

Omega_I 

} 

/**************************************************/ 

/* 

void Accel_adjust(void) 

{ 

 Accel_Vector[1] += Accel_Scale(speed_3d*Omega[2]);  // Centrifugal force on Acc_y = 

GPS_speed*GyroZ 

 Accel_Vector[2] -= Accel_Scale(speed_3d*Omega[1]);  // Centrifugal force on Acc_z = 

GPS_speed*GyroY  

} 

*/ 

/**************************************************/ 

 

void Matrix_update(void) 
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{ 

  Gyro_Vector[0]=Gyro_Scaled_X(read_adc(0)); //gyro x roll 

  Gyro_Vector[1]=Gyro_Scaled_Y(read_adc(1)); //gyro y pitch 

  Gyro_Vector[2]=Gyro_Scaled_Z(read_adc(2)); //gyro Z yaw 

   

  Accel_Vector[0]=accel_x; 

  Accel_Vector[1]=accel_y; 

  Accel_Vector[2]=accel_z; 

     

  Vector_Add(&Omega[0], &Gyro_Vector[0], &Omega_I[0]);  //adding proportional 

term 

  Vector_Add(&Omega_Vector[0], &Omega[0], &Omega_P[0]); //adding Integrator 

term 

 

  //Accel_adjust();    //Remove centrifugal acceleration.   We are not using this function 

in this version - we have no speed measurement 

   

 #if OUTPUTMODE==1          

  Update_Matrix[0][0]=0; 

  Update_Matrix[0][1]=-G_Dt*Omega_Vector[2];//-z 

  Update_Matrix[0][2]=G_Dt*Omega_Vector[1];//y 

  Update_Matrix[1][0]=G_Dt*Omega_Vector[2];//z 

  Update_Matrix[1][1]=0; 

  Update_Matrix[1][2]=-G_Dt*Omega_Vector[0];//-x 

  Update_Matrix[2][0]=-G_Dt*Omega_Vector[1];//-y 

  Update_Matrix[2][1]=G_Dt*Omega_Vector[0];//x 

  Update_Matrix[2][2]=0; 

 #else                    // Uncorrected data (no drift correction) 
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  Update_Matrix[0][0]=0; 

  Update_Matrix[0][1]=-G_Dt*Gyro_Vector[2];//-z 

  Update_Matrix[0][2]=G_Dt*Gyro_Vector[1];//y 

  Update_Matrix[1][0]=G_Dt*Gyro_Vector[2];//z 

  Update_Matrix[1][1]=0; 

  Update_Matrix[1][2]=-G_Dt*Gyro_Vector[0]; 

  Update_Matrix[2][0]=-G_Dt*Gyro_Vector[1]; 

  Update_Matrix[2][1]=G_Dt*Gyro_Vector[0]; 

  Update_Matrix[2][2]=0; 

 #endif 

 

  Matrix_Multiply(DCM_Matrix,Update_Matrix,Temporary_Matrix); //a*b=c 

 

  for(int x=0; x<3; x++) //Matrix Addition (update) 

  { 

    for(int y=0; y<3; y++) 

    { 

      DCM_Matrix[x][y]+=Temporary_Matrix[x][y]; 

    }  

  } 

} 

 

void Euler_angles(void) 

{ 

  pitch = -asin(DCM_Matrix[2][0]); 

  roll = atan2(DCM_Matrix[2][1],DCM_Matrix[2][2]); 

  yaw = atan2(DCM_Matrix[1][0],DCM_Matrix[0][0]); 

} 
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I2C.pde 

/* ******************************************************* */ 

/* I2C code for ADXL345 accelerometer                      */ 

/* and HMC5843 magnetometer                                */ 

/* ******************************************************* */ 

 

int AccelAddress = 0x53; 

int CompassAddress = 0x1E;  //0x3C //0x3D;  //(0x42>>1); 

 

void I2C_Init() 

{ 

  Wire.begin(); 

} 

 

void Accel_Init() 

{ 

  Wire.beginTransmission(AccelAddress); 

  Wire.send(0x2D);  // power register 

  Wire.send(0x08);  // measurement mode 

  Wire.endTransmission(); 

  delay(5); 

  Wire.beginTransmission(AccelAddress); 

  Wire.send(0x31);  // Data format register 

  Wire.send(0x08);  // set to full resolution 

  Wire.endTransmission(); 

  delay(5);  

  // Because our main loop runs at 50Hz we adjust the output data rate to 50Hz (25Hz 

bandwidth) 

  Wire.beginTransmission(AccelAddress); 
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  Wire.send(0x2C);  // Rate 

  Wire.send(0x09);  // set to 50Hz, normal operation 

  Wire.endTransmission(); 

  delay(5); 

} 

 

// Reads x,y and z accelerometer registers 

void Read_Accel() 

{ 

  int i = 0; 

  byte buff[6]; 

   

  Wire.beginTransmission(AccelAddress);  

  Wire.send(0x32);        //sends address to read from 

  Wire.endTransmission(); //end transmission 

   

  Wire.beginTransmission(AccelAddress); //start transmission to device 

  Wire.requestFrom(AccelAddress, 6);    // request 6 bytes from device 

   

  while(Wire.available())   // ((Wire.available())&&(i<6)) 

  {  

    buff[i] = Wire.receive();  // receive one byte 

    i++; 

  } 

  Wire.endTransmission(); //end transmission 

   

  if (i==6)  // All bytes received? 

    { 

    ACC[1] = (((int)buff[1]) << 8) | buff[0];    // Y axis (internal sensor x axis) 

    ACC[0] = (((int)buff[3]) << 8) | buff[2];    // X axis (internal sensor y axis) 
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    ACC[2] = (((int)buff[5]) << 8) | buff[4];    // Z axis 

    AN[3] = ACC[0]; 

    AN[4] = ACC[1]; 

    AN[5] = ACC[2]; 

    accel_x = SENSOR_SIGN[3]*(ACC[0]-AN_OFFSET[3]); 

    accel_y = SENSOR_SIGN[4]*(ACC[1]-AN_OFFSET[4]); 

    accel_z = SENSOR_SIGN[5]*(ACC[2]-AN_OFFSET[5]); 

    } 

  else 

    Serial.println("!ERR: Acc data"); 

} 

void Compass_Init() 

{ 

  Wire.beginTransmission(CompassAddress); 

  Wire.send(0x02);  

  Wire.send(0x00);   // Set continouos mode (default to 10Hz) 

  Wire.endTransmission(); //end transmission 

} 

void Read_Compass() 

{ 

  int i = 0; 

  byte buff[6]; 

   Wire.beginTransmission(CompassAddress);  

  Wire.send(0x03);        //sends address to read from 

  Wire.endTransmission(); //end transmission 

    //Wire.beginTransmission(CompassAddress);  

  Wire.requestFrom(CompassAddress, 6);    // request 6 bytes from device 

  while(Wire.available())   // ((Wire.available())&&(i<6)) 

  {  
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    buff[i] = Wire.receive();  // receive one byte 

    i++; 

  } 

  Wire.endTransmission(); //end transmission 

    if (i==6)  // All bytes received? 

    { 

    // MSB byte first, then LSB, X,Y,Z 

    magnetom_x = SENSOR_SIGN[6]*((((int)buff[2]) << 8) | buff[3]);    // X axis (internal 

sensor y axis) 

    magnetom_y = SENSOR_SIGN[7]*((((int)buff[0]) << 8) | buff[1]);    // Y axis (internal 

sensor x axis) 

    magnetom_z = SENSOR_SIGN[8]*((((int)buff[4]) << 8) | buff[5]);    // Z axis 

    } 

  else 

    Serial.println("!ERR: Mag data"); 

} 

 

matrix.pde 

/**************************************************/ 

//Multiply two 3x3 matrixs. This function developed by Jordi can be easily adapted to 

multiple n*n matrix's. (Pero me da flojera!).  

void Matrix_Multiply(float a[3][3], float b[3][3],float mat[3][3]) 

{ 

  float op[3];  

  for(int x=0; x<3; x++) 

  { 

    for(int y=0; y<3; y++) 

    { 

      for(int w=0; w<3; w++) 

      { 
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       op[w]=a[x][w]*b[w][y]; 

      }  

      mat[x][y]=0; 

      mat[x][y]=op[0]+op[1]+op[2]; 

       

      float test=mat[x][y]; 

    } 

  } 

} 

Output.pde 

void printdata(void) 

{     

      Serial.print("!"); 

 

      #if PRINT_EULER == 1 

      Serial.print("ANG:"); 

      Serial.print(ToDeg(roll)); 

      Serial.print(","); 

      Serial.print(ToDeg(pitch)); 

      Serial.print(","); 

      Serial.print(ToDeg(yaw)); 

      #endif       

      #if PRINT_ANALOGS==1 

      Serial.print(",AN:"); 

      Serial.print(AN[sensors[0]]);  //(int)read_adc(0) 

      Serial.print(","); 

      Serial.print(AN[sensors[1]]); 

      Serial.print(","); 

      Serial.print(AN[sensors[2]]);   

      Serial.print(","); 
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      Serial.print(ACC[0]); 

      Serial.print (","); 

      Serial.print(ACC[1]); 

      Serial.print (","); 

      Serial.print(ACC[2]); 

      Serial.print(","); 

      Serial.print(magnetom_x); 

      Serial.print (","); 

      Serial.print(magnetom_y); 

      Serial.print (","); 

      Serial.print(magnetom_z);       

      #endif 

      /*#if PRINT_DCM == 1 

      Serial.print (",DCM:"); 

      Serial.print(convert_to_dec(DCM_Matrix[0][0])); 

      Serial.print (","); 

      Serial.print(convert_to_dec(DCM_Matrix[0][1])); 

      Serial.print (","); 

      Serial.print(convert_to_dec(DCM_Matrix[0][2])); 

      Serial.print (","); 

      Serial.print(convert_to_dec(DCM_Matrix[1][0])); 

      Serial.print (","); 

      Serial.print(convert_to_dec(DCM_Matrix[1][1])); 

      Serial.print (","); 

      Serial.print(convert_to_dec(DCM_Matrix[1][2])); 

      Serial.print (","); 

      Serial.print(convert_to_dec(DCM_Matrix[2][0])); 

      Serial.print (","); 

      Serial.print(convert_to_dec(DCM_Matrix[2][1])); 

      Serial.print (","); 
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      Serial.print(convert_to_dec(DCM_Matrix[2][2])); 

      #endif*/ 

      Serial.println();     

       

} 

 

long convert_to_dec(float x) 

{ 

  return x*10000000; 

} 

 

Vector.pde 

//Computes the dot product of two vectors 

float Vector_Dot_Product(float vector1[3],float vector2[3]) 

{ 

  float op=0; 

   

  for(int c=0; c<3; c++) 

  { 

  op+=vector1[c]*vector2[c]; 

  } 

   return op;  

} 

//Computes the cross product of two vectors 

void Vector_Cross_Product(float vectorOut[3], float v1[3],float v2[3]) 

{ 

  vectorOut[0]= (v1[1]*v2[2]) - (v1[2]*v2[1]); 

  vectorOut[1]= (v1[2]*v2[0]) - (v1[0]*v2[2]); 

  vectorOut[2]= (v1[0]*v2[1]) - (v1[1]*v2[0]); 

} 
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//Multiply the vector by a scalar.  

void Vector_Scale(float vectorOut[3],float vectorIn[3], float scale2) 

{ 

  for(int c=0; c<3; c++) 

  { 

   vectorOut[c]=vectorIn[c]*scale2;  

  } 

} 

void Vector_Add(float vectorOut[3],float vectorIn1[3], float vectorIn2[3]) 

{ 

  for(int c=0; c<3; c++) 

  { 

     vectorOut[c]=vectorIn1[c]+vectorIn2[c]; 

  } 

} 
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Appendix B 
 

IMU_Razor9DOF.py interface with Vpython 
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Source:  http://code.google.com/p/sf9domahrs/downloads/list 

 

# Test for Razor 9DOF IMU 

# Jose Julio @2009 

# This script needs VPhyton, pyserial and pywin modules 

# First Install Python 2.6.4 

# Install pywin from http://sourceforge.net/projects/pywin32/ 

# Install pyserial from http://sourceforge.net/projects/pyserial/files/ 

# Install Vphyton from http://vpython.org/contents/download_windows.html 

 

from visual import * 

import serial 

import string 

import math 

from time import time 

grad2rad = 3.141592/180.0 

# Check your COM port and baud rate 

ser = serial.Serial(port='COM9',baudrate=57600, timeout=1) 

 

# Main scene 

scene=display(title="9DOF Razor IMU test") 

scene.range=(1.2,1.2,1.2) 

#scene.forward = (0,-1,-0.25) 

scene.forward = (1,0,-0.25) 

scene.up=(0,0,1) 

 

# Second scene (Roll, Pitch, Yaw) 

scene2 = display(title='9DOF Razor IMU test',x=0, y=0, width=500, 

height=200,center=(0,0,0), background=(0,0,0)) 

scene2.range=(1,1,1) 

scene.width=500 

scene.y=200 
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scene2.select() 

 

#Roll, Pitch, Yaw 

cil_roll = cylinder(pos=(-0.4,0,0),axis=(0.2,0,0),radius=0.01,color=color.red) 

cil_roll2 = cylinder(pos=(-0.4,0,0),axis=(-0.2,0,0),radius=0.01,color=color.red) 

cil_pitch = cylinder(pos=(0.1,0,0),axis=(0.2,0,0),radius=0.01,color=color.green) 

cil_pitch2 = cylinder(pos=(0.1,0,0),axis=(-0.2,0,0),radius=0.01,color=color.green) 

#cil_course = cylinder(pos=(0.6,0,0),axis=(0.2,0,0),radius=0.01,color=color.blue) 

#cil_course2 = cylinder(pos=(0.6,0,0),axis=(-0.2,0,0),radius=0.01,color=color.blue) 

arrow_course = arrow(pos=(0.6,0,0),color=color.cyan,axis=(-0.2,0,0), 

shaftwidth=0.02, fixedwidth=1) 

 

#Roll,Pitch,Yaw labels 

label(pos=(-0.4,0.3,0),text="Roll",box=0,opacity=0) 

label(pos=(0.1,0.3,0),text="Pitch",box=0,opacity=0) 

label(pos=(0.55,0.3,0),text="Yaw",box=0,opacity=0) 

label(pos=(0.6,0.22,0),text="N",box=0,opacity=0,color=color.yellow) 

label(pos=(0.6,-0.22,0),text="S",box=0,opacity=0,color=color.yellow) 

label(pos=(0.38,0,0),text="W",box=0,opacity=0,color=color.yellow) 

label(pos=(0.82,0,0),text="E",box=0,opacity=0,color=color.yellow) 

label(pos=(0.75,0.15,0),height=7,text="NE",box=0,color=color.yellow) 

label(pos=(0.45,0.15,0),height=7,text="NW",box=0,color=color.yellow) 

label(pos=(0.75,-0.15,0),height=7,text="SE",box=0,color=color.yellow) 

label(pos=(0.45,-0.15,0),height=7,text="SW",box=0,color=color.yellow) 

L1 = label(pos=(-0.4,0.22,0),text="-",box=0,opacity=0) 

L2 = label(pos=(0.1,0.22,0),text="-",box=0,opacity=0) 

L3 = label(pos=(0.7,0.3,0),text="-",box=0,opacity=0) 

 

# Main scene objects 

scene.select() 

 

# Reference axis (x,y,z) 
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arrow(color=color.green,axis=(1,0,0), shaftwidth=0.02, fixedwidth=1) 

arrow(color=color.green,axis=(0,-1,0), shaftwidth=0.02 , fixedwidth=1) 

arrow(color=color.green,axis=(0,0,-1), shaftwidth=0.02, fixedwidth=1) 

 

# labels 

label(pos=(0,0,0.8),text="9DOF Razor IMU test",box=0,opacity=0) 

label(pos=(1,0,0),text="X",box=0,opacity=0) 

label(pos=(0,-1,0),text="Y",box=0,opacity=0) 

label(pos=(0,0,-1),text="Z",box=0,opacity=0) 

 

# IMU object 

platform = box(length=1, height=0.05, width=1, color=color.red) 

p_line = box(length=1,height=0.08,width=0.1,color=color.yellow) 

plat_arrow = arrow(color=color.green,axis=(1,0,0), shaftwidth=0.06, fixedwidth=1) 

f = open("Serial"+str(time())+".txt", 'w') 

roll=0 

pitch=0 

yaw=0 

 

while 1: 

    line = ser.readline() 

    line = line.replace("!ANG:","")   # Delete "!ANG:" 

    print line 

    f.write(line)                     # Write to the output log file 

    words = string.split(line,",")    # Fields split 

   

  if len(words) > 2: 

        try: 

            roll = float(words[0])*grad2rad 

            pitch = float(words[1])*grad2rad 

            yaw = float(words[2])*grad2rad 

        except: 
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            print "Invalid line" 

        axis=(cos(pitch)*cos(yaw),-cos(pitch)*sin(yaw),sin(pitch))  

        up=(sin(roll)*sin(yaw)+cos(roll)*sin(pitch)*cos(yaw),sin(roll)*cos(yaw)-

cos(roll)*sin(pitch)*sin(yaw),-cos(roll)*cos(pitch)) 

       

        platform.axis=axis 

        platform.up=up 

        platform.length=1.0 

        platform.width=0.65 

        plat_arrow.axis=axis 

        plat_arrow.up=up 

        plat_arrow.length=0.8 

        p_line.axis=axis 

        p_line.up=up 

        

        cil_roll.axis=(0.2*cos(roll),0.2*sin(roll),0) 

        cil_roll2.axis=(-0.2*cos(roll),-0.2*sin(roll),0) 

        cil_pitch.axis=(0.2*cos(pitch),0.2*sin(pitch),0) 

        cil_pitch2.axis=(-0.2*cos(pitch),-0.2*sin(pitch),0) 

        

       arrow_course.axis=(0.2*sin(yaw),0.2*cos(yaw),0) 

         

        L1.text = str(float(words[0])) 

        L2.text = str(float(words[1])) 

        L3.text = str(float(words[2]))         

ser.close 

f.close 
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Appendix C 

 

Warping image to top view code with C language 
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void WarpImg(float x, float y, float z, static bool cntRed) 

 { 

  capture = cvCreateCameraCapture(0); 

  assert(capture); 

 

  char ImgnamePer[10]; 

  float fx=CV_MAT_ELEM( *intrinsic_matrix, float, 0, 0 ); 

  float fy=CV_MAT_ELEM( *intrinsic_matrix, float, 1, 1 ); 

  float cx=CV_MAT_ELEM( *intrinsic_matrix, float, 0, 2 ); 

  float cy=CV_MAT_ELEM( *intrinsic_matrix, float, 1, 2 ); 

  IplImage *image = cvQueryFrame(capture); 

  IplImage *warpingImg = cvCreateImage(cvSize(image->width,image-

>height),IPL_DEPTH_8U,3); 

  Bitmap^ outImage1 = gcnew Bitmap(image->width,image-

>height,image-

>widthStep,System::Drawing::Imaging::PixelFormat::Format24bppRgb,System::IntPt

r(image->imageData)); 

 

  this->inputImage->Image = gcnew Bitmap(outImage1); 

  IplImage* Img = image; 

  IplImage* Img = Undistort(image); 

  //Roll&Pitch 

  XangleD =y-90.0; 

  ZangleD = x; 

 

  xAngle  = (float)(PI/180)*XangleD; 

  yAngle  = (float)(PI/180)*YangleD; 

  zAngle  = (float)(PI/180)*ZangleD; 

 

r11=cos(yAngle)*cos(zAngle); 

r12=cos(zAngle)*sin(xAngle)*sin(yAngle)-cos(xAngle)*sin(zAngle); 

r13=cos(xAngle)*cos(zAngle)*sin(yAngle)+sin(xAngle)*sin(zAngle); 
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r21=cos(yAngle)*sin(zAngle); 

r22=sin(zAngle)*sin(xAngle)*sin(yAngle)+cos(xAngle)*cos(zAngle); 

r23=cos(xAngle)*sin(yAngle)*sin(zAngle)-cos(zAngle)*sin(xAngle); 

r31=-sin(yAngle); 

r32=cos(yAngle)*sin(xAngle); 

r33=cos(xAngle)*cos(yAngle);  

t1=0; 

t2=0; 

t3=0.5*fx; 

 

  CV_MAT_ELEM( *T, float, 0, 0 )=1; 

  CV_MAT_ELEM( *T, float, 0, 1 )=0; 

  CV_MAT_ELEM( *T, float, 0, 2 )=-cx; 

  CV_MAT_ELEM( *T, float, 1, 0 )=0; 

  CV_MAT_ELEM( *T, float, 1, 1 )=1; 

  CV_MAT_ELEM( *T, float, 1, 2 )=-cy; 

  CV_MAT_ELEM( *T, float, 2, 0 )=0; 

  CV_MAT_ELEM( *T, float, 2, 1 )=0; 

  CV_MAT_ELEM( *T, float, 2, 2 )=1; 

 

 

  CV_MAT_ELEM( *H, float, 0, 0 )=(fx*r11 + cx*r31); 

  CV_MAT_ELEM( *H, float, 0, 1 )=(fx*r12 + cx*r32); 

  CV_MAT_ELEM( *H, float, 0, 2 )=(fx*t1 + cx*t3); 

  CV_MAT_ELEM( *H, float, 1, 0 )=(fy*r21 + cy*r31); 

  CV_MAT_ELEM( *H, float, 1, 1 )=(fy*r22 + cy*r32); 

  CV_MAT_ELEM( *H, float, 1, 2 )=(fy*t2 + cy*t3); 

  CV_MAT_ELEM( *H, float, 2, 0 )=r31; 

  CV_MAT_ELEM( *H, float, 2, 1 )=r32; 

  CV_MAT_ELEM( *H, float, 2, 2 )=t3; 

   

  H2=MulMat3x3(H,T); 
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  cvWarpPerspective(Img,warpingImg,H2,CV_INTER_LINEAR | 

CV_WARP_INVERSE_MAP | CV_WARP_FILL_OUTLIERS); 

   

if (cntRed==true) 

  { 

   CountPixel(warpingImg,y); 

   itoa((int)y,ImgnamePer,10); 

   strcat( ImgnamePer,"Per"); 

   strcat( ImgnamePer,".bmp");  

   cvSaveImage( ImgnamePer,Img); 

  } 

  Bitmap^ outImage2 = gcnew Bitmap(warpingImg-

>width,warpingImg->height,warpingImg-

>widthStep,System::Drawing::Imaging::PixelFormat::Format24bppRgb,System::IntPt

r(warpingImg->imageData)); 

  this->outputImage->Image = gcnew Bitmap(outImage2); 

   

  cvReleaseImage(&Img); 

  cvReleaseImage(&warpingImg); 

 

 } 
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Appendix D 

 

CP210x USB to UART Bridge VCP Drivers 
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The CP210x USB to UART Bridge Virtual COM Port (VCP) drivers are 

required for device operation as a Virtual COM Port to facilitate host communication 

with CP210x products. These devices can also interface to a host using the 

USBXpress direct access driver. 

 

 

 

Appendix Figure D1  The CP2102 system diagram 

 

Source: Silicon labs datasheet 

 

The CP2102 is a highly-integrated USB-to-UART Bridge Controller providing 

a simple solution for updating RS-232 designs to USB using a minimum of 

components and PCB space. The CP2102 includes a USB 2.0 full-speed function 

controller, USB transceiver, oscillator, EEPROM, and asynchronous serial data bus 

(UART) with full modem control signals in a compact 5 x 5 mm QFN-28 package. 

No other external USB components are required. The on-chip EEPROM may be used 

to customize the USB Vendor ID, Product ID, Product Description String, Power 

Descriptor, Device Release Number, and Device Serial Number as desired for OEM 

applications.  
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Appendix E 

 

9DOF Schematic 
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Appendix Figure E1  9DOF Razor v14 schematic: LPRS530AL, ADXL345, LY530ALM, HMC5043. 

 

Source: Silicon labs datasheet 1
2
2
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Appendix Figure E2  9DOF Razor v14 schematic: ATmega328. 

 

Source: Silicon labs datasheet

1
2
3
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