THESIS APPROVAL
GRADUATE SCHOOL, KASETSART UNIVERSITY

Master of Engineering (Industrial Engineering)
DEGREE

Industrial Engineering Industrial Engineering

FIELD DEPARTMENT

TITLE: Solving the Traveling Salesman Problem with Gaussian Process Regression

NAME: Miss Jarumas Chantapanich

THIS THESIS HAS BEEN ACCEPTED BY

THESIS ADVISOR
( Assistant Professor Juta Pichitlamken, Ph.D. )

THESIS CO-ADVISOR

( Ms. Suwitchaporn Witchakul, D.Eng. )

DEPARTMENT HEAD

APPROVED BY THE GRADUATE SCHOOL ON

DEAN

( Associate Professor Gunjana Theeragool, D.Agr. )




THESIS

SOLVING THE TRAVELING SALESMAN PROBLEM WITH
GAUSSIAN PROCESS REGRESSION

JARUMAS CHANTAPANICH

A Thesis Submitted in Partial Fulfillment of
the Requirements for the Degree of
Master of Engineering (Industrial Engineering)
Graduate School, Kasetsart University
2011



Jarumas Chantapanich 2011: Solving the Traveling Salesman Problem with
Gaussian Process Regression. Master of Engineering (Industrial Engineering),
Major Field: Industrial Engineering , Department of Industrial Engineering.

Thesis Advisor: Assistant Professor Juta Pichitlamken, Ph.D. 102 pages.

The traveling salesman problem (TSP) is a generalized form of the simple
problem to find the smallest closed loop or distance from route that connects a
number of points in a plane. We present a new heuristics method for solving TSP
which is NP-hard. Given a small set of data, we first fit a Gaussian process regression
function and then find a route that minimizes this regression function. The route is
further transformed into a TSP tour. The numerical experiment shows that our
approach can find a reasonably good solution. This method can predict an optimal
solution which is higher than the optimal value by 1.4-13% when being experimented
on test problems from TSPLIB (Bixby and Reinelt 1995). We expect our heuristics to

improve if we use a more effective method for a tour construction.

Student’s signature Thesis Advisor’s signature



ACKNOWLEDGEMENTS

This research project would not have been possible without the support of
many people. The author wishes to express her gratitude to her supervisor, Assistant
Professor  Juta Pichitlamken, Ph.D. who was abundantly helpful and offered
invaluable assistance, support and guidance. Deepest gratitude is also due to the
members of the supervisory committee, professor Suvichaporn Nichakul, Ph.D
without their knowledge and assistance this study would not have been successful.

Special thanks also to all professors, especially the International Industrial
Engineering Program professors for sharing the literature and invaluable assistance.
Not forgetting to the professor’s assistants who support everything.

The author would also like to truly thank to the Faculty for providing the
financial means and laboratory facilities. The author wishes to express her love and
gratitude to her beloved families; for their understanding & endless love, through the

duration of her studies.

Jarumas Chantapanich
September 2011



TABLE OF CONTENTS

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

INTRODUCTION

OBJECTIVES

LITERATURE REVIEW

MATERIALS AND METHOD
Materials
Method

RESULTS AND DISCUSSION

CONCLUSION

LITERATURE CITED

APPENDICES
APPENDIX A TSP DATA OF TEST PROBLEM
APPENDIX B PROGRAMMING
APPENDIX C GPML TOOLBOX MANUAL
APPENDIX D NUMERICAL EXAMPLE

CURRICULUM VITAE

Page

25
25
25
39
48
49
54
55
66
89
94

102



LIST OF TABLES

Table Page

1 Predicted minimum distance from a GPR function before being

transformed 42
2  Distance of TSP tours after being transformed to a TSP tour. 43
3  Distance of TSP tours after and before being transformed to a TSP tour

of 96 cities of 666-cities Africa problem. 46

Appendix Table

Al Data of Ulysses 22, Ulysses16 and Burmal4. 56
A2 Data of 96 Africa-Sub problem. 57
A3 Optimal solution of Ulysses 22, Ulysses16 and Burmal4. 58
A4 Optimal solution of 96 Africa-Sub problem. 59
A5 Distance metric of Ulysses 22 60
A6 Distance metric of Ulysses 16 61
A7 Distance metric of Burma 14 62
A8 Prediction distance for applied GPR in TSP. 63

C1l Input and output of GPR function 92



Figure

o O A oW N

10
11
12
13
14
15
16
17
18
19

20

LIST OF FIGURES

Effect of a hyperparameter| (1=2)

Effect of a hyperparameter| (1=0.5)

Effect of a hyperparameter| (1=0.1)

Sampling observation with noise data

Predictive distribution of Gaussian process regression
Two-dimensional functions drawn at random from noise-free
exponential

Three-dimensional functions when adapting 7, parameter where two

Illustration of automatic relevance determination in a Gaussian process

for a synthetic problem having three inputs x;, x, and x, for which the
curves show the corresponding values of the hyperparameters 7, (red),
n, (green), and 7, (blue) as a function of the number of iterations

when optimizing the marginal likelihood. Details are given in the text.
Flow Diagram of our Heuristic method

“SearchNodeMin” function in MATLAB

Flow Chart of a greedy heuristic to construct a subtour

“notmain” function

“Gen_routhfixstart” and “Gen_routhfixstartSearch” functions

GPR functions to approximate an optimal TSP tour

“GetrouteX” function

“Fitnod” function

“Fit” function

Transform a GPR optimal solution into a TSP tour flow chart.
Percentage of prediction total distance at after transformed to a TSP
tour and real optimal value with R =3500 and 1 replications.

95% Confidence Intervals of repeating experiment at after transformed
to a TSP tour with R =3500 and 4 replications.

iii

Page

15
15

19
23

24
28
29
30
31
32
33
35
35
36
38

44

44



Figure

21 95% Confidence Intervals of repeating experiment at R =2500 and 3

22 A relations of number of node in subtour and a computational time

Appendix

C1
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
D16
D17
D18

LIST OF FIGURES (Continued)

replications at 96 cities of 666-cities Africa

Figure

GPR algorithm
Latitude and longitude from GEO TSP.

Distance matrix

Distance matrix which shown minimum distance.

Subtour

The rest tour

3 sampling tours( X )

Their corresponding total distance (Y )
The rest tour are redefined

Redefined sampling tour

Binary term of sampling tour

Binary matrix after reducing variable
One row matrix of each tour ( X ")
Selected starting solution

Prediction value

Binary Matrix of optimal solution
Path matrix

Delete paths in H which have node the same as T.

TSP Tour

v

Page

45
47

90
95
95
96
96
96
97
97
97
98
98
99
99
99
100
100
100
101
101



SOLVING THE TRAVELING SALESMAN PROBLEM WITH GAUSSIAN
PROCESS REGRESSION

INTRODUCTION

The traveling salesman problem (TSP) is widely studied by mathematicians
and operation researchers because it is commonly found in real-world problems, such
as finding a minimum distance in logistics problems (Dorigo and Gambardell, 1996)
and optimizing a production sequence for scheduling problems (Jeong, 1997). The
problem can simply be stated as: a traveling salesman wishes to visit exactly once

each of a list of ncities (where the cost of traveling from city i to city j isC;) and

then return to the home city. The objective of TSP is to minimize the total cost of

traveling, Z C; (Hoffman and Padberg, 1985).

i,j=1

TSP is one of combinatorial optimization problems. TSP is NP-complete.
Thus, the running times for any heuristic algorithms to solve TSP increases
exponentially with the number of cities (Hall, 1995). Although the problem is
difficult, a large number of heuristics perform well; some instances with many
thousands of cities can be solved. Applegate et al. (2006) solve a traveling salesman
problem which models the production of printed circuit boards having 7,397 holes.

Later, they solve another problem with over the 13,509 largest cities in the U.S.

We employ some random tours “independent variables” and total costs or
total distances “dependent variables” to generate a total cost regression function.
Therefore, TSP can be viewed as a regression problem. The relationship between

dependent variables and independent variables are likely to be nonlinear; thus, a



multiple linear regression cannot be applied. Gaussian process regression (GPR) is
capable of fitting arbitrary-shaped functions, so it is selected to fit a response function

for TSP

GPR provides a powerful methodology for modeling data that exhibit
complex characteristics such as nonlinear behaviors while retaining mathematical
simplicity. Gaussian process is a collection of random variables, any finite number of
which has (consistent) Gaussian distribution. An example of Gaussian process

applications is in prediction control (Kocijan et al., 2003).



OBJECTIVES

The objective of this study is to apply GPR to TSP to predict the minimum
cost or distance and to apply a numerical method to estimate a corresponding TSP
tour of this prediction.

Assumptions

This study will be considered under the following delimitation below:

We consider a geographical TSP. A geographical TSP has their coordinates as
latitudes and longitudes of the Earth.

The distance or cost matrix are symmetric.
The GPR hyperparameters are calculated based on all of the generated data.

GPR prediction model based on a square exponential covariance function with

automatic relevance determination (ARD) and independent noise.

Test problem is 96 Africa, Ulysses22, Ulysses16, and Burmal4 from TSPLIB (Bixby
and Reinelt 1995)

Significance of study

The benefit of this study is to speed up the calculation of the TSP tour and to provide

a good (close to optimal) TSP tour within a small amount of time.



LITERATURE REVIEW

Development of TSP and related works on GPR are described as follows:
Sections 1 and 3 describe the related TSP and GPR literature. We describe GPR and
the Sparse Multiscale GPR theory in Sections 2 and 4. The squared Exponential
Kernel and hyperparameter adaptation by using automatic relevance determination
which is used in applying GPR to TSP are described in Sections 5 and 7. Spare

Multiscale Gaussian Process Regression is our proposed method (Section 6).

1. Traveling Salesman Problems

The classical TSP is symmetric, i.e., distance from node i to node j is equal
to distance from node j to node i. Lui et al. (2007) propose a heuristic for this type

of TSP. Their method is to split a TSP tour into overlapped blocks and then improve
each block separately. By doing a local search using the Generalized Crossing
method, each block is explored intensively in order to improve the existing solution.
When comparing with an adaptive neural network method (Cochrane, and Beasley,

2003), this algorithm obtains a better solution.

The constraints of TSP are not only to visit all the cities exactly once but
sometimes TSP also has other conditions on distance or cost such as the Orienteering
and Discounted-Reward TSP, where both are NP-hard (Blum et al., 2007). The goal
of the Orienteering TSP is to find the path with maximum reward collected, subject to
a hard limit on total distance. While in the Discounted-Reward TSP, the length limit

IS given a discount factor in order to maximize total discount reward collected.

TSP is applied to many real-world situations. One of the common problems is
when cities can be dynamically added or removed. Varga et al. (2009) propose a
multi-agent approach, based on the sensitive stigmergic agent system model (Grasse
1959), refined with new types of messages between agents. The agent sends

messages every time change occurs; for instance, when an agent observes that the city



has disappeared or appeared. After testing under various pheromone sensitivity levels
and learning abilities for agents, the proposed model appear to have good

performance.

Hasegawa (2006) shows that TSP can be applied to complex physical
problems. The temperature cycling experiments is a local search process that has a
resemblance to polymer glass dynamics at the point that a memory effect and a
relaxation acceleration appear in the case of negative and positive cycling. The
temperature cycling experiments is formulated as a random Euclidean TSP and is

solved with the Metropolis algorithm (Metropolis et al., 1953).

2. Gaussian Process

The material in this section is taken from Kalaitzis (2009), Shah (2009), and

Rasmussen and Williams (2006).

Formally, a Gaussian process (GP) is a stochastic process over a feature space
(an abstract space where each pattern sample is represented as a point in n-
dimensional space. Its dimension is determined by the number of features used to
describe the patterns). The probability distribution p(f(x), f(x,),..., f(x,))of a
function f(x) for any finite set of points {x,X,,...,x,} mapped to that space is
Gaussian, and such that any of these Gaussian distributions is Kolmogorov consistent
(Kalaitzis, 2009).

Kolmogorov consistency is satisfied when K; =k(x;,x;) for some covariance

function k such that all possible k are positive semi-definite (i.e.,y’ K, =0).
Exchangeability is satisfied when the random variable data are independent and

identically distributed. It means that the order in which they become available has no



impact on the marginal distribution; hence there is no need to fix ordering of a data

from the training set for validation purposes.

A GP can be specified by giving the second order characteristics: mean
function and covariance function. Let us define the mean function as w(x)and the

covariance function as k(x,x"), as follows:

u(x) = E[T(]; 1)

k(x, x') = EI(f(x) - xO))(f (X) - (xX)]- @)

A GP is thus a generalization of the Gaussian probability distribution. It is

specified by a mean function g(x)and covariance function k(x, x") as follows:

F(x) ~ GP(u(x), k(x, x7). @)

A GP automatically implies the consistency property which simply means that
if the GP specifies normal distribution of dependent variable by mean and covariance
as (f(x), f(x,))~N (,u,Z) then it has already specified (f(x,))~ N (M,Zn)where
2., is a relevant sub-matrix of > . Examination of a larger set of variables does not
change the distribution of the smaller set. Let us consider a simple Bayesian linear
regression model f(x) = @(x)" @wwith prior @ ~N (0,%,). Thus, we have the

mean and covariance to be

E[f(X)] = 4(x)" E[w] = O (4)



E[f () f(x)] = ¢(x)" E[wa"l¢(x) = ¢(X)" X, 4(x). ()

Thus, f(x) and f(x') are jointly Gaussian distributed with mean and
covariance as given in the Equations (4) and (5). The choice of different covariance
functions allows us to take into consideration different aspects of f(x). In our case,

the choice is the squared exponential covariance function, given below:

-(x-x)°

k(x,x) = o2 exp[ o7

]+af5(x,x'), (6)
where o gives us the maximum allowable covariance of f(x). When x=x" then
k(x, x") approaches its maximum where the Gaussian process appears to be a smooth
function as its neighbors are alike. The parameter | affects the length of the
dependence. If x is far away from x', then k(x,x)~0. Parameter o> helps to
decide the covariance of the noise, and o(x,x") is the Kronecker delta function,

where 5(x,x") =1 if x = x"'and 0 otherwise.

f(x)
5

_I_
of SR S
___T_-___- +

Figure 1 Effect of a hyperparameter| (1=2).



Figure 2 Effect of a hyperparameter| (1=0.5).
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Figure 3 Effect of a hyperparameter| (1=0.1).

In Figures 1-3, sample data is generated from a GP with hyper-parameters
(l,o,,0,) = (2, 1.27, 0.3). Using Gaussian process prediction, we obtain a 95%
confidence region for the underlying function. Figures 2 and 3 show the Gaussian
process predictions on the same data set using different hyper-parameters (0.5, 1.27,

0.3) and (0.1, 1.27, 0.3) respectively.

In Figure 3, we notice that the error variance is larger for the input values that
are distant from the training data. When we have the length scale very large such as

in Figure 1, the regressed mean does not pass near any training point. Thus, there is a



need of closely studying the hyper-parameters in order to get the right regression
curve. It can be shown that the squared exponential covariance function corresponds
to a Bayesian linear regression model with an infinite number of basis functions
(Shah 2009). We can also obtain the covariance function from a linear combination

of an infinite number of Gaussian- shaped basis functions.

Given n observations y which is scalar and y = f(x) at a test points x, our
objective is to predict y. at a set of prediction pointsx.. The GP can be represented

as a sample from a multivariate Gaussian distribution as
K K!
Y1on|o, . (7)
A K. K.
The three matrices in the covariance matrix are given by:

K(x, %) KOX,%,) ... k(x,X%,)]
K%, %) KX, %) o k(X X))

k(%) KO X) e k(X %,) | ®)

Ko =[k(x, %) k(x,%) ... k(x,x)],Ke=k(x,x), (9)

where k(x,x") is defined in Equation (2). For n training points and n, test
points, k(x,x.) isa nxn,matrix. To get the posterior distribution over the function,

we need to restrict the joint prior distribution to contain only those functions which
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agree with the observed data points. Thus we need to condition the joint Gaussian

prior distribution on the observation:

V|y ~ N(K.Ky, K. —K.K*KD. (10)

Our best estimate vy. is the mean of this distribution:
u=K.Ky, (11)
and the variance in our estimate is
ol =K. -K.K'K!. (12)

The above expressions can be written in a more simplified form. Consider the
mean prediction as a linear combination of observationsy. Thus, we look at the
equation as a linear combination of n kernel functions (a weighing function), each of

which is centered on a training point. Thus, we have that

=Y ak(x,x) (13)

where o = K™y. The variance of a Gaussian process is the difference between two
terms: the first term Kk(x.,x.) is the prior covariance from which we subtract the
information the observations or test points give us about the function. One particular
implementation of Gaussian process is by using Cholesky decomposition, instead of
directly inverting the matrix K. This is faster and numerically more stable. In

MATLAB notations, the use of the following equations is recommended below:
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L = cholesky(K) (14)

(15)

The predictive mean Equation (11) becomes:

w=Kla (16)
L
v=—om1. 17
i 1)
The predictive variance is:
o2 =k(X., x)-v'v . (18)

The reliability of our Gaussian process is dependent on how well we select the
covariance functionk(e,e). Thus, the choices of I, o, and o, in Equation (6) are
vital. We determine their values by the maximum likelihood method. The marginal

likelihood is the integral of the likelihood times its prior:

p(6]%)=[p(6ly. X)n(y|X)dy. (19)

where =(l,0,,0,), as defined in Equation (6). The marginal likelihood is written
on condition at the hyperparameters (the parameters of the covariance function)é.
We recall it as the log marginal likelihood since it is obtained through log-

marginalize-marginal likelihood function over the latent function:
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1 - 1 n
log p(y|x,0) = —EyTKW ly—EIog‘KW‘—Elog(Zﬂ) (20)

where K =K, +o;l is the covariance matrix for the noisy targets y and
[KXX]” = k(xi, xj) is the covariance matrix for the noise-free latent. To maximize
the posteriori estimate of 4, p(49|x, y) has to be at its greatest. Thus, assuming we
have little prior knowledge about what & should be, we need to maximize the
Iog(y|x,9) which is given by Equation (20). If the above method of Cholesky

decomposition is used, then the log marginal likelihood can be calculated as

log p(ylx)=—%yTa—Z|og Lﬁ—gmgzﬂ (21)

where L is specified on Equation (14).

3. Gaussian Process Regression

In statistics, regression analysis includes the techniques of analyzing the
relationship between independent variables and dependent variables. The history of
linear regression dates back to 1875 when Galton (1886) applies the technique to the
inherited characteristics of sweet peas. Pearson (1986) presents a linear regression
theory for a rigorous treatment of a regression model and their corresponding
correlation.  This model can only analyze the linear relationship between the
independent variables and the dependent variables although the dependent variables
can be transformed. The background theory in this section is taken from Shah

(2009), and Rasmussen and Williams (2006).
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The connection between the linear regression model and the Gaussian process
regression (GPR) model comes from projecting the independent variables into a
higher dimensional space where we may use the linear model. The concept of
Gaussian process regression is named after Carl Friedrich Gauss because it is based

on the Gaussian distribution.
A typical linear regression model is
y = f(x)+¢& wheree ~ N(0,5%). (22)
A regression model in terms of GPR is
YT~ N(u(x), k(% x). (23)

The model of Y as a noise realization of u is p(y|,u):N(y‘,u,of).
Define X = (x,...%,), [k.] =k(x,x) and [K,]. =k(x, x;). For every data
point, a vector k. is “concatenated” as an extra line and column of the covariance

matrix K, to giveriseto K_,, where c=1...N (N is dimension of feature space) is

c+l?

incremented every time a new k. is added to K_ as follow

K o|fe K 24
M{kj k(x*,x*)] 4

Considering a zero mean function of the data (x(x)=0) and

p(f(x)|y)=p(f(x),y)/ p(y) thus

{ y }~N[O{KXX+0—§I K, D 25)
f(x.) k! k(X.,X.)
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when x"is a test point and latent function z, = u(x,) ; thus, we have that

u, =Y (K, +J§|)_1k*y

(26)
of = k(x,X)~ K (K, +2i) k. (27)
Kyy:Kxx+Jr$|' (28)
A prediction distribution of GPR is
log( p(y‘X)) oc —y' Ky‘yly—log‘Kyy‘Jrc. (29)

where ¢ is a constant that is independent of the hyperparameters (Walder et al.
2008). In MATLAB notations, the use of the following equations is recommended

below:

L = cholesky(K +&?1) . (30)

Then L is substituted into Equations (15), (16) and (21) to determine the predictive
mean, variance, and log marginal likelihood, respectively. Figure 4 shows a sampling
observation with noise data, and Figure 5 shows the predictive distribution of GPR
over a sampling observation with noise data in Figure 4. Even GPR distribution is
not the best solution for fitting the curve function, but it gives predictions based on

adjustable sets of parameters.
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Figure 5 Predictive distribution of Gaussian process regression (Rasmussen, 2006)

4. Variation on Gaussian Process Regression

Ebden (2008) illustrates the GPR concept in a typical prediction problem.
Given a set of random variables Y, he explains that the behavior of Y can be
described by an underlying function f(x) through the relationY = f (x)+ N(0,%),
where N(0,Z) is a normal random vector with mean of zero and covariance matrixX .

Statistical methods can be used to approximate E(Y |x") by estimating f (x) from the

given setY .
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Sollich and Williams (2005) use the equivalent kernel (EK) to understand
GPR for large sample sizes based on a continuum limit. They use EK to estimate
learning curves for GPR. EK provides a simple means to understand the learning
curve of the behavior of GPR, even in the case where the learner’s covariance

function is not well matched to the structure of the target function.

Normally, Gaussian process terms have single outputs with a stationary
covariance function and continuities because the covariance matrix must be positive
definite. Meeds and Osindero (2006) develop a fully generative infinite mixture
model for multi-model outputs of Gaussian processes with non-stationary covariance
functions, discontinuities, multimodality and overlapping output signals. The infinite
Gaussian mixture model is a generalization of finite Gaussian mixtures to an infinite
number of components. This model is shown to be better than Rasmussen and
Ghahramni (2002) model which is a conditional model by using stochastic indicator

variables.

Boyle and Frean (2005) present an alternative to achieve Gaussian process
model with multiple outputs by treating the Gaussian process with white noise
convolved sources with smoothing kernels, and parameterizing the kernel instead.

The applications of the model are limited because it is based on a covariance matrix.

Generally, GPR inputs must be statistically independent. Williams et al.
(1998) present GPR with noise whose variances depend on input. They use a natural
non-parametric prior for variable noise rates (o(x,x’)) in Equation (6) and give an

effective method of sampling the posterior distribution by using the Markov Chain
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Monte Carlo. When applied to the data set with varying noise, the posterior noise

rates obtained are well matched to the known structure.

5. The Squared Exponential Kernel

In the case of a GPR model with finite number of parameters, the covariance
function K, can have at most as many non-zero eigenvalues as the number of
parameters in the model (the material in this section is taken from Kalaitzis (2009),
and Rasmussen and Williams (2006)). Hence, for any problem of any given size, the
matrix K, is non-invertible. Ensuring that it is not ill-conditioned, the diagonal
noise term is added to the covariance matrix. In an infinite-dimensional feature
space ¢, this issue does not occur as the features are integrated out and the covariance
between data points is no longer expressed in terms of the features but by a
covariance function. The covariance matrix K, are expressed in terms of the

features ¢

Ky = o > () (%), (31)

by considering a feature space and integrating with respect to their core. Specifically,
we introduce the function ¢(x) which maps a D-dimensional input vector x into an N

dimensional feature space f(x) =¢#(x)" w then an Equation (31) becomes
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K, (X, J)—nm—zqﬁh )=S|" dng, (%) (x)

=s[" dn exp( j exp(( &, _h) n
= Jzr’s exp( _X) ]

(32)

where one ends up with an infinitely differentiable function on an infinite
dimensional space of features. Taking the constant out-front as the signal variance
oZand dividing the denominator by two, gives rise to the standard form of the
unvaried squared-exponential (SE) covariance function below,

K(x,X,) = o exp(- 1(x—x) M (X —X,)) + 025 (33)

n>-ij?
where M is a symmetric positive-definite (SPD) matrix containing the inverse
hyperparameters of the kernel and ¢; is a Kronecker delta function which is unity if
I = jand zero otherwise. The squared-exponential (SE) is a stationary kernel; it is a
function of d =(x —xj)T which makes it translation invariant in the input space. In

the standard multivariate form Equation (34),
M =diag(¢¥)?, £=(l,,....0)", (34)

where 6=({M},o7,0%)" is a vector containing the hyperparameters of the SE
kernel. Each ¢,, d=1,...,D is a characteristic length scale associated to the d"
dimension of X and governs the amount that f (x) varies along that dimension. This

kernel is also known as the automatic relevance determination SE (ARDSE) kernel
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because of its ability to highlight the relevance of attributes to the training target. A
small lengthscale ¢, would mean that f(x)varies very rapidly along the d"
dimension, and a large lengthscale would mean that f(x) is almost a constant

function of input x, (see Figure 6)

p 2
1 1
> >
0 i 0
13 84
—2{_ -2
-4 &7 2 N
0 M "0
b -2 _
3 %1 X2 2

(a) (b)

Figure 6 Two-dimensional functions drawn at random from noise-free exponential

kernel (o =0) Gaussian processes: (a) Function varies the same along both
dimensions with hyperparameters/ = (1L,1)". (b) Function varies less
rapidly along the dimension of x, with hyperparameters ¢ = (1,2).

(Rasmussen and Williams, 2006)

This trait of the SE kernel becomes very powerful when combined with
hyperparameter adaptation. Other hyperparameters include the signal variance o?
which is a vertical scale of function variation and the noise variance o. It is not a
hyperparameter of the SE itself, but unless we consider it as a constant in the noisy
case, its adaptation can give different explanations about the latent function that

generated the data. One can also combine covariance functions as long as they are

%1
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positive-definite. Examples of valid combined covariance functions include the sum
and convolution of two covariance functions. In fact, Equation (33) is a combined the

SE kernel with a covariance function of isotropic Gaussian noise.

6. Sparse Multiscale Gaussian Process Regression

Let ¢(k) be a Gaussian process defined by zero mean Gaussian random
variable with covarianceK, . Let x be drawn fromg(k), called g, , distributed

according to (Walder et al. 2008)

P () = N(2[0, K, ). (35)

To determine the likelihood of a function expressed as a summation of fixed
basis functions, the probability density function (p.d.f.) of x, is set to beiciyi, for
somec, € R. Atthe end, an infinite limit of the above case is considered, soz';aking the
limit n — co of uniformly distributed points x leads to the following p.d.f. for ¢(k).

Equation (35) can be drawn from the following p.d.f. forg(k),

m - 1 1 m
pg(k)(zciﬂi) Z‘ZEKxxl‘ 2 exp(_EZCiCjWk (14 huj)J' (36)
i=1 i,j=1
A norm in the Hilbert space with reproducing kernel Kwill be denoted by
o], - and inner product is denoted by (e,e) (Melkumyan and Ramos 2009). Let
u=K a, and K _ is invertible, then a = K_x. Following this finite analogy, k™

is intended for the function which, for

e j a(X)K(x, ®)dX, (37)
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satisfies Iy(x)k’l(x, o)dx = (o). Define
M, i@ = M,a = [a(x)k(x #)dx,
k(x,y)=cg(x,y,o), where ¢>0, c>0cR%andg is a normalized Gaussian on

R x R® with diagonal covariance matrix. Then we have that
a(s) = [ (M, @)k (x,e)dx, (38)
1
H=904,) = Mo 00,1-0) 00 (39)

As the covariance function and the basis functions are all Gaussian, we can

obtain, in closed form,

v (1) = [ (x, y)g(x,vi,oo(lMcg(.,.,(,)g(-,v,-,a,- -0) j(y)dxdy
¢ (40)

1
= Eg(x,vi'o-i +0; —0).

From Equations (38), (39), and (40), we can write a prior probability of

arbitrary Gaussian mixtures as shown in Equation (40)

u 11
Ps(ag(e.e, a))(Zq 9(-,\4q)jocexp£—2 ZEQCJ- 9 v, G +o; —o)}- (41)
i=1 ij=L
The neglected factor is equal to the inverse of the integral of the right hand
side of Equation (41) with respect to all functions Zcig(o,vi,ai) (Walder et al.

i=1

2008).

7. Hyperparameter adaptation by using automatic relevance determination
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In general, the automatic relevance determination (ARD) functionality of the
SE kernel allows one to give intuitive interpretations of the adapted hyperparameters
by optimizing hyperparameters. ARD provides a method of maximum likelihood
that allows the relative importance of different inputs to be inferred from the data as

step below:

1. Give the hyperparameter vector which controls how far away from

zero each weight is allowed to go.

2. Maximize the marginal likelihood of the model to train the
hyperparameter vector and the outcome of this optimizing method is many elements

of hyperparameter vector go to infinity.

An example below shows the Gaussian process context of automatic relevance
determination, or ARD. Suppose we consider a Gaussian process with 2-D input

space X =(X,,X,). The SE kernel function formulation can be written as:

k(x,x') =6, exp{—%ini(xi—x'i)z}. (42)

In Figure 7, we see that, as a particular parameter 7, becomes small, the
function becomes relatively insensitive to the corresponding input variable x,. By
adapting these parameters to a data set using maximum likelihood, it becomes
possible to detect input variables that have little effect on the predictive distribution,
because the corresponding values of 7, will be small. This can be useful in practice

because it allows inputs to be discarded.
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m=m=1 m=1 n,=0.01

Figure 7 Three-dimensional functions when adapting 7, parameter where two
horizontal axis is inputs(x, and x,) and vertical axis is output of a function

(k(x,xY).

An ARD is illustrated using a simple synthetic data set having three inputs
X, X,and X, in Figure 8. The target variable t, is generated by sampling 100 values
of x, from Gaussian distribution, evaluating the function sin(2zx,) and then adding
Gaussian noise. Values of x, are given by copying the corresponding values of x;
and adding noise, and values of x,are sampled from an independent Gaussian
distribution. Thus X, is a good predictor of t, x, is a more noisy predictor of t, and

X, has only chance correlations with t.

The marginal likelihood for a Gaussian process with ARD parameters 7,,
n,,and 7, is optimized using the scaled conjugate gradients algorithm. From Figure
8 that 7, converges to a relatively large value, 7, converges to a much smaller value,

and 7, becomes very small indicating that X, is irrelevant for predicting t
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k(x,x"

10°
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10

0 20 40 60 80 100
Iteration

Figure 8 Illustration of automatic relevance determination in a Gaussian process for
a synthetic problem having three inputs x;, x, and x, for which the curves

show the corresponding values of the hyperparameters 7, (red), 7,

(green), and 7, (blue) as a function of the number of iterations when
optimizing the marginal likelihood.

The ARD framework is easily incorporated into the exponential-quadratic
kernel to give the following form of kernel function, which has been found useful for

applications of Gaussian processes to a range of regression problems.

In our research, we use Gaussian process for machine learning tool box
(GPML tool box) with an SE covariance function and allow the separate length scale

for each input with an ARD and independent noise.
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MATERIALS AND METHOD

Materials

1. Hardware: Laptop computer, Lenovo Group Limited, 7735E21 model,
OS name is Microsoft Window XP Professional Service Pack 3.

2. Special software: MATLAB R2009A for Gaussian process analysis.
(GPML)

3. Literature: The literature will be copied from the website of the main
library of Kasetsart University and the Gaussian process website.

4, Data Sources:

4.1  Test problem from http://softlib.rice.edu/pub/tsplib/tsp/.,
January 30, 2010, unpublished.

4.2 Geographic TSP calculated distance formula from
http://www.neverreadpassively.com/2008/05/tsplib-library-of standard-tsp.html

4.3  Gaussian process for Machine Leaning (GPML) software from
http://www.gaussianprocess.org/gpml/chapters/

44  MATLAB manual from http://www.mathworks.es/

Method

We use GPR technique for creating a prediction function and solving TSP. We

define our notations as follows:

Y, = total distance of sampling toursr,

r=32,3,...,R

X.i = path i of the sampling tourr, where
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0: if path i does not exist on tour r
X.i = | 1:if pathiexistson tourr
& = distance of path i.

Our objective function is

Min Yr = Zaixr,i . (43)
i=1

We apply the GPML toolbox developed by Rasmussen and Williams (2006) to
fit the GPR function and optimize the prediction function. From Equation (27),
GPML toolbox defines Equation (44) in term of « below
a=(K,+o 1)'YT, (44)
thus prediction term is
H =ka. (45)
The objective function for applied GPR on TSP is
Min gy =ke, (46)

where x"is a TSP tour.

The GPML toolbox use a GPR with a squared exponential covariance
function and allow a separate length scale for each input with ARD for determining

hyperparameters and independent noise:
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k, =07 exp(—%(x* —%x) M (X, —x))+ 0526, (47)

where o is a hyperparameter, 6, is a Kronecker delta function, M = diag (/)?, and

¢is a vector of positive value hyperparameter. The steps in applying GPR are

divided into two cases:
) No reduction of independent variables.

1.  Generate sampling tours and calculate their corresponding total distance
2. Use a GPML tool box to obtain a GPR function to approximate an
optimal TSP tour.

3. Transform an optimal solution to a TSP tour.
o Reduction of independent variables.

1.  Construct a subtour by a greedy heuristic.

2.  Generate sampling tours and calculate their corresponding total distance

3. Use a GPML tool box to obtain a GPR function to approximate an
optimal TSP tour.

4.  Transform an optimal solution to a TSP tour.

The second case is set up for reducing the size of the search space by reducing
the number of nodes and reducing a computational time by constructing a subtour

with n, nodes. When the number of nodes in a TSP decreases, « as defined can be

calculated faster. The flow diagram of our TSP calculation is shown in Figure 9.
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Create

Distance matrix

without subtour

Generate sampling data tour
and calculate their
corresponding total distance

Use a GPML toolbox to obtain a
GPR function to approximate an
optimal TSP tour

Transform an optimal solution
into a TSP tour

——with subtour

Construct a subtour by a
greedy heuristic

Generate sampling data tour
and calculate their
corresponding total distance

Use a GPML toolbox to obtain
a GPR function to approximate
an optimal TSP tour

Transform an optimal solution
into a TSP tour

Figure 9 Flow Diagram of our Heuristic method

The steps to apply GPR for TSP are explained in details below:

2.1  Construct a subtour by a greedy heuristic.

First, we search a distance matrix to find a minimum distance d;
where d;; is the ij"element of the distance matrixD. Then these two nodes are

connected to form a subtour. These steps are repeated until we get n, nodes in a

subtour. *“SearchNodeMin” function is used to construct a subtour (Figures 10-11).
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[Fit_path,Fit_node] =

SearchNodeMin(Number_Node,Dis_matrix,N_SearchNodeFix)

Figure 10 “SearchNodeMin” function in MATLAB

This “SearchNodeMin” parameters are described below:

. Number_Node
TSP (n).

. Distance Matrix
of size[nxn]

) N_SearchNodeFix

of size [n, -1]

. Fit_Path
[ny 2]

. Fit_node
[n x1]

Total number of nodes or cities in

Distance matrix of the TSP matrix

Number of paths in subtour matrix

Paths in subtour matrix of size

Nodes in subtour matrix of size

This function return a subtour matrix. The programming flow diagram is

explained in Figure 11 below:
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Find the minimum distance in the matrix,

No

Yes

Figure 11 Flow chart of a greedy heuristic to construct a subtour

2.2  Generate sampling tours and calculate their corresponding total
distance.

Tours and their corresponding total distance are generated by starting

with a subtour of sizen,. We randomly permute the remaining n—n, nodes, by
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using “Randperm” function in MATLAB, to form a complete tour. We repeat this

step r times to get rrandom tours. Sample tours are aggregated into a data matrix
n-1

X, whose dimension is [rxm], where m:Z(n—i) and its corresponding total
i=1

distance into a response vector Y , whose dimension is[rx1]. To generate sampling

tour and their corresponding total distance, we develop MATLAB functions below:

° “notmain”

. “Gen_routhfixstart” and “Gen_routhfixstartSearch”

The “notmain” function is used to return nodes that are not in a subtour

[possibleNodeRandom] = notmain(main,node)

Figure 12 *“notmain” function

The “notmain” parameters are described below:

e main Nodes in subtour [1xn, ]

o node Number of node in the problem [n]

The “notmain” return the nodes which are not in subtour matrix. Their matrix
size is [(n—n;)x1]. The “Gen_routhfixstart” and “Gen_routhfixstartSearch”
functions are used to generate a tour and their corresponding total distance, but the
“Gen_routhfixstartSearch” functions is used when we want to decrease the size of the

problem by creating subtours.
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[total_dist,pop] =
Gen_routhfixstart(Number_Node,Dis_matrix,N_Random,N_iter)

[total dist,pop,kk] = Gen_routhfixstartSearch
(Number_Node,number_fixnode,Dis_matrix,N_Random,N_iter,startnode,Endnod
e,possibleNodeRandom,fixRoutemetric)

Figure 13 “Gen_routhfixstart” and “Gen_routhfixstartSearch” functions

“Gen_routhfixstart” and “Gen_routhfixstartSearch” parameters are described below:

. Number_Node = Number of nodes in problems
(n)

e number_fixnode = Number of nodes in subtour (n; )

. Distance matrix = Distance matrix of the TSP.

) N_Random = Number of sampling tours (R)

) N_iter = Number of desired iterations for

the algorithm to run

e  startnode = The beginning node in subtours
. Endnode = The end of node in the subtours
. possibleNodeRandom = Nodes that are not in subtour

matrix.
e [ix(n-n,)]

e fixRoutemetric = Nodes in subtour matrix [1xn, ]

N_iter is number of iteration for creating a group of R sampling data but in

our experiment we set to use only one iteration.
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2.3 Use a GPML toolbox to obtain a GPR function to approximate an
optimal TSP tour

A GPR function is created from sampling tours and their
corresponding total distance for predicting a minimum total distance. The steps are

described as follows:

. Determine a starting solution, which is a TSP tour.

) Estimate parameters & () and covariance functionK(X:#) in Equations
(16) and (18).
. Using a GPR function, #, and @ () from Equations (16) and (18)

determine a route with minimum distance for the GPML implementation is called

“minimize.”.

The programming function for using approximate an optimal TSP tour is in Figure 14.

[n,D]=size(x); (1)
covfunc = {"covSum', {'covSEard','covNoise'}}; 2)
logtheta0 = zeros(D+2,1); (3)
logthetaO(D+2) = -1.15; 4)
logtheta = minimize(logthetao, ‘gpr', -100, covfunc, X, y); (5)
[X, X, i] = minimize2( X, ,-100,logtheta, covfunc, X, y); (6)

Figure 14 GPR functions to approximate an optimal TSP tour

The detail of these programming in Figure 14 are shown below:

Line (1): Find the number of rows and columns in X .

Line (2): Specify a covariance function made up of the sum of a squared exponential
(SE) covariance term with ARD, and independent noise.

Line (3): Create a zero matrix vector

Line (4): Set a starting point of hyperparameter ( X, ).
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Line (5): Train the hyperparameter by maximizing the approximate marginal
likelihood of the SD method

Line (6): Predict the optimal TSP tour and total distance.

The “minimize2” modifies the original “minimize.” in GPML so that it can

solve the TSP.

2.4 Transform an optimal solution into a TSP tour.

The route that we obtain in Part 2.3 (the predicted route) may not be a
TSP tour, so we need to construct a tour from it. We first build disjoint subtours and
connect them to form the rest of a TSP tour by a greedy heuristic, that is to select
links with small distance first. After that, we link the rest of a TSP tour with a

subtour that we create in part 2.1.

To transform an optimal solution into a TSP tour is using the step of

programming function below:

° “GetrouteX” function
° “Fitnode” function
° “Fit” function

The “GetrouteX” function returns a decimal path matrix from the predicted

binary tour.
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[RoutX,XX,CharacterX] = GetrouteX(X,node, possibleNodeRandom)

Figure 15 “GetrouteX” function

“GetrouteX” parameters are described below:

e X = Predicted solution matrix in term of a
binary
tour [1>< M7 (from “minimize2” function)

e node = Number of nodes that are not in subtour
(n-n,)

. possibleNodeRandom Matrix of node that are not in subtour

[1>< (n=n, )] (from *“ notmain” function)
. RouteX = Predicted solution matrix in term of

decimal path matrix [2x(n—n, +1)]

o XX = Predicted solution matrix in term of
decimal path matrix [2xm]

o CharacterX = Matrix that explains the meaning of
predicted solution matrix in term of a binary tour

The decimal path matrix is transformed to a TSP tour by using “Fitnode”

function for creating T matrix and using “Fit” function for creating HH matrix based

on the programming flow in Figure 18.

[T,H] = Fitnode(RouteX,node,startnode,distancematrix)

Figure 16 “Fitnod” function
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“Fitnod” parameters are described below:

. RouteX = Predicted solution matrix in term of

decimal path matrix [2x(n—n, +1)]

. node = Number of nodes that are not in the
subtour

e (n-ny)

o startnode = Starting search node in T matrix

o distancematrix = Distance matrix of problem

o T = T matrix

J H = H matrix

[HH] = Fit (T,node,H, distancematrix, possibleNodeRandom)

Figure 17 “Fit” function

“Fit” parameters are described below:

o T = T matrix

. node = Number of nodes that are not in
subtour

e (n-ny)

. H = H matrix

e  distancematrix = Distance matrix of problem

. possibleNodeRandom = Nodes that are not in subtour

matrix. [1x(n-n,)]

° HH = HH matrix
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The detail of transforming a predicted route into a TSP tour is shown in Figure
18. This lowest distance is selected in “T route”, and we find the path which can
connect with the end of T route and that has a lowest distance. This step is repeated
until we cannot find any more connecting path. The nodes which are not in T route is
called “K matrix” and the routes which are not in T route is called “H matrix”. Then
we delete the routes in H matrix which have the same nodes as T route and delete the
node in K matrix which have node the same as H matrix. Then we select the lowest
distance path in H, collect it in HH matrix and repeat this step until we select all of
paths in H. We collect nodes of K which have lowest path distance in HH until all of
nodes in K are selected. After that we combine HH matrix, T matrix and subtour.

Finally, we calculate total distance.
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Figure 18 Transform a GPR optimal solution into a TSP tour flow chart.
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RESULTS AND DISCUSSION

We fist describe details of test problems in Section 1 and the results of

experiments are shown in Section 2.

1. Test problems

We use the geographical TSP from TSPLIB (Bixby and Reinelt 1995,
http://softlib.rice.edu/pub/tsplib/tsp/).

1.1 96 Africa-Sub: 96 cities with the possible number of solutions is

9.92x10149 (141) and the true optimal solution is 52,277.9 km. (Optimum tours are
in appendix Table A4).

1.2 Ulysses22: 22 cities with the possible number of solutions is 1.12x10%1
(221) and the true optimal solution is 6,945.2. km. (Optimum tours are in appendix
Table Al).

1.3 Ulysses16: 16 cities with the possible number of solutions is 2.09><1O13
(aen and the true optimal solution is 6,795.8 km. (Optimum tours are in
appendix Table A2).

1.4 Burmal4: 14 cities with the possible number of solutions is 8.71x1010
(141 and the true optimal solution is 3,356.1 km. (Optimum tours are in appendix
Table A3).

In the experiment, the sample sizes (R ) for GPR are 500, 1500, 2500 and

3500.
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2. Results of numerical experiments

We have two control parameters: n, , is the number of nodes in a subtour and
R is the number of random tours in a sample for creating a GPR function. The

results are shown in Tables 1-2 and Figure 19.

Table 1 shows the predicted minimum distance from the GPR functions, but
these tours may not form TSP tours. The underlined numbers are minimum distance
for a givenn, . The best cases seem to be when the sample size is largest (R =3500).
We can conclude that when R and n, increase our method seem to predict a better
solution. The best scenarios for each test problems in Table 1 are close to the true
optimal solutions, so we can use these lowest predictions to be our target to find TSP

tours as shown in Table 2.

As expected, we see that as the test problems become more difficult (higher
number of cities), the distances of our TSP tours deviate from the optimal tours
significantly. For the Burmal4 problem, the best relative deviation is only 16%
whereas for the Ulysses22 problem, the best relative deviation is 33%. The benefit of
reducing the search space by initially creating a subtour (n, > 0) is greater for a large
test problem. In Figure 19, we see that the relative deviations of n, =10, 12 and 14
are smaller than the case with n, = 0. For the Ulyssess22 problem, while setting

n, =2 and 4 do not seem to help improve the quality of the solutions.

Considering that our heuristic sees only a very small fraction of the search
space, less than 4x1070%, its performance is impressive. For the test problem with

22 cities, our TSP tour gives the distance within 33% to 76% of the optimal distance,
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ignoring the possible outlier at 117%. The numerical results seem to suggest that we

get a better solution when we increase the sample size R.

However that result shown in Table 2 and Figure 19 are based on one
experiment for each case. To see the trend of results, we repeat experiments again

and the result shown in Figure 20.

From Figure 20, we see that if n, increases, the 95% of confident intervals are
shorter.  As a result, our predictions are more precise when we increasen; .
Moreover, 95% intervals include the lowest optimal solution. Thus, if we repeat the

experiment, we will have more opportunity to get better predicted TSP tours.



Table 1 Predicted minimum distance from a GPR function before being transformed

to TSP tours.(the underlined entries are the minimum of that row.)

Ulysses22
R

Ny 500 1,500 2,500 3,500
0 12,493.4 12,246.8 11,966.7 11,694.5
2 11,193.1 11,188.5 10,584.0 10,579.6
4 10,175.1 9,578.1 9,565.3 10,137.2
6 9,929.3 8,869.2 9,398.7 9,013.7
10 8,316.8 9,162.2 9,131.3 7,043.2
12 6,699.8 6,697.2 6,379.9 9,138.9
14 9,222.8 6,137.8 9,217.5 6,093.0

Ulysses16
0 9,080.1 10,308.0 9,829.0 9,289.8
2 9,180.7 8,362.2 8,474.6 8,955.4
4 7,454.6 7,590.5 7,571.8 7,763.3
6 7,944.5 7,492.9 7,040.0 6,898.9

Burmal4
0 4,305.5 4,131.9 4,253.3 3,803.7
2 4,237.7 4,305.2 3,852.2 4,136.7
4 4,044.3 3,454.5 4,018.3 3,830.4
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Table 2 Distance of TSP tours after being transformed to a TSP tour.

Ulysses22 (Optimum value = 6945)

R
Ny 500 1,500 2,500 3,500
0 13,174.3 12,592.2 14,206.2 11,694.5
2 13,037.2 13,326.6 13,059.6 11,879.7
4 11,905.6 10,900.8 12,292.0 12,236.0
6 12,006.4 12,156.9 12,237.4 15,064.9
10 9,917.0 10,034.7 11,529.5 10,610.4
12 9,624.2 0,847.6 9,476.0 9,583.9
14 9,222.8 10,712.9 10,528.5 9,222.8
Ulysses16 (Optimum value = 6795)
0 9,572.2 11,282.0 12,991.0 9,289.8
2 9,761.5 11,993.8 9,994.8 10,393.2
4 7,454.6 8,387.1 8,853.7 10,507.5
6 9,729.9 8,949.0 8,440.0 6,898.9
Burmal4(Optimum value = 3356)
0 4,305.5 4,237.9 4,705.7 3,886.1
2 6,285.2 5,130.6 6,005.5 5,250.1
4 5,602.5 4,289.9 5,483.9 4,742.6

Relative deviations from the optimal solutions of after transformed to a TSP

tour are shown in Figure 19.
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Figure 20 95% Confidence Intervals of repeating experiment at after transformed to
a TSP tour with R =3500 and 4 replications. Horizontal axis is n, and

vertical axis is distance.
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n, does not matter when a number of cities is small but when a number of
cities is large, large n, helps to predict the better solution. From Figure 20, at
Ulysses 22 problem, comparing with n, =0 and n, =14, predicted value of n, =14 is

better than n, = 0.
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Figure 21 95% Confidence Intervals of repeating experiment at R =2500 and 3
replications at 96 cities of 666-cities Africa

In Figure 21 and Table 3, although a number of cities in this problem are 96
cities that are means this problem is more complexity than the last problems
(Ulysses22, Burma 16 and Burma 14), the results from applied GPR in TSP at n, =85

are better for predicted the TSP tour and their corresponding total distance compare
with optimum distance from TSPLIB (52,277). Thus increasing a number of n, in
subtour and increasing R, the predicted values are closer to the actual optimum

solution as shown in Figures 20-21. Finally, we can conclude that applied GPR in

TSP is a powerful heuristic method for solving the TSP which is an NP-Hard problem.



Table 3 Distance of TSP tours after and before being transformed to a TSP tour of
96 cities of 666-cities Africa problem and 3 replications.

n, Distance Before Distance After
0 178,171.35 217,850.81
0 177,852.82 193,327.82
0 179,013.57 207,356.83
5 175,478.64 216,858.57
5 173,920.71 188,153.22
5 174,190.50 189,585.07
10 163,095.47 201,510.02
10 167,241.25 190,020.23
10 165,204.68 192,247.27
15 157,373.69 190,100.37
15 160,042.21 188,292.77
15 160,070.82 191,396.45
30 126,786.33 147,495.90
30 127,097.54 151,531.07
30 124,544 .93 145,304.33
45 56,140.39 71,549.36
45 81,935.82 89,776.47
45 62,433.32 80,114.00
85 42,008.44 48,036.16
85 43,159.27 48,880.55
85 42,612.13 50,648.49
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Scatterplot of Time(sec) vs Number of node in subtour
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Figure 22 A relations of number of node in subtour and a computational time

Figure 22 show that when number of nodes in subtour increase, a
computational time will decrease. So our method of grouping subtour, not only
provide a good estimate solution but also reduce a computational time of

programming.
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CONCLUSION

We apply GPR to TSP with an initial numerical experiment. Our idea is to
reduce the size of the problem by initially creating a subtour. Then, we use a small
sample of TSP tours to create a GPR function and minimize it to get the solution with

the minimum distance. Finally, it is transformed into a TSP tour.

At the first time, test problem in our experiment is only 10 to 25 nodes. After
we evaluate test problems, we expand the limit of number of node to 100 nodes. As a
result, we select 96 cities of Africa to be one of our test problems. In our numerical
experiment, we show that our heuristic performs quite well. In particular, when the
sample size R increases, the predicted results are better. Moreover, when the number
of nodes in a subtour n, increases, the distances of our TSP tours are closer to the

true optimal ones.

We expect our heuristic to improve if we can find a better method for
constructing a subtour and transforming to a TSP tour. One of the major problem in
solving TSP by GPR is running time when generate GPR function. As a result, we
recommend a Sparse Multiscale Gaussian Process Regression method for reducing
the running time in a process of estimate GPR hyperparameter by using randomly
sampling data. When apply GPR in TSP, we recommend to reduce 50% of a total
number of nodes at the first time and then reduce more than 50% later for saving time
to get a best solution. Moreover, we can not use this method if a number of a rest
node ( a total number of nodes minus a number of nodes in subtour) equal to a

number of sampling data.
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Appendix A
TSP data of test problem
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Appendix Table A1 Data of Ulysses 22, Ulysses16 and Burmal4.

56

Ulysses 22 Ulysses 16 Burma 14

Node X Y X Y X Y

1 38.24 20.42 38.24 20.42 16.47 96.1

2 39.57 26.15 39.57 26.15 16.47 94.44

3 40.56 25.32 40.56 25.32 20.09 92.54

4 36.26 23.12 36.26 23.12 22.39 93.37

5 33.48 10.54 33.48 10.54 25.23 97.24

6 37.56 12.19 37.56 12.19 22 96.05

7 38.42 13.11 38.42 13.11 20.47 97.02

8 37.52 20.44 37.52 20.44 17.2 96.29

9 41.23 9.1 41.23 9.1 16.3 97.38

10 41.17 13.05 41.17 13.05 14.05 98.12

11 36.08 -5.21 36.08 -5.21 16.53 97.38

12 38.47 15.13 38.47 15.13 21.52 95.59

13 38.15 15.35 38.15 15.35 19.41 97.13

14 37.51 15.17 37.51 15.17 20.09 94.55

15 35.49 14.32 35.49 14.32

16 39.36 19.56 39.36 19.56

17 38.09 24.36

18 36.09 23

19 40.44 13.57

20 40.33 14.15

21 40.37 14.23

22 37.57 22.56




Appendix Table A2 Data of 96 Africa-Sub problem.
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Africa-Subproblem

Node X Y |[Node X Y |[Node X Y |[Node X Y
1 455 2331| 25 13.38 25.21| 49 6.2 324 | 73 1525 28.17
2 8.06 15.24| 26 15.2 38.53| 50 6.2 7.27 | 74 20.09 28.36
3 238 1654 27 9 385| 51 02 644 | 75 175 31.03
4 3138 8 28 11.36 43.09| 52 34 847 | 76 1547 35
5 3339 735 | 29 806 1557| 53 352 1131| 77 19.49 3452
6 34.02 651 | 30 44 1726 54 422 1835 78 2558 32.35
7 3405 457 | 31 328 16.39| 55 02 927 | 79 1557 542
8 3548 545 | 32 151 1535| 5 416 15.17| 80 7.15 123
9 3543 043 | 33 1646 3.01 | 57 4.18 15.18| 81 2259 14.31
10 364 303 | 34 1239 8 58 0.04 18.16| 82 22.34 17.06
11 225 53 35 1023 9.18 | 59 554 2225| 83 26.38 15.1
12 36.2 6.37 | 36 9.31 1343| 60 0.3 25.12| 84 24.45 2555
13 36.48 10.11| 37 8.3 13.15| 61 3.23 29.22| 85 2545 28.1
14 3444 1046| 38 6.18 1047 62 157 30.04| 86 26.15 28
15 3254 13.11| 39 519 4.02 | 63 019 3225, 87 29.12 26.07
16 32.07 20.04| 40 6.41 135| 64 117 36.49| 88 29.55 30.56
17 3112 2954 41 533 013 | 65 201 452 | 89 33 2755
18 31.16 32.18| 42 6 113 | 66 4.03 394 | 90 3358 254
19 2958 32.33| 43 6.2 237 | 67 6.1 39.11| 91 33.55 18.22
20 30.03 31.15| 44 1222 131 | 68 6.48 39.17| 92 2321 434
21 2405 3253 45 133 207 | 69 848 13.14| 93 1855 47.31
22 19.37 37.14| 46 12 8.3 70 1244 15.47| 94 12.16 49.17
23 1536 3232 47 1151 131 | 71 114 2728 95 20.1 573
24 13.11 30.13| 48 12.07 15.03| 72 1249 28.13| 96 4.38 55.27




Appendix Table A3 Optimal solution of Ulysses 22, Ulysses16 and Burmal4.
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Ulysses 22 Ulysses 16 Burma 14
Rank Node Rank Node Rank Node

1 1 1 1 1 1
2 14 2 14 2 2
3 13 3 13 3 14
4 12 4 12 4 3
5 7 5 7 4
6 6 6 6 6 5
7 15 7 15 7 6
8 5 8 5 8 12
9 11 9 11 9 7
10 9 10 9 10 13
11 10 11 10 11 8
12 19 12 16 12 11
13 20 13 3 13 9
14 21 14 2 14 10
15 16 15 4

16 3 16 8

17 2

18 17

19 22

20 4

21 18

22 8




Appendix Table A4 Optimal solution of 96 Africa-Sub problem.
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No. Node No. Node No. Node No. Node
1 29 25 26 49 74 73 50
2 2 26 28 50 84 74 52

3 27 27 51 86 75 53
4 4 28 65 52 85 76 55
5 5 29 96 53 78 77 51
6 6 30 94 54 88 78 49
7 7 31 95 55 87 79 43
8 8 32 93 56 89 80 42
9 9 33 92 57 90 81 41

10 10 34 77 58 91 82 40
11 12 35 76 59 83 83 39
12 13 36 68 60 82 84 44
13 14 37 67 61 81 85 45
14 15 38 66 62 80 86 11
15 16 39 64 63 79 87 33
16 17 40 63 64 70 88 34
17 20 41 62 65 69 89 35
18 18 42 61 66 57 90 38
19 19 43 60 67 56 91 37
20 21 44 59 68 58 92 36
21 25 45 71 69 54 93 32
22 24 46 72 70 48 94 31
23 23 47 73 71 47 95 30
24 22 48 75 72 46 96 1




Appendix Table A5 Distance metric of Ulysses 22
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Appendix Table A6 Distance metric of Ulysses 16
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Appendix Table A7 Distance metric of Burma 14

node
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Appendix Table A8 Prediction distance for applied GPR in TSP.
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Problem Ny Distance
Ulysses 22 - 12,592
Ulysses 22 - 11,694
Ulysses 22 - 13,298
Ulysses 22 - 12,991
Ulysses 22 2 13,037
Ulysses 22 2 13,060
Ulysses 22 2 13,240
Ulysses 22 2 12,209
Ulysses 22 6 13,563
Ulysses 22 6 11,929
Ulysses 22 6 11,519
Ulysses 22 6 15,065
Ulysses 22 10 9,505
Ulysses 22 10 11,489
Ulysses 22 10 9,159
Ulysses 22 10 11,426
Ulysses 22 14 10,020
Ulysses 22 14 10,233
Ulysses 22 14 10,555
Ulysses 22 14 9,223
Ulysses 16 - 10,872
Ulysses 16 - 11,172




Appendix Table A8 Prediction distance for applied GPR in TSP.
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Problem Ny Distance
Ulysses 16 - 10,424
Ulysses 16 - 9,417
Ulysses 16 3 10,704
Ulysses 16 3 9,323
Ulysses 16 3 8,380
Ulysses 16 3 8,702
Ulysses 16 6 8,440
Ulysses 16 6 8,456
Ulysses 16 6 6,899
Ulysses 16 6 8,673
Ulysses 16 8 8,753
Ulysses 16 8 8,817
Ulysses 16 8 10,283
Ulysses 16 8 10,283

Burma 14 - 4,717

Burma 14 = 4,717

Burma 14 - 6,587

Burma 14 - 3,886

Burma 14 2 3,881

Burma 14 2 4,860

Burma 14 2 4,215

Burma 14 2 4,942




Appendix Table A8 (Continued)
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>

Problem f Distance
Burma 14 4 4,578
Burma 14 4 4,872
Burma 14 4 4,290
Burma 14 4 4,743
Burma 14 6 3,961
Burma 14 6 4,279
Burma 14 6 3,919
Burma 14 6 4,170




Appendix B
Programming
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Appendix B1 Generate Route and distance function

function [total_dist,pop] = Gen_routhfixstart

(Number_Node,Dis_matrix,N_Random,N _iter)

Nod = Number_Node;
[nr,nc] = size(Dis_matrix);
if Nod ~=nr || Nod ~=nc
error('Invalid XY or DMAT inputs!")
end
n=Nod - 1;
pop_size = N_Random;
num_iter = max(1,round(real(N_iter)));
% Initialize the Population
pop = zeros(pop_size,n);
for k = 1:pop_size
pop(k,:) = randperm(n)+1;

end
global_min = Inf;
total_dist = zeros(1,pop_size);
dist_history = zeros(1,num_iter);
tmp_pop = zeros(4,n);
new_pop = zeros(pop_size,n);
dmat=Dis_matrix;
for iter = 1:num_iter

for p = 1:pop_size

d = dmat(1,pop(p,1));

for k =2:n
d = d + dmat(pop(p,k-1),pop(p,k));
end

total_dist(p) = d;

end
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total_dist=total_dist’;
end

function [total_dist,pop,kk] = Gen_routhfixstartSearch
(Number_Node,number_fixnode,Dis_matrix,N_Random,N_iter,startnode,Endnode,p

ossibleNodeRandom,fixRoutemetric)

Nod=Number_Node;

n = Number_Node-number_fixnode;

[nr,nc] = size(Dis_matrix);

if Nod ~=nr || Nod ~=nc
error(‘Invalid XY or DMAT inputs!")

end

pop_size = 4*ceil(N_Random/4);

num_iter = max(1,round(real(N_iter)));

pop = zeros(pop_size,n);

kk = zeros(pop_size,n);

for k = 1:pop_size
kk(k,:)=randperm(n);

end

for k = 1:pop_size
for j=1:n
ff=kk(k,j);
pop(k,j)=possibleNodeRandom(1,ff);
end

end

global_min = Inf;

total_dist = zeros(1,pop_size);

dist_history = zeros(1,num_iter);

tmp_pop = zeros(4,n);



new_pop = zeros(pop_size,n);
dmat=Dis_matrix;
pp=number_fixnode-1;
fixdis =zeros(1,1);
fork =1:pp
fixdis = fixdis+ dmat(fixRoutemetric(1,k),fixRoutemetric(1,k+1));
end
for iter = L:num_iter
for p = 1:pop_size
d = dmat(startnode,pop(p,1))+dmat(pop(p,n),Endnode); % Add Start Distance

and end distance

fork=2:n
d = d + dmat(pop(p,k-1),pop(p.k));
end

total_dist(p) = d+fixdis;
end
total_dist=total_dist’;
end

end

Appendix B2 Search subroute function

function [X,Y] = SearchNodeMin (Number_Node,Dis_matrix,N_SearchNodeFix)

X=zeros(N_SearchNodeFix,2);
P=max(max(Dis_matrix));
Y=zeros(N_SearchNodeFix+1,1);
for i = 1:Number_Node
for j = 1:Number_Node
if isequal(i,j)==0;
if Dis_matrix(i,j)<P
P= Dis_matrix(i,j);
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Y(1)=i;
X(1,1)=i;
X(1,2)=j;
end
end
end
end
for u=2:N_SearchNodeFix
for i = 1:Number_Node
if i==X(u-1,2)
P=max(max(Dis_matrix));
for j = 1:Number_Node
if isequal(i,j)==0
if isequal(j,X(1,1))==0
s=0;
for y=1:(u-1)
if

70

or(and(isequal(i,X(y,1)),isequal(j,X(y,2))),and(isequal(j,X(y,1)),isequal(i,X(y,2))))==

1
S=s+1;
end
if isequal(j,Y(y))==1
S=s+1,
end
end

if s==

if or(Dis_matrix(i,j)<P,Dis_matrix(i,j)==P)

P= Dis_matrix(i,j);
Y (u)=i;

X(u,1)=i;

X(u,2)=j;

end



end
end
end
end

end

end
end
pp=X(N_SearchNodeFix,2);
Y (N_SearchNodeFix+1)=pp;
Y=Y

end

Appendix B3 Transform to Binary code

[Rdsize,n]=size(RoutX);
N=n+1,
Num_var=0;
tt=0;
BeforeP=0;
AfterP=0;
Count=0;
for 1=1:(N-1)
Num_var= N-I1+Num_var;
end
CharacterX=zeros(Rdsize,Num_var);
for J=1:Rdsize
p=0;
p=RoutX(J,1);
CharacterX(J,p-1)=1;

pp=RoutX(J,n);
CharacterX(J,pp)=1;
for 1=2:n
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BeforeP= RoutX(J,I-1);
AfterP= RoutX(J,l);
if BeforeP>AfterP
Add=BeforeP-AfterP;
Count=0;
for f=1:AfterP-1
Count=N-f+Count;
end
Add=Count+Add,
CharacterX(J,Add)=1,;
end
if BeforeP<AfterP
Add=AfterP-BeforeP;
Count=0;
for f=1:BeforeP-1
Count=N-f+Count;
end
Add=Count+Add,

CharacterX(J,Add)=1,
end

end
end

end

function CharacterX = EditXSearch(RoutX)

[Rdsize,n]=size(RoutX);
N=n;
Num_var=0;

%Generate X data



for 1=1:(N-1)
Num_var= N-l1+Num_var;
end
CharacterX=zeros(Rdsize,Num_var);
for J=1:Rdsize
p=RoutX(J,1);
CharacterX(J,p)=1;
pp=RoutX(J,n);
CharacterX(J,pp)=1,;
for 1=2:n
BeforeP= RoutX(J,I-1);
AfterP= RoutX(J,l);
if BeforeP>AfterP
Add=BeforeP-AfterP;
Count=0;
for f=1:AfterP-1
Count=n-f+Count;
end
Add=Count+Add,
CharacterX(J,Add)=1,
end
if BeforeP<AfterP
Add=AfterP-BeforeP;
Count=0;
for f=1:BeforeP-1
Count=n-f+Count;
end
Add=Count+Add;
CharacterX(J,Add)=1,
end
end

end
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end

Appendix B4 Transform to TSP route

function [X,XX,CharacterX] = GetrouteX(RoutX,node,routenotfit)

[Rdsize,kk]=size(RoutX);
N=node;
Num_var=0;
X=zeros(2,N-1);
for 1=1:(N-1)
Num_var= N-1+Num_var;
end
if kk ~= Num_var
error('Error: Number of x do not agree with number of nodes’)
end
CharacterX=zeros(2,Num_var);
XX=zeros(2,Num_var);
xx=0;
for 1=1:(N-1)
count=node-I;
K=0;
for J=1:(N-1)
K=K+1;
count=count-1;
if 1I==
CharacterX(1,K)=node-count;
CharacterX(2,K)=l;
else
CharacterX(1,xx+K)=node-count;
CharacterX(2,xx+K)=I;

end



end
XX=XX+N-I;
end
for 1=1:Rdsize
for J=1:Num_var
p=RoutX(l,J);
if p>0
XX(1,J)= CharacterX(1,J);
XX(2,d)= CharacterX(2,J);
end
end
end
count=0;
for J=1:Num_var
p=XX(1,J);
if p>0
count=count+1;
X(1,count)= XX(1,J);
X(2,count)= XX(2,J);
end
end
binary
if nargin ==
[nr,cr]=size(X);
for i=1:nr

for j=1:cr

PL=routenotfit(1, X(i.j));

X(i,j)=PL;
end
end

end
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function [X,Y] = Fitnode(RouteX,node,startnode,distancemetric)

X=zeros(node,1);
before=startnode;
Ex=RouteX;
for i=1:node
nds=find(RouteX==before);
[row3 col3]=ind2sub(size(RouteX),nds);
[row,col] = Find_smalllestdistance(RouteX,row3,col3,distancemetric,X,before);
if row==1
next=RouteX(row+1,col);
X(i,1)=before;
X(i+1,1)=next;
before=next;
Ex(1,col)=0;
Ex(2,col)=0;
elseif row==
next=RouteX(1,col);
X(i,1)=before;
X(i+1,1)=next;
before=next;
Ex(1,col)=0;
Ex(2,col)=0;
else
X(i+1,1)=0;
before=0;
end

end
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[NRR,cRR]=size(X);
count=0;
for i=1:nRR
if(X(i,1)>0)
count=count+1;
end
end
if count>0
c=0;
ccc=zeros(count,1);
[NRR,cRR]=size(X);
for i=1:nRR
if X(i,1)>0
c=c+1;
cee(c,1)=X(i,1);
end
end
X=ccc;
end
[n,c]=size(EXx);
Count=0;
fori=1:c
if Ex(1,i)>0
Count=Count+1,
end
end
nn=Count;
Y=zeros(2,nn);
Count=0;
fori=1:c
if Ex(1,i)>0

Count=Count+1;

77



Y (Count,1)=Ex(1,i);
Y (Count,2)=Ex(2,i);
end
end
Y=Y"
end

function [RR] = Fit(main,node,Other,d,j)
b
if nargin ==
[Notmain] = notmain(main,node);
elseif nargin ==
[Notmain] = notmain(main,node,j);
end
if Notmain==
RR=main;
else
[Other] = CheckMainforOther(main,Notmain,Other);
[n,c]=size(main);
if Other==0
[RR,freenode] = connectfreenode(main(n,1),Notmain,d);
else
[RR,freenode,Otherroute] = connectfreenode(main(n,1),Notmain,d,Other);
end
[NRR,cRR]=size(RR);
count=0;
for i=1:nRR
if(RR(i,1)>0)
count=count+1;
end

end
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if count>0
c=0;
ccc=zeros(count,1);
[NRR,cRR]=size(RR);
for i=1:nRR
if RR(i,1)>0
c=c+1;
cee(c,1)=RR(i,1);
end
end
RR=ccc;
end
end

end

Appendix B5 Subfunction of Transform to TSP route

function [rowf,colf,nextx,dis1,z] =
Find_smalllestdistance(RouteX,row,col,disstancemetric,X,before)

if isempty(row)==0
[n,c]=size(row);
nextx=zeros(n,1);
disl=zeros(n,1);
fori=1:n
p=row(i,1);
k=col(i,1);
if p==1
nextx(i,1)=RouteX(p+1,k);
elseif p==
nextx(i,1)=RouteX(p-1,k);

end



dis1(i,1)=disstancemetric(before,nextx(i,1));
end
for i=1:n
nds=find(X==nextx(i,1));
[rownex colnex]=ind2sub(size(X),nds);
if isempty(rownex)==0
nextx(i,1)=0;
end
end
disMax=max(max(disstancemetric));
[n,c]=size(row);
rowf=0;
colf=0;
fori=1:n
if nextx(i,1)~=0
if or(dis1(i,1)< disMax,dis1(i,1)== disMax)
disMax=dis1(i,1);
rowf=row(i,1);
colf=col(i,1);
z=1;
end
end
end
elseif isempty(row)==1
rowf=0;
colf=0;
end

end

function [freenode] = freenodecheck(freenode,Otherroute)
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[nO,cO]=size(Otherroute);
count=0;
[n,c]=size(freenode);
for i=1:n
before=freenode(i,1);
nds=find(Otherroute==before);

[row3 col3]=ind2sub(size(Otherroute),nds);

if nds~=0
freenode(i,1)=0;
count=count+1;
end
end
c=count;
if c~=0
count=0;
freenode2=zeros(c,1);
[n,c]=size(freenode);
for i=1:n
if (freenode(i,1)~=0)
count=count+1;
freenode2(count,1)=freenode(i,1);
end
end
freenode=freenode2;
end

end

function [Notmain] = notmain(main,node,j)

if nargin ==

X=zeros(node,1);
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for i=1:node
X(i,1)=i;
end
elseif nargin ==
X=J,
[00,node]=size(j);
end
count=0;
for i=1:node
before=X(i,1);
nds=find(main==before,1);
if (isempty(nds)==0)
X(i,1)=0;
count=count+1;
end
end
c=node-count;
if c~=0
count=0;
Notmain=zeros(c,1);
for i=1:node
if X(i,1)~=0
count=count+1;
Notmain(count,1)=X(i,1);
end
end
else
Notmain=0;
end
end
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function [Otherroute] = other(freenode,d,Otherroute)

[nf,cf]=size(freenode);
[nO,cO]=size(Otherroute);
Otherroute2=0therroute;

count=0;
for i=1:nO

for j=1:cO
before=Otherroute2(i,j);
nds=find(Otherroute==before);

[row3 col3]=ind2sub(size(Otherroute),nds);
[NR,cR]=size(row3);

if nds~=0
dis1=max(max(d));
for z=1:nR

if Otherroute2(row3(z),col3(z))~=0
if and(row3(z),col3(z))~=0

if row3(z)==1

dis=d(Otherroute2(row3(z),col3(z)),0Otherroute2(row3(z)+1,col3(z2)));

elseif row3(z)==2
dis=d(Otherroute2(row3(z),col3(z)),Otherroute2(row3(z)-1,col3(z)));

end
if dis<=dis1
rZ=row3(z);
cZ=col3(2);
disl=dis;
end
end
end
end
for z=1:nR

if col3(z)~=cZ

&3



Otherroute(1,col3(z))=0;
Otherroute(2,col3(z))=0;
end
end
end
end
end
count=0;
[nO,cO]=size(Otherroute);
for i=1:cO
if Otherroute(1,i)>0
count=count+1;
end
end
if count>0
Otherroute2=zeros(2,count);
c=0;
for i=1:cO
if Otherroute(1,i)~=0
c=c+1;
Otherroute2(1,c)= Otherroute(1,i);
Otherroute2(2,c)= Otherroute(2,i);
end
end
Otherroute=Otherroute2;
end
end

function [Other] = CheckMainforOther(main,Notmain,Other)

[n,c]=size(Notmain);
K=0Other;
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count=0;
[nOther,cOther]=size(Other);
newOther=zeros(nOther,cOther);
for i=1:n
before=Notmain(i,1);
nds=find(Other==Dbefore);
[rowX colX]=ind2sub(size(Other),nds);
[nm,cm]=size(rowX);
for h=1:nm
if (nds~=0)
newOther(rowX(h),colX(h))=0ther(rowX(h),colX(h));
end
end
end
for i=1:cOther
for j=1:nOther
if newOther(j,i)==0

if j==1
newOther(2,i)=0;
elseif j==2
newOther(1,i)=0 ;
end
end
end

end
[n,c]=size(main);
count=0;
for i=1:cOther
if newOther(1,i)~=0
count=count+1;
end

end
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if count==0
Other=0;
else
K=zeros(2,count);
count=0;
for i=1:cOther
if newOther(1,i)~=0
count=count+1;
K(1,count)=newOther(1,i);
K(2,count)=newOther(2,i);
end
end
Other=K;
end
end

Appendix B6 Create distance matrix

function distances=dis2(x,y)
N_cities = size(x,1);
distances = zeros(N_cities,N_cities);
for i = 1:N_cities
for j = (i+1):N_cities
distances(j,i) = pos2dist(x(i),y(i),x(j),y(),2);
distances(i,j)=distances(j,i);
end
end
end

function dist = pos2dist(lag1,lon1,lag2,lon2,method)



if nargin < 4
dist = -99999;
disp('Number of input arguments error! distance = -99999");
return;
end
if abs(lag1)>90 || abs(lag2)>90 || abs(lon1)>360 || abs(lon2)>360
dist = -99999;
disp('Degree(s) illegal! distance = -99999");
return;
end
iflon1<0
lonl = lonl + 360;
end
iflon2<0
lon2 = lon2 + 360;
end
if nargin ==
method = 1;
end
if method ==
km_per_deg_la =111.3237,;
km_per_deg_lo =111.1350;
km_la=km_per_deg_la * (lagl-lag2);
if abs(lonl1-lon2) > 180
dif_lo = abs(lon1-lon2)-180;
else
dif_lo = abs(lonl-lon2);
end
km_lo = km_per_deg_lo * dif_lo * cos((lagl+lag2)*pi/360);
dist = sqrt(km_la"2 + km_lo"2);
else
R_aver = 6374,
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deg2rad = pi/180;

lagl = lagl * deg2rad,

lonl = lonl * deg2rad;

lag2 = lag2 * degZ2rad,

lon2 = lon2 * deg2rad;

dist = R_aver * acos(cos(lagl)*cos(lag2)*cos(lonl-lon2) + sin(lagl)*sin(lag2));
end

Appendix B7 Use GPML to create hyperparameter and minimize function

[n,D]=size(x);

logthetaO = zeros(D+2,1);

logthetaO(D+2) = -1.15;

covfunc = {'covSum’, {'covSEard','covNoise'}};

logtheta = minimize(logthetaO, 'gpr’, -100, covfunc, X, y);
[XO0, £X1, i0] = minimize2(x0,-100,logtheta, covfunc, X, y);



Appendix C
GPML Toolbox manual
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Appendix C1 Description of the GPR function gpr.m on GPML toolbox

The basic computations needed for standard Gaussian process regression (GPR)
are straight forward to implement in MATLAB. Several implementations are

possible, here we present an implementation closely resembling Algorithm in C1.

Input : X (input), y (target), k (covariance function), & (noise level), x. (test
input)

L = cholesky(K +o?1)

LT
o =—

5

y
v.=Kla

Predictive variance is on Equations

V[y.]=k(x,x)-v'v

Log marginal likelihood is on equation

log p(y|X) = —%yTa—Zlog L, —glog 21

Return: v. (mean).V [v.] (variance). loa p(v|X) (loa marainal likelihood)

Appendix Figure C1 GPR algorithm

with three exceptions: Firstly, the predictive variance returned is the variance for
noisy test-cases, whereas C1 Algorithm gives the variance for the noise-free latent

function; conversion between the two variances is done by simply adding (or
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subtracting) the noise variance. Secondly, the negative log marginal likelihood is
returned, and thirdly the partial derivatives of the negative log marginal likelihood.

A simple implementation of a Gaussian process for regression is provided by
the gpr.m program (which can conveniently be used together with minimize.m for

optimization of the hyperparameters). The program can do one of two things:

e compute the negative log marginal likelihood and its partial derivatives the
hyperparameters, usage

[nIml dniml] = gpr(logtheta, covfunc, X, y)

which is used when "training™ the hyperparameters, or

e compute the (marginal) predictive distribution of test inputs, usage

[mu S2] = gpr(logtheta, covfunc, X, y, xstar)

Selection between the two modes is indicated by the presence (or absence) of

test cases, xstar. The arguments to the gpr.m function are:
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Appendix Table C1 Input and output of GPR function

Inputs

logthetalja (column) vector containing the logarithm of the hyperparameters

covfunc|the covariance function

X |lanby D matrix of training inputs

Y |a (column) vector if training set targets (of length n)

Xstar ||a nn by D matrix of test inputs

Outputs

NIml (the negative log marginal likelihood

Bl Column vector with the partial derivatives of the negative log marginal
nim
likelihood (the logarithm of the hyperparameters).

Mu || Column of predictive means

S2 | Column vector of predictive variances

The covfunc argument specifies the function to be called to evaluate
covariances. The covfunc can be specified either as a string naming the function to
be used or as a cell array. A number of covariance functions are provided, see
covFunctions.m for a more complete description. A commonly used covariance
function is the sum of a squared exponential (SE) contribution and independent noise.

This can be specified as:

covfunc = {'covSum’, {'covSEiso','covNoise'}};

where covSum merely does some bookkeeping and calls the squared
exponential (SE) covariance function covSEiso.m and the independent noise
covariance covNoise.m. The squared exponential (SE) covariance function (also
called the radial basis function (RBF) or Gaussian covariance function) is given by in

equation below :



1
k, (X,,%,) =07 exp(—

T(Xp —X,)’+050

n=pq
for the scalar input case, and equation

k, =0’ exp(—%(x,ﬁ %) M (X, - X))+ 0.,

for multivariate inputs.
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Appendix D
Numerical Example
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Appendix D Numerical Example

We have 5 nodes of Geographic TSP thus 5 nodes have symmetric
distance properties. We need to predict the minimum distance of this TSP problem
and find TSP route by using GPR method which has 2 nodes in subtour. Latitudes
and longitudes of Geographic TSP are shown in Appendix FigureD1:

Node | Latitude |Longitude

1 38.24 20.42

2 39.57 26.15

3 40.56 25.32

4 36.26 23.12

5 33.48 10.54

Appendix Figure D1 Latitude and longitude from GEO TSP.

Appendix D1 Calculate distance matrix

1 2 3 4 5

0 | 517 | 493 | 325 |1035
5171 O 130 | 454 |1548
493 | 130 0 515 | 1527
325 | 454 | 515 0 [1188
1035 1548 | 1527 |1188| O

gl | N

Appendix Figure D2 Distance matrix



Appendix D2 Construct a subtour by a greedy heuristic

The minimum distance is 130 Km.
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from path i = 2 and j = 3 which

shown in Appendix FigureD3, subtour is shown in Appendix Figure D4 and the

rest tour are shown in Appendix FigureD5.

node
node 1 2 3 4 5
1 0 |517 ] 493 | 325 1035
2 517 | O | 130 | 454 |1548
3 493 | 130 | O | 515 |1527
4 325 (454 | 515 | 0 1188
5 1035|1548 |1527(1188| O

Appendix Figure D3 Distance matrix which shown minimum distance.

Appendix Figure D4 Subtour

Appendix Figure D5 The rest tour
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Appendix D3 Generate sampling tour and their corresponding total distance

We generate 3 sampling tours ( X ) in Appendix Figure D6 and total distance
(Y ) in Appendix Figure D7. After that we redefine the rest node in ordinary number
which shows in Appendix Figure D8 and sampling tour are redefined base on the rest
tour in Appendix Figure D8 (Appendix Figure D9).

Tour No. Tour

1 11415
2 4 1511
3 S| 1| 4

Appendix Figure D6 3 sampling tours( X )

Tour No. [Distance

1 3684
2 3385
3 3471

Appendix Figure D7 Their corresponding total distance (Y )

Current] New

i 1
4 2
5 3

Appendix Figure D8 The rest tour are redefined



Tour No. Tour
1 2
2 3
3 1

Appendix Figure D9 Redefined sampling tour
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Each of redefined sampling tours is re-writing in binary matrix that shown in

Appendix Figure D10. The value in binary matrix is 1 if the path from node i to node

J appear and 0 if the path from node i to node j do not appear. Because of geographic

TSP are symmetric so the lower triangular of a binary matrix can be deleted from

Appendix Figure D10(Appendix Figure D11). The tours are transformed to 1 row

matrix ( X ') which shown in Appendix Figure D12.

Tour No.1 Tour No. 2 Tour No. 3
node node node
nod 1 2 3 nod 1 2 3 nod 1 2 3
1 0 1 0 1 0 0 1 1 0 1 1
2 1 0 1 2 0 0 1 2 1 0 0
3 0 1 0 3 1 1 0 3 1 0 0

Appendix Figure D10 Binary term of sampling tour



Tour No.1 Tour No. 2 Tour No. 3

node node node
nod 1 2 3 nod 1 2 3 nod 1 2
1 - 1 0 1 - 0 1 1 - 1
2 - - 1 2 - - 1 2 - -
3 - - - 3 - - - 3 - -

Appendix Figure D11 Binary matrix after reducing variable

Tour No. Tour
1 1 0 1
2 0 1 1
3 1 1 0

Appendix Figure D12 One row matrix of each tour ( X ")

Appendix D4 Use GPR function to approximate an optimal TSP tour.

We determine a starting solution, which is a TSP tour. In our experiment

starting solution is TSP tour which has lowest total distance.

Tour No. Tour Distance
1 110711 3684
2 01 ]1 3385
3 11110 3471

Appendix Figure D13 Selected starting solution
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Parameters are estimated to creating GPR function which is used for predicted
the optimal value of TSP problem. The prediction value are shown in Appendix
Figure D14

Tour Distance

111]0 3570

Appendix Figure D14 Prediction value

Appendix D5 Transform an optimal solution to a TSP tour.

A one row route is transformed to binary matrix (Appendix Figure D15). Itis

transformed again to a path matrix [2xn 1 (Appendix Figure D16) and select a

lowest distance path in a path matrix.

node

node 1 (415
1 - 111
4 = 0 (0
5 = = -

Appendix Figure D15 Binary Matrix of optimal solution

Distance
325 (1035

Appendix Figure D16 Path matrix
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We select the lowest distance tour which is tour 2, but tour 2 can not connect
which tour 1 because the end of tour 2 is 3. We can separate T, H, and K matrixes in

Appendix Figure D17 which H matrix is deleted

Tour
1 2

1 i

4 5
Distance
325 1035

Appendix Figure D17 Delete paths in H which have node the same as T.

From matrix T, K an H, we will get TSP tour below in D18.

Tour Distance]

2 |31 )45 3684

Appendix Figure D18 TSP Tour

The optimal solution from GPR prediction is lower than a solution when

transform to a TSP tour because of a tour construction in the last step.
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