

THESIS APPROVAL

GRADUATE SCHOOL, KASETSART UNIVERSITY

DEGREE

FIELD DEPARTMENT

TITLE: Solving the Traveling Salesman Problem with Gaussian Process Regression

NAME: Miss Jarumas Chantapanich

THIS THESIS HAS BEEN ACCEPTED BY
 THESIS ADVISOR

()

 THESIS CO-ADVISOR

()

 DEPARTMENT HEAD

()

APPROVED BY THE GRADUATE SCHOOL ON

 DEAN

(Associate Professor Gunjana Theeragool, D.Agr.)

Master of Engineering (Industrial Engineering)

Industrial Engineering

Industrial Engineering

Assistant Professor Juta Pichitlamken, Ph.D.

Ms. Suwitchaporn Witchakul, D.Eng.

Associate Professor Kongkiti Phusavat, Ph.D.

THESIS

SOLVING THE TRAVELING SALESMAN PROBLEM WITH

GAUSSIAN PROCESS REGRESSION

JARUMAS CHANTAPANICH

A Thesis Submitted in Partial Fulfillment of
the Requirements for the Degree of

Master of Engineering (Industrial Engineering)
Graduate School, Kasetsart University

2011

Jarumas Chantapanich 2011: Solving the Traveling Salesman Problem with

Gaussian Process Regression. Master of Engineering (Industrial Engineering),

Major Field: Industrial Engineering , Department of Industrial Engineering.

Thesis Advisor: Assistant Professor Juta Pichitlamken, Ph.D. 102 pages.

 The traveling salesman problem (TSP) is a generalized form of the simple

problem to find the smallest closed loop or distance from route that connects a

number of points in a plane. We present a new heuristics method for solving TSP

which is NP-hard. Given a small set of data, we first fit a Gaussian process regression

function and then find a route that minimizes this regression function. The route is

further transformed into a TSP tour. The numerical experiment shows that our

approach can find a reasonably good solution. This method can predict an optimal

solution which is higher than the optimal value by 1.4-13% when being experimented

on test problems from TSPLIB (Bixby and Reinelt 1995). We expect our heuristics to

improve if we use a more effective method for a tour construction.

_____________________________ _____________________________ ____ / ____ /___

 Student’s signature Thesis Advisor’s signature

i

ACKNOWLEDGEMENTS

 This research project would not have been possible without the support of

many people. The author wishes to express her gratitude to her supervisor, Assistant

Professor Juta Pichitlamken, Ph.D. who was abundantly helpful and offered

invaluable assistance, support and guidance. Deepest gratitude is also due to the

members of the supervisory committee, professor Suvichaporn Nichakul, Ph.D

without their knowledge and assistance this study would not have been successful.

 Special thanks also to all professors, especially the International Industrial

Engineering Program professors for sharing the literature and invaluable assistance.

Not forgetting to the professor’s assistants who support everything.

 The author would also like to truly thank to the Faculty for providing the

financial means and laboratory facilities. The author wishes to express her love and

gratitude to her beloved families; for their understanding & endless love, through the

duration of her studies.

Jarumas Chantapanich

September 2011

i

TABLE OF CONTENTS

Page

TABLE OF CONTENTS i

LIST OF TABLES ii

LIST OF FIGURES iii

INTRODUCTION 1

OBJECTIVES 3

LITERATURE REVIEW 4

MATERIALS AND METHOD 25

 Materials 25

 Method 25

RESULTS AND DISCUSSION 39

CONCLUSION 48

LITERATURE CITED 49

APPENDICES 54

 APPENDIX A TSP DATA OF TEST PROBLEM 55

 APPENDIX B PROGRAMMING 66

 APPENDIX C GPML TOOLBOX MANUAL 89

 APPENDIX D NUMERICAL EXAMPLE 94

CURRICULUM VITAE 102

ii

LIST OF TABLES

Table Page

1 Predicted minimum distance from a GPR function before being

transformed 42

2 Distance of TSP tours after being transformed to a TSP tour. 43

3 Distance of TSP tours after and before being transformed to a TSP tour

of 96 cities of 666-cities Africa problem. 46

Appendix Table

A1 Data of Ulysses 22, Ulysses16 and Burma14. 56

A2 Data of 96 Africa-Sub problem. 57

A3 Optimal solution of Ulysses 22, Ulysses16 and Burma14. 58

A4 Optimal solution of 96 Africa-Sub problem. 59

A5 Distance metric of Ulysses 22 60

A6 Distance metric of Ulysses 16 61

A7 Distance metric of Burma 14 62

A8 Prediction distance for applied GPR in TSP. 63

C1 Input and output of GPR function 92

iii

LIST OF FIGURES

Figure Page

1 Effect of a hyperparameter l (l =2) 7

2 Effect of a hyperparameter l (l =0.5) 8

3 Effect of a hyperparameter l (l =0.1) 8

4 Sampling observation with noise data 15

5 Predictive distribution of Gaussian process regression 15

6 Two-dimensional functions drawn at random from noise-free

exponential 19

7 Three-dimensional functions when adapting iη parameter where two 23

8 Illustration of automatic relevance determination in a Gaussian process

for a synthetic problem having three inputs 1 2,x x and 3x for which the

curves show the corresponding values of the hyperparameters 1η (red),

2η (green), and 3η (blue) as a function of the number of iterations

when optimizing the marginal likelihood. Details are given in the text. 24

9 Flow Diagram of our Heuristic method 28

10 “SearchNodeMin” function in MATLAB 29

11 Flow Chart of a greedy heuristic to construct a subtour 30

12 “notmain” function 31

13 “Gen_routhfixstart” and “Gen_routhfixstartSearch” functions 32

14 GPR functions to approximate an optimal TSP tour 33

15 “GetrouteX” function 35

16 “Fitnod” function 35

17 “Fit” function 36

18 Transform a GPR optimal solution into a TSP tour flow chart. 38

19 Percentage of prediction total distance at after transformed to a TSP

tour and real optimal value with R =3500 and 1 replications. 44

20 95% Confidence Intervals of repeating experiment at after transformed

to a TSP tour with R =3500 and 4 replications. 44

iv

 LIST OF FIGURES (Continued)

Figure Page

21 95% Confidence Intervals of repeating experiment at R =2500 and 3

replications at 96 cities of 666-cities Africa 45

22 A relations of number of node in subtour and a computational time 47

Appendix Figure

C1 GPR algorithm 90

D1 Latitude and longitude from GEO TSP. 95

D2 Distance matrix 95

D3 Distance matrix which shown minimum distance. 96

D4 Subtour 96

D5 The rest tour 96

D6 3 sampling tours(X) 97

D7 Their corresponding total distance (Y) 97

D8 The rest tour are redefined 97

D9 Redefined sampling tour 98

D10 Binary term of sampling tour 98

D11 Binary matrix after reducing variable 99

D12 One row matrix of each tour ('X) 99

D13 Selected starting solution 99

D14 Prediction value 100

D15 Binary Matrix of optimal solution 100

D16 Path matrix 100

D17 Delete paths in H which have node the same as T. 101

D18 TSP Tour 101

1

SOLVING THE TRAVELING SALESMAN PROBLEM WITH GAUSSIAN

PROCESS REGRESSION

INTRODUCTION

The traveling salesman problem (TSP) is widely studied by mathematicians

and operation researchers because it is commonly found in real-world problems, such

as finding a minimum distance in logistics problems (Dorigo and Gambardell, 1996)

and optimizing a production sequence for scheduling problems (Jeong, 1997). The

problem can simply be stated as: a traveling salesman wishes to visit exactly once

each of a list of n cities (where the cost of traveling from city i to city j is ijC) and

then return to the home city. The objective of TSP is to minimize the total cost of

traveling,
, 1

n

ij
i j

C
=
∑ (Hoffman and Padberg, 1985).

TSP is one of combinatorial optimization problems. TSP is NP-complete.

Thus, the running times for any heuristic algorithms to solve TSP increases

exponentially with the number of cities (Hall, 1995). Although the problem is

difficult, a large number of heuristics perform well; some instances with many

thousands of cities can be solved. Applegate et al. (2006) solve a traveling salesman

problem which models the production of printed circuit boards having 7,397 holes.

Later, they solve another problem with over the 13,509 largest cities in the U.S.

We employ some random tours “independent variables” and total costs or

total distances “dependent variables” to generate a total cost regression function.

Therefore, TSP can be viewed as a regression problem. The relationship between

dependent variables and independent variables are likely to be nonlinear; thus, a

2

multiple linear regression cannot be applied. Gaussian process regression (GPR) is

capable of fitting arbitrary-shaped functions, so it is selected to fit a response function

for TSP

GPR provides a powerful methodology for modeling data that exhibit

complex characteristics such as nonlinear behaviors while retaining mathematical

simplicity. Gaussian process is a collection of random variables, any finite number of

which has (consistent) Gaussian distribution. An example of Gaussian process

applications is in prediction control (Kocijan et al., 2003).

3

OBJECTIVES

The objective of this study is to apply GPR to TSP to predict the minimum

cost or distance and to apply a numerical method to estimate a corresponding TSP

tour of this prediction.

Assumptions

 This study will be considered under the following delimitation below:

We consider a geographical TSP. A geographical TSP has their coordinates as

latitudes and longitudes of the Earth.

The distance or cost matrix are symmetric.

The GPR hyperparameters are calculated based on all of the generated data.

GPR prediction model based on a square exponential covariance function with

automatic relevance determination (ARD) and independent noise.

Test problem is 96 Africa, Ulysses22, Ulysses16, and Burma14 from TSPLIB (Bixby

and Reinelt 1995)

Significance of study

The benefit of this study is to speed up the calculation of the TSP tour and to provide

a good (close to optimal) TSP tour within a small amount of time.

4

LITERATURE REVIEW

Development of TSP and related works on GPR are described as follows:

Sections 1 and 3 describe the related TSP and GPR literature. We describe GPR and

the Sparse Multiscale GPR theory in Sections 2 and 4. The squared Exponential

Kernel and hyperparameter adaptation by using automatic relevance determination

which is used in applying GPR to TSP are described in Sections 5 and 7. Spare

Multiscale Gaussian Process Regression is our proposed method (Section 6).

1. Traveling Salesman Problems

The classical TSP is symmetric, i.e., distance from node i to node j is equal

to distance from node j to node i . Lui et al. (2007) propose a heuristic for this type

of TSP. Their method is to split a TSP tour into overlapped blocks and then improve

each block separately. By doing a local search using the Generalized Crossing

method, each block is explored intensively in order to improve the existing solution.

When comparing with an adaptive neural network method (Cochrane, and Beasley,

2003), this algorithm obtains a better solution.

The constraints of TSP are not only to visit all the cities exactly once but

sometimes TSP also has other conditions on distance or cost such as the Orienteering

and Discounted-Reward TSP, where both are NP-hard (Blum et al., 2007). The goal

of the Orienteering TSP is to find the path with maximum reward collected, subject to

a hard limit on total distance. While in the Discounted-Reward TSP, the length limit

is given a discount factor in order to maximize total discount reward collected.

TSP is applied to many real-world situations. One of the common problems is

when cities can be dynamically added or removed. Varga et al. (2009) propose a

multi-agent approach, based on the sensitive stigmergic agent system model (Grasse

1959), refined with new types of messages between agents. The agent sends

messages every time change occurs; for instance, when an agent observes that the city

5

has disappeared or appeared. After testing under various pheromone sensitivity levels

and learning abilities for agents, the proposed model appear to have good

performance.

 Hasegawa (2006) shows that TSP can be applied to complex physical

problems. The temperature cycling experiments is a local search process that has a

resemblance to polymer glass dynamics at the point that a memory effect and a

relaxation acceleration appear in the case of negative and positive cycling. The

temperature cycling experiments is formulated as a random Euclidean TSP and is

solved with the Metropolis algorithm (Metropolis et al., 1953).

2. Gaussian Process

The material in this section is taken from Kalaitzis (2009), Shah (2009), and

Rasmussen and Williams (2006).

 Formally, a Gaussian process (GP) is a stochastic process over a feature space

(an abstract space where each pattern sample is represented as a point in n-

dimensional space. Its dimension is determined by the number of features used to

describe the patterns). The probability distribution 1 2((), (), , ())np f x f x f x… of a

function ()f x for any finite set of points { }1 2, , , nx x x… mapped to that space is

Gaussian, and such that any of these Gaussian distributions is Kolmogorov consistent

(Kalaitzis, 2009).

Kolmogorov consistency is satisfied when (,)ij i jK k x x= for some covariance

function k such that all possible k are positive semi-definite (i.e., 0T
yy K ≥).

Exchangeability is satisfied when the random variable data are independent and

identically distributed. It means that the order in which they become available has no

6

impact on the marginal distribution; hence there is no need to fix ordering of a data

from the training set for validation purposes.

A GP can be specified by giving the second order characteristics: mean

function and covariance function. Let us define the mean function as ()xμ and the

covariance function as (, ')k x x , as follows:

() [()]; x E f xμ = (1)

(, ') [(() ())((') ('))] - - k x x E f x x f x xμ μ= . (2)

A GP is thus a generalization of the Gaussian probability distribution. It is

specified by a mean function ()xμ and covariance function (, ')k x x as follows:

() ((), (, ')) f x GP x k x xμ∼ . (3)

A GP automatically implies the consistency property which simply means that

if the GP specifies normal distribution of dependent variable by mean and covariance

as ()1 2((), ()) ,f x f x N μ ∑∼ then it has already specified ()1 1 11(()) ,f x N μ ∑∼ where

11∑ is a relevant sub-matrix of ∑ . Examination of a larger set of variables does not

change the distribution of the smaller set. Let us consider a simple Bayesian linear

regression model () () Tf x xφ ω= with prior (0,). pNω ∼ ∑ Thus, we have the

mean and covariance to be

[()] () [] 0 TE f x x Eφ ω= = (4)

7

[() (')] () [] (') () ('). T T T
pE f x f x x E x x xφ ωω φ φ φ= = ∑ (5)

Thus, ()f x and (')f x are jointly Gaussian distributed with mean and

covariance as given in the Equations (4) and (5). The choice of different covariance

functions allows us to take into consideration different aspects of ()f x . In our case,

the choice is the squared exponential covariance function, given below:

2

2 2
2

-(- ')(, ') exp (, '),
2

 f n
x xk x x x x

l
σ σ δ

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 (6)

where 2
fσ gives us the maximum allowable covariance of ()f x . When 'x x= then

(, ')k x x approaches its maximum where the Gaussian process appears to be a smooth

function as its neighbors are alike. The parameter l affects the length of the

dependence. If x is far away from 'x , then (, ') 0k x x ≈ . Parameter 2
nσ helps to

decide the covariance of the noise, and (, ')x xδ is the Kronecker delta function,

where (, ')x xδ =1 if 'x x= and 0 otherwise.

()f x

x

Figure 1 Effect of a hyperparameter l (l =2).

8

()f x

x 1

Figure 2 Effect of a hyperparameter l (l =0.5).

()f x

x

Figure 3 Effect of a hyperparameter l (l =0.1).

In Figures 1-3, sample data is generated from a GP with hyper-parameters

(, ,)f nl σ σ = (2, 1.27, 0.3). Using Gaussian process prediction, we obtain a 95%

confidence region for the underlying function. Figures 2 and 3 show the Gaussian

process predictions on the same data set using different hyper-parameters (0.5, 1.27,

0.3) and (0.1, 1.27, 0.3) respectively.

In Figure 3, we notice that the error variance is larger for the input values that

are distant from the training data. When we have the length scale very large such as

in Figure 1, the regressed mean does not pass near any training point. Thus, there is a

9

need of closely studying the hyper-parameters in order to get the right regression

curve. It can be shown that the squared exponential covariance function corresponds

to a Bayesian linear regression model with an infinite number of basis functions

(Shah 2009). We can also obtain the covariance function from a linear combination

of an infinite number of Gaussian- shaped basis functions.

Given n observations y which is scalar and y = ()f x at a test points x , our

objective is to predict *y at a set of prediction points *x . The GP can be represented

as a sample from a multivariate Gaussian distribution as

*

* * **

0,
Ty K K

N
y K K

⎛ ⎞⎡ ⎤⎡ ⎤
⎜ ⎟⎢ ⎥⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠

∼ . (7)

The three matrices in the covariance matrix are given by:

1 1 1 2 1

2 1 2 2 2

1 2

(,) (,) (,)
(,) (,) (,)

(,) (,) (,)

n

n

n n n n

k x x k x x k x x
k x x k x x k x x

K

k x x k x x k x x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⋅ ⋅ ⋅

= ⎢ ⎥⋅ ⋅ ⋅⎢ ⎥
⎢ ⎥⋅ ⋅ ⋅
⎢ ⎥
⎢ ⎥⎣ ⎦

…
…
…
…
…
… , (8)

[]* * 1 * 2 *(,) (,) (,) nK k x x k x x k x x= … , ** * *(,),K k x x= (9)

where (, ')k x x is defined in Equation (2). For n training points and *n test

points, *(,)k x x is a *n n× matrix. To get the posterior distribution over the function,

we need to restrict the joint prior distribution to contain only those functions which

10

agree with the observed data points. Thus we need to condition the joint Gaussian

prior distribution on the observation:

1 1

* * ** * *(,). Ty y N K K y K K K K− −∼ − (10)

Our best estimate *y is the mean of this distribution:

1

* *K K yμ −= , (11)

and the variance in our estimate is

2 1

** * *
TK K K Kσ −

∗ = − . (12)

The above expressions can be written in a more simplified form. Consider the

mean prediction as a linear combination of observations y . Thus, we look at the

equation as a linear combination of n kernel functions (a weighing function), each of

which is centered on a training point. Thus, we have that

* *
1

(,),
n

i i
i

k x xμ α
=

=∑ (13)

where 1K yα −= . The variance of a Gaussian process is the difference between two

terms: the first term * *(,)k x x is the prior covariance from which we subtract the

information the observations or test points give us about the function. One particular

implementation of Gaussian process is by using Cholesky decomposition, instead of

directly inverting the matrix K . This is faster and numerically more stable. In

MATLAB notations, the use of the following equations is recommended below:

11

 ()L cholesky K= (14)

TL

L
y

α =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 . (15)

The predictive mean Equation (11) becomes:

* *
TKμ α= (16)

*

L
K

υ = . (17)

The predictive variance is:

 2
* *(,) Tk x xσ υ υ∗ = − . (18)

The reliability of our Gaussian process is dependent on how well we select the

covariance function (,)k • • . Thus, the choices of , fl σ and nσ in Equation (6) are

vital. We determine their values by the maximum likelihood method. The marginal

likelihood is the integral of the likelihood times its prior:

() () (),p X p y X p y X dyθ θ= ∫ , (19)

where (, ,)f nlθ σ σ= , as defined in Equation (6). The marginal likelihood is written

on condition at the hyperparameters (the parameters of the covariance function)θ .

We recall it as the log marginal likelihood since it is obtained through log-

marginalize-marginal likelihood function over the latent function:

12

11 1log (,) log log(2)
2 2 2

T
yy yy

np y x y K y Kθ π−= − − − (20)

where 2
yy xx nK K Iσ= + is the covariance matrix for the noisy targets y and

[] (),xx i jij
K k x x= is the covariance matrix for the noise-free latent. To maximize

the posteriori estimate of , (,)p x yθ θ has to be at its greatest. Thus, assuming we

have little prior knowledge about what θ should be, we need to maximize the

log(,)y x θ which is given by Equation (20). If the above method of Cholesky

decomposition is used, then the log marginal likelihood can be calculated as

1log () log log 2
2 2

T
ii

i

np y X y Lα π= − − −∑ (21)

where L is specified on Equation (14).

3. Gaussian Process Regression

In statistics, regression analysis includes the techniques of analyzing the

relationship between independent variables and dependent variables. The history of

linear regression dates back to 1875 when Galton (1886) applies the technique to the

inherited characteristics of sweet peas. Pearson (1986) presents a linear regression

theory for a rigorous treatment of a regression model and their corresponding

correlation. This model can only analyze the linear relationship between the

independent variables and the dependent variables although the dependent variables

can be transformed. The background theory in this section is taken from Shah

(2009), and Rasmussen and Williams (2006).

13

The connection between the linear regression model and the Gaussian process

regression (GPR) model comes from projecting the independent variables into a

higher dimensional space where we may use the linear model. The concept of

Gaussian process regression is named after Carl Friedrich Gauss because it is based

on the Gaussian distribution.

A typical linear regression model is

()y f x ε= + where 2(0,)Nε σ∼ . (22)

 A regression model in terms of GPR is

 ((), (, ')).TY N x k x xμ∼ (23)

 The model of Y as a noise realization of μ is 2() (,)np y N yμ μ σ= .

Define 1(,...,)nX x x= , []* *(,)ii
k k x x= and [] (),xx i jij

K k x x= . For every data

point, a vector *k is “concatenated” as an extra line and column of the covariance

matrix cK to give rise to 1cK + , where 1c N= … (N is dimension of feature space) is

incremented every time a new *k is added to cK as follow

 ()
*

1
* * *,
c

c T

K k
K

k k x x+

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

. (24)

 Considering a zero mean function of the data (() 0xμ =) and

* *(()) ((),) / ()p f x y p f x y p y= thus

2

*

* * * *

0,
() (,)

xx n
T

y K I k
N

f x k k x x
σ⎛ ⎞⎡ ⎤+⎡ ⎤

⎜ ⎟⎢ ⎥⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠
∼ , (25)

14

when x∗ is a test point and latent function ()xμ μ∗ ∗= ; thus, we have that

2 1

,()T
xx nY K I kμ σ −

∗ ∗= + (26)

2 2 1

* ,(,) () T
xx nk x x k K I kσ σ −

∗ ∗ ∗ ∗= − + (27)

2 .yy xx nK K Iσ= + (28)

A prediction distribution of GPR is

1log(()) log .T

yy yyp y X y K y K c−∝ − − + (29)

where c is a constant that is independent of the hyperparameters (Walder et al.

2008). In MATLAB notations, the use of the following equations is recommended

below:

 2()nL cholesky K Iσ= + . (30)

Then L is substituted into Equations (15), (16) and (21) to determine the predictive

mean, variance, and log marginal likelihood, respectively. Figure 4 shows a sampling

observation with noise data, and Figure 5 shows the predictive distribution of GPR

over a sampling observation with noise data in Figure 4. Even GPR distribution is

not the best solution for fitting the curve function, but it gives predictions based on

adjustable sets of parameters.

15

Figure 4 Sampling observation with noise data (Rasmussen, 2006)

Figure 5 Predictive distribution of Gaussian process regression (Rasmussen, 2006)

4. Variation on Gaussian Process Regression

Ebden (2008) illustrates the GPR concept in a typical prediction problem.

Given a set of random variables ,Y he explains that the behavior of Y can be

described by an underlying function ()f x through the relation () (0,)Y f x N= + Σ ,

where (0,)N Σ is a normal random vector with mean of zero and covariance matrixΣ .

Statistical methods can be used to approximate ()E Y x∗ by estimating ()f x from the

given setY .

16

Sollich and Williams (2005) use the equivalent kernel (EK) to understand

GPR for large sample sizes based on a continuum limit. They use EK to estimate

learning curves for GPR. EK provides a simple means to understand the learning

curve of the behavior of GPR, even in the case where the learner’s covariance

function is not well matched to the structure of the target function.

Normally, Gaussian process terms have single outputs with a stationary

covariance function and continuities because the covariance matrix must be positive

definite. Meeds and Osindero (2006) develop a fully generative infinite mixture

model for multi-model outputs of Gaussian processes with non-stationary covariance

functions, discontinuities, multimodality and overlapping output signals. The infinite

Gaussian mixture model is a generalization of finite Gaussian mixtures to an infinite

number of components. This model is shown to be better than Rasmussen and

Ghahramni (2002) model which is a conditional model by using stochastic indicator

variables.

Boyle and Frean (2005) present an alternative to achieve Gaussian process

model with multiple outputs by treating the Gaussian process with white noise

convolved sources with smoothing kernels, and parameterizing the kernel instead.

The applications of the model are limited because it is based on a covariance matrix.

Generally, GPR inputs must be statistically independent. Williams et al.

(1998) present GPR with noise whose variances depend on input. They use a natural

non-parametric prior for variable noise rates ((, ')x xδ) in Equation (6) and give an

effective method of sampling the posterior distribution by using the Markov Chain

17

Monte Carlo. When applied to the data set with varying noise, the posterior noise

rates obtained are well matched to the known structure.

5. The Squared Exponential Kernel

In the case of a GPR model with finite number of parameters, the covariance

function xxK can have at most as many non-zero eigenvalues as the number of

parameters in the model (the material in this section is taken from Kalaitzis (2009),

and Rasmussen and Williams (2006)). Hence, for any problem of any given size, the

matrix xxK is non-invertible. Ensuring that it is not ill-conditioned, the diagonal

noise term is added to the covariance matrix. In an infinite-dimensional feature

spaceφ , this issue does not occur as the features are integrated out and the covariance

between data points is no longer expressed in terms of the features but by a

covariance function. The covariance matrix xxK are expressed in terms of the

features φ

2 () (),ij w h i h j

h
K x xσ φ φ= ∑ (31)

by considering a feature space and integrating with respect to their core. Specifically,

we introduce the function ()xφ which maps a D-dimensional input vector x into an N

dimensional feature space () () Tf x x wφ= then an Equation (31) becomes

18

() () () ()
2

1

22

2 2

2
2

2

(,) lim

()()exp exp
2 2

()
exp ,

4

N
w

y i j h i h j h i h jN h

ji

i j

K x x x x S dh x x
N

x hx hS dh
r r

x x
r S

r

σ φ φ φ φ

π

∞

−∞→∞
=

∞

−∞

= =

⎛ ⎞⎛ ⎞−⎛ ⎞−
= − −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞−
= −⎜ ⎟⎜ ⎟

⎝ ⎠

∑ ∫

∫

 (32)

where one ends up with an infinitely differentiable function on an infinite

dimensional space of features. Taking the constant out-front as the signal variance
2
fσ and dividing the denominator by two, gives rise to the standard form of the

unvaried squared-exponential (SE) covariance function below,

2 21(,) exp(() ()) ,

2
T

i j f i j i j n ijk x x x x M x xσ σ δ= − − − + (33)

where M is a symmetric positive-definite (SPD) matrix containing the inverse

hyperparameters of the kernel and ijδ is a Kronecker delta function which is unity if

i j= and zero otherwise. The squared-exponential (SE) is a stationary kernel; it is a

function of ()T
i jd x x= − which makes it translation invariant in the input space. In

the standard multivariate form Equation (34),

2()M diag −= A , 1(, ,) ,T

D=A A … A (34)

where { } 2 2(, ,)T
f nMθ σ σ= is a vector containing the hyperparameters of the SE

kernel. Each dA , 1, ,d D= … is a characteristic length scale associated to the thd

dimension of X and governs the amount that ()f x varies along that dimension. This

kernel is also known as the automatic relevance determination SE (ARDSE) kernel

19

because of its ability to highlight the relevance of attributes to the training target. A

small lengthscale dA would mean that ()f x varies very rapidly along the thd

dimension, and a large lengthscale would mean that ()f x is almost a constant

function of input dx (see Figure 6)

Figure 6 Two-dimensional functions drawn at random from noise-free exponential

kernel (2
nσ =0) Gaussian processes: (a) Function varies the same along both

dimensions with hyperparameters A = (1,1)T . (b) Function varies less

rapidly along the dimension of 2x with hyperparameters A = (1, 2)T .

(Rasmussen and Williams, 2006)

This trait of the SE kernel becomes very powerful when combined with

hyperparameter adaptation. Other hyperparameters include the signal variance 2
fσ

which is a vertical scale of function variation and the noise variance 2
nσ . It is not a

hyperparameter of the SE itself, but unless we consider it as a constant in the noisy

case, its adaptation can give different explanations about the latent function that

generated the data. One can also combine covariance functions as long as they are

20

positive-definite. Examples of valid combined covariance functions include the sum

and convolution of two covariance functions. In fact, Equation (33) is a combined the

SE kernel with a covariance function of isotropic Gaussian noise.

6. Sparse Multiscale Gaussian Process Regression

Let ()kς be a Gaussian process defined by zero mean Gaussian random

variable with covariance xxK . Let μ be drawn from ()kς , called ,xμ distributed

according to (Walder et al. 2008)

() (0,)x xxp N Kμ μ μ= . (35)

To determine the likelihood of a function expressed as a summation of fixed

basis functions, the probability density function (p.d.f.) of xμ is set to be
1

,
m

i i
i

c μ
=
∑ for

some .ic R∈ At the end, an infinite limit of the above case is considered, so taking the

limit n → ∞ of uniformly distributed points x leads to the following p.d.f. for ()kς .

Equation (35) can be drawn from the following p.d.f. for ()kς ,

1

1 2
()

1 , 1

1() 2 exp (,) .
2

m m

k i i xx i j k i j
i i j

p c K c cς μ π ψ μ μ
−−

= =

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ ∑ (36)

A norm in the Hilbert space with reproducing kernel K will be denoted by

k
• , and inner product is denoted by ,

K
• • (Melkumyan and Ramos 2009). Let

xxKμ α= , and xxK is invertible, then 1 .xxKα μ−= Following this finite analogy, 1k −

is intended for the function which, for

() (,) ,x k x dxμ α= •∫ (37)

21

satisfies 1() (,) ().x k x dxμ α− • = •∫ Define

: () (,) ,k kM M x k x dxα α α→ = •∫

(,) (, ,)k x y cg x y σ= , where 0c > , 0 dRσ > ∈ and g is a normalized Gaussian on
d dR R× with diagonal covariance matrix. Then we have that

 1() ()() (,) ,kM x k x dxα α −• = •∫ (38)

 (•,•,)
1() (, ,) (•, ,) ().i i i j cg i ix g x v M g v x
c σμ σ σ σ⎛ ⎞= = −⎜ ⎟
⎝ ⎠

 (39)

As the covariance function and the basis functions are all Gaussian, we can

obtain, in closed form,

1
, (•,•,)

,

1(,) (,) (,) (•, ,) ()

1 (,).

k i j i i cg j j

i i j

k x y g x v M g v y dxdy
c

g x v
c

σψ μ μ σ σ σ

σ σ σ

− ⎛ ⎞= −⎜ ⎟
⎝ ⎠

= + −

∫∫

 (40)

From Equations (38), (39), and (40), we can write a prior probability of

arbitrary Gaussian mixtures as shown in Equation (40)

, , ,
1 , 1

1 1((, ,)) (,) exp () .
2

m m

i i i i j i j i j
i i j

P cg cg v cc g v v
c

ς σ σ σ σ σ
= =

⎛ ⎞⎛ ⎞• • • ∝ − + −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑ (41)

The neglected factor is equal to the inverse of the integral of the right hand

side of Equation (41) with respect to all functions
1

(, ,)
m

i i i
i

c g v σ
=

•∑ (Walder et al.

2008).

7. Hyperparameter adaptation by using automatic relevance determination

22

In general, the automatic relevance determination (ARD) functionality of the

SE kernel allows one to give intuitive interpretations of the adapted hyperparameters

by optimizing hyperparameters. ARD provides a method of maximum likelihood

that allows the relative importance of different inputs to be inferred from the data as

step below:

1. Give the hyperparameter vector which controls how far away from

zero each weight is allowed to go.

2. Maximize the marginal likelihood of the model to train the

hyperparameter vector and the outcome of this optimizing method is many elements

of hyperparameter vector go to infinity.

An example below shows the Gaussian process context of automatic relevance

determination, or ARD. Suppose we consider a Gaussian process with 2-D input

space 1 2= (x ,)xx . The SE kernel function formulation can be written as:

2

2
0

1

1(, ') exp (')
2 i i i

i

k x x x xθ η
=

⎧ ⎫= − −⎨ ⎬
⎩ ⎭

∑ . (42)

 In Figure 7, we see that, as a particular parameter iη becomes small, the

function becomes relatively insensitive to the corresponding input variable ix . By

adapting these parameters to a data set using maximum likelihood, it becomes

possible to detect input variables that have little effect on the predictive distribution,

because the corresponding values of iη will be small. This can be useful in practice

because it allows inputs to be discarded.

23

 1 2 1η η= = 1 21, 0.01 η η= =

Figure 7 Three-dimensional functions when adapting iη parameter where two
horizontal axis is inputs(1 2and x x) and vertical axis is output of a function

((, ')k x x).

An ARD is illustrated using a simple synthetic data set having three inputs

1 2,x x and 3x in Figure 8. The target variable t , is generated by sampling 100 values

of 1x from Gaussian distribution, evaluating the function 1sin(2)xπ and then adding

Gaussian noise. Values of 2x are given by copying the corresponding values of 1x

and adding noise, and values of 3x are sampled from an independent Gaussian

distribution. Thus 1x is a good predictor of t , 2x is a more noisy predictor of t , and

3x has only chance correlations with t .

The marginal likelihood for a Gaussian process with ARD parameters 1η ,

2η ,and 3η is optimized using the scaled conjugate gradients algorithm. From Figure

8 that 1η converges to a relatively large value, 2η converges to a much smaller value,

and 3η becomes very small indicating that 3x is irrelevant for predicting t

24

 (, ')k x x

Iteration

Figure 8 Illustration of automatic relevance determination in a Gaussian process for
a synthetic problem having three inputs 1 2,x x and 3x for which the curves
show the corresponding values of the hyperparameters 1η (red), 2η
(green), and 3η (blue) as a function of the number of iterations when
optimizing the marginal likelihood.

The ARD framework is easily incorporated into the exponential-quadratic

kernel to give the following form of kernel function, which has been found useful for

applications of Gaussian processes to a range of regression problems.

In our research, we use Gaussian process for machine learning tool box

(GPML tool box) with an SE covariance function and allow the separate length scale

for each input with an ARD and independent noise.

25

MATERIALS AND METHOD

Materials

1. Hardware: Laptop computer, Lenovo Group Limited, 7735E21 model,

OS name is Microsoft Window XP Professional Service Pack 3.

2. Special software: MATLAB R2009A for Gaussian process analysis.

(GPML)

3. Literature: The literature will be copied from the website of the main

library of Kasetsart University and the Gaussian process website.

4. Data Sources:

4.1 Test problem from http://softlib.rice.edu/pub/tsplib/tsp/.,

January 30, 2010, unpublished.

4.2 Geographic TSP calculated distance formula from

http://www.neverreadpassively.com/2008/05/tsplib-library-of standard-tsp.html

4.3 Gaussian process for Machine Leaning (GPML) software from

http://www.gaussianprocess.org/gpml/chapters/

4.4 MATLAB manual from http://www.mathworks.es/

Method

We use GPR technique for creating a prediction function and solving TSP. We

define our notations as follows:

ry = total distance of sampling tours r ,

 1, 2,3, ,r R= …

,r ix = path i of the sampling tour r , where

26

 ,r ix = {0 : if path does not exist on tour
1 : if path exists on tour

i r
i r

 ia = distance of path i .

Our objective function is

 Min ,
1

m

r i r i
i

y a x
=

= ∑ . (43)

We apply the GPML toolbox developed by Rasmussen and Williams (2006) to

fit the GPR function and optimize the prediction function. From Equation (27),

GPML toolbox defines Equation (44) in term of α below

 2 1() ,T
xx nK I Yα σ −= + (44)

thus prediction term is

 .kμ α∗ ∗= . (45)

The objective function for applied GPR on TSP is

 Min .kμ α∗ ∗= , (46)

where x∗ is a TSP tour.

The GPML toolbox use a GPR with a squared exponential covariance

function and allow a separate length scale for each input with ARD for determining

hyperparameters and independent noise:

27

2 2
,

1exp(() ()) ,
2

T
f i i n ik x x M x xσ σ δ∗ ∗ ∗ ∗= − − − + (47)

where fσ is a hyperparameter, pqδ is a Kronecker delta function, 2()M diag −= A , and

A is a vector of positive value hyperparameter. The steps in applying GPR are

divided into two cases:

• No reduction of independent variables.

1. Generate sampling tours and calculate their corresponding total distance

2. Use a GPML tool box to obtain a GPR function to approximate an

optimal TSP tour.

3. Transform an optimal solution to a TSP tour.

• Reduction of independent variables.

1. Construct a subtour by a greedy heuristic.

2. Generate sampling tours and calculate their corresponding total distance

3. Use a GPML tool box to obtain a GPR function to approximate an

optimal TSP tour.

4. Transform an optimal solution to a TSP tour.

The second case is set up for reducing the size of the search space by reducing

the number of nodes and reducing a computational time by constructing a subtour

with fn nodes. When the number of nodes in a TSP decreases, α as defined can be

calculated faster. The flow diagram of our TSP calculation is shown in Figure 9.

28

Figure 9 Flow Diagram of our Heuristic method

The steps to apply GPR for TSP are explained in details below:

2.1 Construct a subtour by a greedy heuristic.

First, we search a distance matrix to find a minimum distance ijd

where ijd is the thij element of the distance matrix D . Then these two nodes are

connected to form a subtour. These steps are repeated until we get fn nodes in a

subtour. “SearchNodeMin” function is used to construct a subtour (Figures 10-11).

29

Figure 10 “SearchNodeMin” function in MATLAB

This “SearchNodeMin” parameters are described below:

• Number_Node = Total number of nodes or cities in

TSP (n).

• Distance Matrix = Distance matrix of the TSP matrix

of size[n n×]

• N_SearchNodeFix = Number of paths in subtour matrix

of size [fn -1]

• Fit_Path = Paths in subtour matrix of size

[fn 2×]

• Fit_node = Nodes in subtour matrix of size

[1fn ×]

This function return a subtour matrix. The programming flow diagram is

explained in Figure 11 below:

[Fit_path,Fit_node] =
SearchNodeMin(Number_Node,Dis_matrix,N_SearchNodeFix)

30

Find the minimum distance in the matrix,
then collect a reference row and column

in subtour. Set reference column=ST

Collect in subtour

Search all the node in ST row and
calculate distance

End

Check that selected node is not the same
as in ST and subtour and its distance is

lowest

Does a subtour has "nf" nodes?

Yes

Yes

No

No

Figure 11 Flow chart of a greedy heuristic to construct a subtour

 2.2 Generate sampling tours and calculate their corresponding total
distance.

Tours and their corresponding total distance are generated by starting

with a subtour of size fn . We randomly permute the remaining fn n− nodes, by

31

using “Randperm” function in MATLAB, to form a complete tour. We repeat this

step r times to get r random tours. Sample tours are aggregated into a data matrix

X , whose dimension is []r m× , where ()
1

1

n

i
m n i

−

=

= −∑ and its corresponding total

distance into a response vector Y , whose dimension is[1]r× . To generate sampling

tour and their corresponding total distance, we develop MATLAB functions below:

• “notmain”

• “Gen_routhfixstart” and “Gen_routhfixstartSearch”

The “notmain” function is used to return nodes that are not in a subtour

Figure 12 “notmain” function

The “notmain” parameters are described below:

• main = Nodes in subtour [1 fn×]

• node = Number of node in the problem [n]

The “notmain” return the nodes which are not in subtour matrix. Their matrix

size is [() 1fn n− ×]. The “Gen_routhfixstart” and “Gen_routhfixstartSearch”

functions are used to generate a tour and their corresponding total distance, but the

“Gen_routhfixstartSearch” functions is used when we want to decrease the size of the

problem by creating subtours.

[possibleNodeRandom] = notmain(main,node)

32

Figure 13 “Gen_routhfixstart” and “Gen_routhfixstartSearch” functions

“Gen_routhfixstart” and “Gen_routhfixstartSearch” parameters are described below:

• Number_Node = Number of nodes in problems

(n)

• number_fixnode = Number of nodes in subtour (fn)

• Distance matrix = Distance matrix of the TSP.

• N_Random = Number of sampling tours (R)

• N_iter = Number of desired iterations for

the algorithm to run

• startnode = The beginning node in subtours

• Endnode = The end of node in the subtours

• possibleNodeRandom = Nodes that are not in subtour

matrix.

• [1 ()fn n× −]

• fixRoutemetric = Nodes in subtour matrix [1 fn×]

N_iter is number of iteration for creating a group of R sampling data but in

our experiment we set to use only one iteration.

[total_dist,pop] =
Gen_routhfixstart(Number_Node,Dis_matrix,N_Random,N_iter)

[total_dist,pop,kk] = Gen_routhfixstartSearch
(Number_Node,number_fixnode,Dis_matrix,N_Random,N_iter,startnode,Endnod
e,possibleNodeRandom,fixRoutemetric)

33

 2.3 Use a GPML toolbox to obtain a GPR function to approximate an
optimal TSP tour

A GPR function is created from sampling tours and their

corresponding total distance for predicting a minimum total distance. The steps are

described as follows:

• Determine a starting solution, which is a TSP tour.

• Estimate parameters α () and covariance function (,)k x • in Equations

(16) and (18).

• Using a GPR function, μ , and α () from Equations (16) and (18)

determine a route with minimum distance for the GPML implementation is called

“minimize.”.

The programming function for using approximate an optimal TSP tour is in Figure 14.

Figure 14 GPR functions to approximate an optimal TSP tour

The detail of these programming in Figure 14 are shown below:

Line (1): Find the number of rows and columns in X .

Line (2): Specify a covariance function made up of the sum of a squared exponential

 (SE) covariance term with ARD, and independent noise.

Line (3): Create a zero matrix vector

Line (4): Set a starting point of hyperparameter (0X).

[n,D]=size(x); (1)
covfunc = {'covSum', {'covSEard','covNoise'}}; (2)
logtheta0 = zeros(D+2,1); (3)
logtheta0(D+2) = -1.15; (4)
logtheta = minimize(logthetao, 'gpr', -100, covfunc, x, y); (5)
[X, fX, i] = minimize2(0X ,-100,logtheta, covfunc, x, y); (6)

34

Line (5): Train the hyperparameter by maximizing the approximate marginal

 likelihood of the SD method

Line (6): Predict the optimal TSP tour and total distance.

The “minimize2” modifies the original “minimize.” in GPML so that it can

solve the TSP.

 2.4 Transform an optimal solution into a TSP tour.

The route that we obtain in Part 2.3 (the predicted route) may not be a

TSP tour, so we need to construct a tour from it. We first build disjoint subtours and

connect them to form the rest of a TSP tour by a greedy heuristic, that is to select

links with small distance first. After that, we link the rest of a TSP tour with a

subtour that we create in part 2.1.

To transform an optimal solution into a TSP tour is using the step of

programming function below:

• “GetrouteX” function

• “Fitnode” function

• “Fit” function

The “GetrouteX” function returns a decimal path matrix from the predicted

binary tour.

35

Figure 15 “GetrouteX” function

“GetrouteX” parameters are described below:

• X = Predicted solution matrix in term of a

binary

tour [1 m×] (from “minimize2” function)

• node = Number of nodes that are not in subtour

(fn n−)

• possibleNodeRandom = Matrix of node that are not in subtour

[1 ()fn n× −] (from “ notmain” function)

• RouteX = Predicted solution matrix in term of

decimal path matrix [2× (fn n− +1)]

• XX = Predicted solution matrix in term of

decimal path matrix [2 m×]

• CharacterX = Matrix that explains the meaning of

predicted solution matrix in term of a binary tour

The decimal path matrix is transformed to a TSP tour by using “Fitnode”

function for creating T matrix and using “Fit” function for creating HH matrix based

on the programming flow in Figure 18.

Figure 16 “Fitnod” function

[RoutX,XX,CharacterX] = GetrouteX(X,node, possibleNodeRandom)

[T,H] = Fitnode(RouteX,node,startnode,distancematrix)

36

“Fitnod” parameters are described below:

• RouteX = Predicted solution matrix in term of

decimal path matrix [2× (fn n− +1)]

• node = Number of nodes that are not in the

subtour

• (fn n−)

• startnode = Starting search node in T matrix

• distancematrix = Distance matrix of problem

• T = T matrix

• H = H matrix

Figure 17 “Fit” function

“Fit” parameters are described below:

• T = T matrix

• node = Number of nodes that are not in

subtour

• (fn n−)

• H = H matrix

• distancematrix = Distance matrix of problem

• possibleNodeRandom = Nodes that are not in subtour

matrix. [1 ()fn n× −]

• HH = HH matrix

[HH] = Fit (T,node,H, distancematrix, possibleNodeRandom)

37

The detail of transforming a predicted route into a TSP tour is shown in Figure

18. This lowest distance is selected in “T route”, and we find the path which can

connect with the end of T route and that has a lowest distance. This step is repeated

until we cannot find any more connecting path. The nodes which are not in T route is

called “K matrix” and the routes which are not in T route is called “H matrix”. Then

we delete the routes in H matrix which have the same nodes as T route and delete the

node in K matrix which have node the same as H matrix. Then we select the lowest

distance path in H, collect it in HH matrix and repeat this step until we select all of

paths in H. We collect nodes of K which have lowest path distance in HH until all of

nodes in K are selected. After that we combine HH matrix, T matrix and subtour.

Finally, we calculate total distance.

38

Figure 18 Transform a GPR optimal solution into a TSP tour flow chart.

39

RESULTS AND DISCUSSION

We fist describe details of test problems in Section 1 and the results of

experiments are shown in Section 2.

1. Test problems

We use the geographical TSP from TSPLIB (Bixby and Reinelt 1995,

http://softlib.rice.edu/pub/tsplib/tsp/).

1.1 96 Africa-Sub: 96 cities with the possible number of solutions is

1499.92 10× (14!) and the true optimal solution is 52,277.9 km. (Optimum tours are

in appendix Table A4).

1.2 Ulysses22: 22 cities with the possible number of solutions is 211.12×10

(22!) and the true optimal solution is 6,945.2. km. (Optimum tours are in appendix

Table A1).

1.3 Ulysses16: 16 cities with the possible number of solutions is 132.09 10×

(16!) and the true optimal solution is 6,795.8 km. (Optimum tours are in

appendix Table A2).

1.4 Burma14: 14 cities with the possible number of solutions is 108.71 10×

(14!) and the true optimal solution is 3,356.1 km. (Optimum tours are in appendix

Table A3).

In the experiment, the sample sizes (R) for GPR are 500, 1500, 2500 and

3500.

40

2. Results of numerical experiments

We have two control parameters: fn , is the number of nodes in a subtour and

R is the number of random tours in a sample for creating a GPR function. The

results are shown in Tables 1-2 and Figure 19.

Table 1 shows the predicted minimum distance from the GPR functions, but

these tours may not form TSP tours. The underlined numbers are minimum distance

for a given fn . The best cases seem to be when the sample size is largest (R =3500).

We can conclude that when R and fn increase our method seem to predict a better

solution. The best scenarios for each test problems in Table 1 are close to the true

optimal solutions, so we can use these lowest predictions to be our target to find TSP

tours as shown in Table 2.

As expected, we see that as the test problems become more difficult (higher

number of cities), the distances of our TSP tours deviate from the optimal tours

significantly. For the Burma14 problem, the best relative deviation is only 16%

whereas for the Ulysses22 problem, the best relative deviation is 33%. The benefit of

reducing the search space by initially creating a subtour (fn > 0) is greater for a large

test problem. In Figure 19, we see that the relative deviations of fn = 10, 12 and 14

are smaller than the case with fn = 0. For the Ulyssess22 problem, while setting

fn =2 and 4 do not seem to help improve the quality of the solutions.

Considering that our heuristic sees only a very small fraction of the search

space, less than 64 10−× %, its performance is impressive. For the test problem with

22 cities, our TSP tour gives the distance within 33% to 76% of the optimal distance,

41

ignoring the possible outlier at 117%. The numerical results seem to suggest that we

get a better solution when we increase the sample size R .

However that result shown in Table 2 and Figure 19 are based on one

experiment for each case. To see the trend of results, we repeat experiments again

and the result shown in Figure 20.

From Figure 20, we see that if fn increases, the 95% of confident intervals are

shorter. As a result, our predictions are more precise when we increase fn .

Moreover, 95% intervals include the lowest optimal solution. Thus, if we repeat the

experiment, we will have more opportunity to get better predicted TSP tours.

42

Table 1 Predicted minimum distance from a GPR function before being transformed
 to TSP tours.(the underlined entries are the minimum of that row.)

Ulysses22

R

fn 500 1,500 2,500 3,500

0 12,493.4 12,246.8 11,966.7 11,694.5

2 11,193.1 11,188.5 10,584.0 10,579.6

4 10,175.1 9,578.1 9,565.3 10,137.2

6 9,929.3 8,869.2 9,398.7 9,013.7

10 8,316.8 9,162.2 9,131.3 7,043.2

12 6,699.8 6,697.2 6,379.9 9,138.9

14 9,222.8 6,137.8 9,217.5 6,093.0

Ulysses16

0 9,080.1 10,308.0 9,829.0 9,289.8

2 9,180.7 8,362.2 8,474.6 8,955.4

4 7,454.6 7,590.5 7,571.8 7,763.3

6 7,944.5 7,492.9 7,040.0 6,898.9

Burma14

0 4,305.5 4,131.9 4,253.3 3,803.7

2 4,237.7 4,305.2 3,852.2 4,136.7

4 4,044.3 3,454.5 4,018.3 3,830.4

43

Table 2 Distance of TSP tours after being transformed to a TSP tour.

Ulysses22 (Optimum value = 6945)

fn
R

500 1,500 2,500 3,500

0 13,174.3 12,592.2 14,206.2 11,694.5

2 13,037.2 13,326.6 13,059.6 11,879.7

4 11,905.6 10,900.8 12,292.0 12,236.0

6 12,006.4 12,156.9 12,237.4 15,064.9

10 9,917.0 10,034.7 11,529.5 10,610.4

12 9,624.2 9,847.6 9,476.0 9,583.9

14 9,222.8 10,712.9 10,528.5 9,222.8

Ulysses16 (Optimum value = 6795)

0 9,572.2 11,282.0 12,991.0 9,289.8

2 9,761.5 11,993.8 9,994.8 10,393.2

4 7,454.6 8,387.1 8,853.7 10,507.5

6 9,729.9 8,949.0 8,440.0 6,898.9

Burma14(Optimum value = 3356)

0 4,305.5 4,237.9 4,705.7 3,886.1

2 6,285.2 5,130.6 6,005.5 5,250.1

4 5,602.5 4,289.9 5,483.9 4,742.6

Relative deviations from the optimal solutions of after transformed to a TSP

tour are shown in Figure 19.

44

116.9

32.8

54.6 51.3
38.0

68.4
71.0

76.2

52.8

1.5

36.7

52.9 18

56

41
16

0

20

40

60

80

100

120

140

0 2 4 6 10 12 14
nf

(%
)

 ulysses22 ulysses16 burma14

Figure 19 Percentage of prediction total distance at after transformed to a TSP tour
and real optimal value with R =3500 and 1 replications.

Problem
nf

ulysses22ulysses16Burma 14
141086432014108643201410864320

15000

12500

10000

7500

5000

D
is

ta
nc

e

9104.43

10910.8

8428.34

12360.6

10433.5

15604.2

12153.9

13619.1

11536.8

13751.2

8157.5

10910.8

6813.82

9420.27

7640.75

10913.6

9251.15

11691.4

3810.12

4354.4

4278.03

5257.4

3930.42

5328.9

3764.56

6224.13

Figure 20 95% Confidence Intervals of repeating experiment at after transformed to
a TSP tour with R =3500 and 4 replications. Horizontal axis is fn and
vertical axis is distance.

45

fn does not matter when a number of cities is small but when a number of

cities is large, large fn helps to predict the better solution. From Figure 20, at

Ulysses 22 problem, comparing with fn = 0 and fn =14, predicted value of fn =14 is

better than fn = 0.

8530151050

250000

200000

150000

100000

50000

nf

di
st

an
ce

 a
ft

er
 t

ra
ns

fo
rm

52277

Figure 21 95% Confidence Intervals of repeating experiment at R =2500 and 3

replications at 96 cities of 666-cities Africa

In Figure 21 and Table 3, although a number of cities in this problem are 96

cities that are means this problem is more complexity than the last problems

(Ulysses22, Burma 16 and Burma 14), the results from applied GPR in TSP at fn =85

are better for predicted the TSP tour and their corresponding total distance compare

with optimum distance from TSPLIB (52,277). Thus increasing a number of fn in

subtour and increasing R , the predicted values are closer to the actual optimum

solution as shown in Figures 20-21. Finally, we can conclude that applied GPR in

TSP is a powerful heuristic method for solving the TSP which is an NP-Hard problem.

46

Table 3 Distance of TSP tours after and before being transformed to a TSP tour of
96 cities of 666-cities Africa problem and 3 replications.

 Distance Before Distance After

0 178,171.35 217,850.81
0 177,852.82 193,327.82
0 179,013.57 207,356.83
5 175,478.64 216,858.57
5 173,920.71 188,153.22
5 174,190.50 189,585.07
10 163,095.47 201,510.02
10 167,241.25 190,020.23
10 165,204.68 192,247.27
15 157,373.69 190,100.37
15 160,042.21 188,292.77
15 160,070.82 191,396.45
30 126,786.33 147,495.90
30 127,097.54 151,531.07
30 124,544.93 145,304.33
45 56,140.39 71,549.36
45 81,935.82 89,776.47
45 62,433.32 80,114.00
85 42,008.44 48,036.16
85 43,159.27 48,880.55
85 42,612.13 50,648.49

fn

47

8070605040302010

160000

140000

120000

100000

80000

60000

40000

20000

0

Number of node in subtour

Ti
m

e(
se

c)
Scatterplot of Time(sec) vs Number of node in subtour

Figure 22 A relations of number of node in subtour and a computational time

Figure 22 show that when number of nodes in subtour increase, a

computational time will decrease. So our method of grouping subtour, not only

provide a good estimate solution but also reduce a computational time of

programming.

48

CONCLUSION

We apply GPR to TSP with an initial numerical experiment. Our idea is to

reduce the size of the problem by initially creating a subtour. Then, we use a small

sample of TSP tours to create a GPR function and minimize it to get the solution with

the minimum distance. Finally, it is transformed into a TSP tour.

At the first time, test problem in our experiment is only 10 to 25 nodes. After

we evaluate test problems, we expand the limit of number of node to 100 nodes. As a

result, we select 96 cities of Africa to be one of our test problems. In our numerical

experiment, we show that our heuristic performs quite well. In particular, when the

sample size R increases, the predicted results are better. Moreover, when the number

of nodes in a subtour fn increases, the distances of our TSP tours are closer to the

true optimal ones.

 We expect our heuristic to improve if we can find a better method for

constructing a subtour and transforming to a TSP tour. One of the major problem in

solving TSP by GPR is running time when generate GPR function. As a result, we

recommend a Sparse Multiscale Gaussian Process Regression method for reducing

the running time in a process of estimate GPR hyperparameter by using randomly

sampling data. When apply GPR in TSP, we recommend to reduce 50% of a total

number of nodes at the first time and then reduce more than 50% later for saving time

to get a best solution. Moreover, we can not use this method if a number of a rest

node (a total number of nodes minus a number of nodes in subtour) equal to a

number of sampling data.

49

LITERATURE CITED

Applegate, D.L., R.M. Bixby, V. Chvátal and W.J. Cook. 2006. The Traveling

Salesman Problem. A Computational Study. Princeton University Press,

vol. 1, ISBN 978-0-691-12993-8.

Boyle, P. and M. Frean. 2005. Dependent Gaussian Processes, pp. 217-224. In L.

K. Saul, Y. Weiss, and L. Bottou, eds. Proceedings of the 17 th Neural

Information Processing Systems (NIPS) . The MIT Press.

Blum, A., S. Chawla, D.R. Karger, T. Lane, A. Meyerson, and M. Minkoff. 2007.

Approximation Algorithms for Orienteering and Discounted-Reward TSP.

Society for Industrial and Applied Mathematics 37 : 653-670.

Cochrane, E.M. and J.E. Beasley. 2003. The co-adaptive neural network approach to

the Euclidean traveling salesman problem, Neural Networks 16: 1499-

1525.

Dorigo M. & L.M. Gambardella (1997). Ant Colonies for the Traveling Salesman

Problem, BioSystems 43: 73-81

Ebden, M. 2008. Gaussian Process for Regression. Available source:

http://www.robots.ox.ac.uk/~mebden/reports/GPtutorial.pdf. January 30,

2010.

Galton, F. 1886. Regression towards mediocrity in hereditary stature. Journal of

Anthropological Institute 15: 246-63.

50

Grasse, P.P. 1959. La reconstruction du nid et les coordinations interindividuelles

chez bellicositermes natalensis et cubitermes sp. La theorie de la

stigmergie: essai d’interpretation du comportement des termites

constructeurs, Insectes Sociaux 6 : 41 – 81.

Gutin, G., A. Yeo and A. Zverovich. 2002. Traveling salesman should not be greedy:

domination analysis of greedy-type heuristics for TSP. Discrete Applied

Mathematics 117 : 81–86.

Hall, L.A. 1995. Approximation algorithms for scheduling., pp. 1-45, In Dorit S.

Hochbaum. In Proceedings of Approximation Algorithms for NP-Hard

Problems. PWS Publishing Company.

Hasegawa, M. 2006. Glassy Dynamics in Local Search by Metropolis Algorithm:

Temperature-Cycling Experiments On Traveling Salesman Problem .

Intelligent Interaction Technologies 832: 578-581. University of Tsukuba,

Tsukuba.

Hoffman, K. and M. Padberg. 1985. Traveling Salesman Problem ,Encyclopedia of

Operations research. Springer-Verlag.

Jeong, E.Y. 1997. Application of traveling salesman problem (TSP) for decision of

optimal production sequence. Korean Journal of Chemical Engineering

14 (5) : 416-421.

Kalaitzis, A.A. 2009. Image inpainting with Gaussian processes. Master degree of

Science, Thesis, School of Informatics, The University of Edinburgh.

Supervised by Christopher K.I. Williams.

51

Kocijan, J., R. Murray-Smith, C.E. Rasmussen, and B. Likar. 2003. Predictive control

with Gaussian process models, pp. 352-356. In Proceedings of IEEE

Region 8 Eurocon 2003: Computer as a Tool.

Liu, S.B., K.M. Ng, and H.L. Ong. 2007. A new heuristic algorithm for the classical

symmetric traveling salesman problem. International Journal of

Computational and Mathematical Sciences 1(4) : 234-238.,2007

Meeds E. and S. Osindero. 2006. An alternative infinite mixture of Gaussian process

experts, pp. 883-890. In Y. Weiss, B. Schölkopf, and J. Platt, editors. In

Proceedings of the 18 th Neural Information Processing Systems (NIPS).

The MIT Press, Cambridge, MA.

Melkumyan, A. and F. Ramos. 2009. Multi-Kernel Gaussian Processes. Neural

Information Processing Systems (NIPS) Workshops, Understanding

Multiple Kernel Learning Methods and Understanding Multiple Kernel

Learning Methods 4.

Metropolis, N., A. Rosenbluth, A. Rosenbluth, A. Teher, and E. Teher. 1953.

“Equations of State Calculations by Fast Computing Machines.” Journal of

Chemistry and Physical. 21: 1087–1092.

Pearson, K. 1896. Mathematical contributions to the theory of evolution. III.

Regression, Heredity and Panmixia. in the Philosophical Transactions of

the Royal Society of London 187: 253–318.

Rasmussen, C.E. and Z. Ghahramani. 2002. Infinite mixtures of Gaussian process

experts, pp. 881-888. In T. G. Diettrich, S. Becker, and Z. Ghahramani,

editors. In Proceedings of the 14 th Neural Information Processing

Systems (NIPS). The MIT Press.

52

Rasmussen C. E. and C.K.I. Williams. 2006. Gaussian Processes for Machine

Learning, MIT Press.

Bixby, B., and Reinelt, G. 1995. Rice Univeristy Software Distribution Center. TSP

problem. Available source: http://softlib.rice.edu/pub/tsplib/tsp/., January

30,2010,unpublished.

Shah, S. 2009. Robust Heart Rate Variability Analysis using Gaussian Process

Regression, Master Electrical and Computer, Electrical and Computer

Science, The Ohio State University, Ohio,

Sollich, P. and C.K.I. Williams. 2005. Using the Equivalent Kernel to Understand

Gaussian Process Regression, pp. 1313–1320. In Saul, L. K., Weiss, Y.,

and Bottou, L., editors. In Proceedings of the 17 th Neural Information

Processing Systems (NIPS). MIT Press.

Varga, A., C. Chira, and D. Dumitrescu. 2009. A Multi-agent Approach To Solving

Dynamic Traveling Salesman Problem, pp. 189-197. In Proceedings of

the 1 st International Conference on Bio-Inspired Computational

Methods Used for Difficult Problems Solving: Development of

Intelligent and Complex Systems. The American Institute of Physics

(AIP) 1117.

Walder, C., K. Williams, and B. Scholkopf. 2008. Sparse Multiscale Gaussian

Process Regression, pp. 1112-1119. In Proceedings of the 25 th

International Conference on Machine Learning. ACM Press, New

York.

53

Williams C.K.I., P.W. Goldberg, and C.M. Bishop. 1998. Regression with Input-

dependent Noise:A Gaussian Proces Treatment, pp. 493–499. In M. I.

Jordan, M. J. Kearns, and S. A. Solla, editors, In Proceedings of the

10 th Neural Information Processing Systems. The MIT Press,

Cambridge, MA.

54

APPENDICES

55

Appendix A
TSP data of test problem

56

Appendix Table A1 Data of Ulysses 22, Ulysses16 and Burma14.

 Ulysses 22 Ulysses 16 Burma 14

Node X Y X Y X Y

1 38.24 20.42 38.24 20.42 16.47 96.1

2 39.57 26.15 39.57 26.15 16.47 94.44

3 40.56 25.32 40.56 25.32 20.09 92.54

4 36.26 23.12 36.26 23.12 22.39 93.37

5 33.48 10.54 33.48 10.54 25.23 97.24

6 37.56 12.19 37.56 12.19 22 96.05

7 38.42 13.11 38.42 13.11 20.47 97.02

8 37.52 20.44 37.52 20.44 17.2 96.29

9 41.23 9.1 41.23 9.1 16.3 97.38

10 41.17 13.05 41.17 13.05 14.05 98.12

11 36.08 -5.21 36.08 -5.21 16.53 97.38

12 38.47 15.13 38.47 15.13 21.52 95.59

13 38.15 15.35 38.15 15.35 19.41 97.13

14 37.51 15.17 37.51 15.17 20.09 94.55

15 35.49 14.32 35.49 14.32

16 39.36 19.56 39.36 19.56

17 38.09 24.36

18 36.09 23

19 40.44 13.57

20 40.33 14.15

21 40.37 14.23

22 37.57 22.56

57

Appendix Table A2 Data of 96 Africa-Sub problem.

Africa-Subproblem

Node X Y Node X Y Node X Y Node X Y

1 4.55 23.31 25 13.38 25.21 49 6.2 3.24 73 15.25 28.17

2 8.06 15.24 26 15.2 38.53 50 6.2 7.27 74 20.09 28.36

3 2.38 16.54 27 9 38.5 51 0.2 6.44 75 17.5 31.03

4 31.38 8 28 11.36 43.09 52 3.4 8.47 76 15.47 35

5 33.39 7.35 29 8.06 15.57 53 3.52 11.31 77 19.49 34.52

6 34.02 6.51 30 4.4 17.26 54 4.22 18.35 78 25.58 32.35

7 34.05 4.57 31 3.28 16.39 55 0.2 9.27 79 15.57 5.42

8 35.48 5.45 32 1.51 15.35 56 4.16 15.17 80 7.15 12.3

9 35.43 0.43 33 16.46 3.01 57 4.18 15.18 81 22.59 14.31

10 36.4 3.03 34 12.39 8 58 0.04 18.16 82 22.34 17.06

11 22.5 5.3 35 10.23 9.18 59 5.54 22.25 83 26.38 15.1

12 36.2 6.37 36 9.31 13.43 60 0.3 25.12 84 24.45 25.55

13 36.48 10.11 37 8.3 13.15 61 3.23 29.22 85 25.45 28.1

14 34.44 10.46 38 6.18 10.47 62 1.57 30.04 86 26.15 28

15 32.54 13.11 39 5.19 4.02 63 0.19 32.25 87 29.12 26.07

16 32.07 20.04 40 6.41 1.35 64 1.17 36.49 88 29.55 30.56

17 31.12 29.54 41 5.33 0.13 65 2.01 45.2 89 33 27.55

18 31.16 32.18 42 6 1.13 66 4.03 39.4 90 33.58 25.4

19 29.58 32.33 43 6.2 2.37 67 6.1 39.11 91 33.55 18.22

20 30.03 31.15 44 12.22 1.31 68 6.48 39.17 92 23.21 43.4

21 24.05 32.53 45 13.3 2.07 69 8.48 13.14 93 18.55 47.31

22 19.37 37.14 46 12 8.3 70 12.44 15.47 94 12.16 49.17

23 15.36 32.32 47 11.51 13.1 71 11.4 27.28 95 20.1 57.3

24 13.11 30.13 48 12.07 15.03 72 12.49 28.13 96 4.38 55.27

58

Appendix Table A3 Optimal solution of Ulysses 22, Ulysses16 and Burma14.

Ulysses 22 Ulysses 16 Burma 14

Rank Node Rank Node Rank Node

1 1 1 1 1 1

2 14 2 14 2 2

3 13 3 13 3 14

4 12 4 12 4 3

5 7 5 7 5 4

6 6 6 6 6 5

7 15 7 15 7 6

8 5 8 5 8 12

9 11 9 11 9 7

10 9 10 9 10 13

11 10 11 10 11 8

12 19 12 16 12 11

13 20 13 3 13 9

14 21 14 2 14 10

15 16 15 4

16 3 16 8

17 2

18 17

19 22

20 4

21 18

22 8

59

Appendix Table A4 Optimal solution of 96 Africa-Sub problem.

No. Node No. Node No. Node No. Node

1 29 25 26 49 74 73 50

2 2 26 28 50 84 74 52

3 3 27 27 51 86 75 53

4 4 28 65 52 85 76 55

5 5 29 96 53 78 77 51

6 6 30 94 54 88 78 49

7 7 31 95 55 87 79 43

8 8 32 93 56 89 80 42

9 9 33 92 57 90 81 41

10 10 34 77 58 91 82 40

11 12 35 76 59 83 83 39

12 13 36 68 60 82 84 44

13 14 37 67 61 81 85 45

14 15 38 66 62 80 86 11

15 16 39 64 63 79 87 33

16 17 40 63 64 70 88 34

17 20 41 62 65 69 89 35

18 18 42 61 66 57 90 38

19 19 43 60 67 56 91 37

20 21 44 59 68 58 92 36

21 25 45 71 69 54 93 32

22 24 46 72 70 48 94 31

23 23 47 73 71 47 95 30

24 22 48 75 72 46 96 1

60

Appendix Table A4 Distance m

etric of Ulysses 225

Appendix Table A5 Distance metric of Ulysses 22

61
6Appendix Ta

Appendix Table A6 Distance metric of Ulysses 16

62

Appendi7x Table A5 Distance m

etric of Burm
a 14

Appendix Table A7 Distance metric of Burma 14

63

Appendix Table A8 Prediction distance for applied GPR in TSP.

Problem fn Distance

Ulysses 22 - 12,592

Ulysses 22 - 11,694

Ulysses 22 - 13,298

Ulysses 22 - 12,991

Ulysses 22 2 13,037

Ulysses 22 2 13,060

Ulysses 22 2 13,240

Ulysses 22 2 12,209

Ulysses 22 6 13,563

Ulysses 22 6 11,929

Ulysses 22 6 11,519

Ulysses 22 6 15,065

Ulysses 22 10 9,505

Ulysses 22 10 11,489

Ulysses 22 10 9,159

Ulysses 22 10 11,426

Ulysses 22 14 10,020

Ulysses 22 14 10,233

Ulysses 22 14 10,555

Ulysses 22 14 9, 223

Ulysses 16 - 10,872

Ulysses 16 - 11,172

64

Appendix Table A8 Prediction distance for applied GPR in TSP.

Problem fn Distance

Ulysses 16 - 10,424

Ulysses 16 - 9,417

Ulysses 16 3 10,704

Ulysses 16 3 9,323

Ulysses 16 3 8,380

Ulysses 16 3 8,702

Ulysses 16 6 8,440

Ulysses 16 6 8,456

Ulysses 16 6 6,899

Ulysses 16 6 8,673

Ulysses 16 8 8,753

Ulysses 16 8 8,817

Ulysses 16 8 10,283

Ulysses 16 8 10,283

Burma 14 - 4,717

Burma 14 - 4,717

Burma 14 - 6,587

Burma 14 - 3,886

Burma 14 2 3,881

Burma 14 2 4,860

Burma 14 2 4,215

Burma 14 2 4,942

65

Appendix Table A8 (Continued)

Problem fn Distance

Burma 14 4 4,578

Burma 14 4 4,872

Burma 14 4 4,290

Burma 14 4 4,743

Burma 14 6 3,961

Burma 14 6 4,279

Burma 14 6 3,919

Burma 14 6 4,170

66

Appendix B
Programming

67

Appendix B1 Generate Route and distance function

function [total_dist,pop] = Gen_routhfixstart

(Number_Node,Dis_matrix,N_Random,N_iter)

Nod = Number_Node;

[nr,nc] = size(Dis_matrix);

if Nod ~= nr || Nod ~= nc

 error('Invalid XY or DMAT inputs!')

end

n = Nod - 1;

pop_size = N_Random;

num_iter = max(1,round(real(N_iter)));

% Initialize the Population

pop = zeros(pop_size,n);

for k = 1:pop_size

 pop(k,:) = randperm(n)+1;

end

 global_min = Inf;

total_dist = zeros(1,pop_size);

dist_history = zeros(1,num_iter);

tmp_pop = zeros(4,n);

new_pop = zeros(pop_size,n);

dmat=Dis_matrix;

for iter = 1:num_iter

 for p = 1:pop_size

 d = dmat(1,pop(p,1));

 for k = 2:n

 d = d + dmat(pop(p,k-1),pop(p,k));

 end

 total_dist(p) = d;

 end

68

 total_dist=total_dist';

end

_ _ _ _ _ __ _ _ _ _ __ _ _ _ _ __ _ _ _ _ _

function [total_dist,pop,kk] = Gen_routhfixstartSearch

(Number_Node,number_fixnode,Dis_matrix,N_Random,N_iter,startnode,Endnode,p

ossibleNodeRandom,fixRoutemetric)

Nod=Number_Node;

n = Number_Node-number_fixnode;

[nr,nc] = size(Dis_matrix);

if Nod ~= nr || Nod ~= nc

 error('Invalid XY or DMAT inputs!')

end

pop_size = 4*ceil(N_Random/4);

num_iter = max(1,round(real(N_iter)));

pop = zeros(pop_size,n);

kk = zeros(pop_size,n);

for k = 1:pop_size

 kk(k,:)=randperm(n);

end

for k = 1:pop_size

 for j=1:n

 ff=kk(k,j);

 pop(k,j)=possibleNodeRandom(1,ff);

 end

end

global_min = Inf;

total_dist = zeros(1,pop_size);

dist_history = zeros(1,num_iter);

tmp_pop = zeros(4,n);

69

new_pop = zeros(pop_size,n);

dmat=Dis_matrix;

 pp=number_fixnode-1;

 fixdis =zeros(1,1);

 for k = 1:pp

 fixdis = fixdis+ dmat(fixRoutemetric(1,k),fixRoutemetric(1,k+1));

 end

for iter = 1:num_iter

 for p = 1:pop_size

 d = dmat(startnode,pop(p,1))+dmat(pop(p,n),Endnode); % Add Start Distance

and end distance

 for k = 2:n

 d = d + dmat(pop(p,k-1),pop(p,k));

 end

 total_dist(p) = d+fixdis;

 end

 total_dist=total_dist';

end

end

Appendix B2 Search subroute function

function [X,Y] = SearchNodeMin (Number_Node,Dis_matrix,N_SearchNodeFix)

X=zeros(N_SearchNodeFix,2);

P=max(max(Dis_matrix));

Y=zeros(N_SearchNodeFix+1,1);

for i = 1:Number_Node

 for j = 1:Number_Node

 if isequal(i,j)==0;

 if Dis_matrix(i,j)<P

 P= Dis_matrix(i,j);

70

 Y(1)=i;

 X(1,1)=i;

 X(1,2)=j;

 end

 end

 end

end

for u=2:N_SearchNodeFix

 for i = 1:Number_Node

 if i==X(u-1,2)

 P=max(max(Dis_matrix));

 for j = 1:Number_Node

 if isequal(i,j)==0

 if isequal(j,X(1,1))==0

 s=0;

 for y=1:(u-1)

 if

or(and(isequal(i,X(y,1)),isequal(j,X(y,2))),and(isequal(j,X(y,1)),isequal(i,X(y,2))))==

1

 s=s+1;

 end

 if isequal(j,Y(y))==1

 s=s+1;

 end

 end

 if s==0

 if or(Dis_matrix(i,j)<P,Dis_matrix(i,j)==P)

 P= Dis_matrix(i,j);

 Y(u)=i;

 X(u,1)=i;

 X(u,2)=j;

 end

71

 end

 end

 end

 end

 end

 end

end

pp=X(N_SearchNodeFix,2);

Y(N_SearchNodeFix+1)=pp;

 Y=Y';

 end

Appendix B3 Transform to Binary code

[Rdsize,n]=size(RoutX);

N=n+1;

Num_var=0;

tt=0;

BeforeP=0;

AfterP=0;

Count=0;

for I=1:(N-1)

Num_var= N-I+Num_var;

end

CharacterX=zeros(Rdsize,Num_var);

 for J=1:Rdsize

 p=0;

 p=RoutX(J,1);

 CharacterX(J,p-1)=1;

pp=RoutX(J,n);

CharacterX(J,pp)=1;

 for I=2:n

72

 BeforeP= RoutX(J,I-1);

 AfterP= RoutX(J,I);

 if BeforeP>AfterP

 Add=BeforeP-AfterP;

 Count=0;

 for f=1:AfterP-1

 Count=N-f+Count;

 end

 Add=Count+Add;

 CharacterX(J,Add)=1;

 end

 if BeforeP<AfterP

 Add=AfterP-BeforeP;

 Count=0;

 for f=1:BeforeP-1

 Count=N-f+Count;

 end

 Add=Count+Add;

 CharacterX(J,Add)=1;

 end

 end

 end

end

_ _ _ _ _ __ _ _ _ _ __ _ _ _ _ __ _ _ _ _ _

function CharacterX = EditXSearch(RoutX)

 [Rdsize,n]=size(RoutX);

N=n;

Num_var=0;

%Generate X data

73

for I=1:(N-1)

Num_var= N-I+Num_var;

end

CharacterX=zeros(Rdsize,Num_var);

 for J=1:Rdsize

 p=RoutX(J,1);

 CharacterX(J,p)=1;

pp=RoutX(J,n);

CharacterX(J,pp)=1;

 for I=2:n

 BeforeP= RoutX(J,I-1);

 AfterP= RoutX(J,I);

 if BeforeP>AfterP

 Add=BeforeP-AfterP;

 Count=0;

 for f=1:AfterP-1

 Count=n-f+Count;

 end

 Add=Count+Add;

 CharacterX(J,Add)=1;

 end

 if BeforeP<AfterP

 Add=AfterP-BeforeP;

 Count=0;

 for f=1:BeforeP-1

 Count=n-f+Count;

 end

 Add=Count+Add;

 CharacterX(J,Add)=1;

 end

 end

 end

74

end

Appendix B4 Transform to TSP route

function [X,XX,CharacterX] = GetrouteX(RoutX,node,routenotfit)

[Rdsize,kk]=size(RoutX);

N=node;

Num_var=0;

X=zeros(2,N-1);

for I=1:(N-1)

Num_var= N-I+Num_var;

end

if kk ~= Num_var

 error('Error: Number of x do not agree with number of nodes')

end

CharacterX=zeros(2,Num_var);

XX=zeros(2,Num_var);

xx=0;

for I=1:(N-1)

 count=node-I;

 K=0;

 for J=I:(N-1)

 K=K+1;

 count=count-1;

 if I==1

CharacterX(1,K)=node-count;

CharacterX(2,K)=I;

 else

 CharacterX(1,xx+K)=node-count;

 CharacterX(2,xx+K)=I;

 end

75

end

xx=xx+N-I;

end

for I=1:Rdsize

 for J=1:Num_var

 p=RoutX(I,J);

 if p>0

 XX(1,J)= CharacterX(1,J);

 XX(2,J)= CharacterX(2,J);

 end

 end

 end

count=0;

 for J=1:Num_var

 p=XX(1,J);

 if p>0

 count=count+1;

 X(1,count)= XX(1,J);

 X(2,count)= XX(2,J);

 end

 end

binary

 if nargin == 3

 [nr,cr]=size(X);

 for i=1:nr

 for j=1:cr

 PL=routenotfit(1, X(i,j));

 X(i,j)=PL;

 end

 end

 end

76

end

_ _ _ _ _ __ _ _ _ _ __ _ _ _ _ __ _ _ _ _ _

function [X,Y] = Fitnode(RouteX,node,startnode,distancemetric)

X=zeros(node,1);

before=startnode;

Ex=RouteX;

for i=1:node

nds=find(RouteX==before);

[row3 col3]=ind2sub(size(RouteX),nds);

[row,col] = Find_smalllestdistance(RouteX,row3,col3,distancemetric,X,before);

if row==1

 next=RouteX(row+1,col);

 X(i,1)=before;

 X(i+1,1)=next;

 before=next;

 Ex(1,col)=0;

 Ex(2,col)=0;

elseif row==2

 next=RouteX(1,col);

 X(i,1)=before;

 X(i+1,1)=next;

 before=next;

 Ex(1,col)=0;

 Ex(2,col)=0;

else

 X(i+1,1)=0;

 before=0;

end

end

77

 [nRR,cRR]=size(X);

 count=0;

 for i=1:nRR

 if(X(i,1)>0)

 count=count+1;

 end

 end

 if count>0

 c=0;

 ccc=zeros(count,1);

 [nRR,cRR]=size(X);

 for i=1:nRR

 if X(i,1)>0

 c=c+1;

 ccc(c,1)=X(i,1);

 end

 end

 X=ccc;

 end

 [n,c]=size(Ex);

Count=0;

for i=1:c

if Ex(1,i)>0

 Count=Count+1;

end

end

nn=Count;

Y=zeros(2,nn);

Count=0;

for i=1 :c

if Ex(1,i)>0

 Count=Count+1;

78

 Y(Count,1)=Ex(1,i);

 Y(Count,2)=Ex(2,i);

end

end

Y=Y';

end

_ _ _ _ _ __ _ _ _ _ __ _ _ _ _ __ _ _ _ _ _

function [RR] = Fit(main,node,Other,d,j)

b

if nargin == 4

[Notmain] = notmain(main,node);

elseif nargin == 5

[Notmain] = notmain(main,node,j);

end

if Notmain==0

 RR=main;

else

 [Other] = CheckMainforOther(main,Notmain,Other);

 [n,c]=size(main);

 if Other==0

 [RR,freenode] = connectfreenode(main(n,1),Notmain,d);

 else

 [RR,freenode,Otherroute] = connectfreenode(main(n,1),Notmain,d,Other);

 end

 [nRR,cRR]=size(RR);

 count=0;

 for i=1:nRR

 if(RR(i,1)>0)

 count=count+1;

 end

 end

79

 if count>0

 c=0;

 ccc=zeros(count,1);

 [nRR,cRR]=size(RR);

 for i=1:nRR

 if RR(i,1)>0

 c=c+1;

 ccc(c,1)=RR(i,1);

 end

 end

 RR=ccc;

 end

 end

end

Appendix B5 Subfunction of Transform to TSP route

function [rowf,colf,nextx,dis1,z] =

Find_smalllestdistance(RouteX,row,col,disstancemetric,X,before)

if isempty(row)==0

 [n,c]=size(row);

 nextx=zeros(n,1);

 dis1=zeros(n,1);

 for i=1:n

 p=row(i,1);

 k=col(i,1);

if p==1

 nextx(i,1)=RouteX(p+1,k);

elseif p==2

 nextx(i,1)=RouteX(p-1,k);

end

80

dis1(i,1)=disstancemetric(before,nextx(i,1));

 end

 for i=1:n

 nds=find(X==nextx(i,1));

 [rownex colnex]=ind2sub(size(X),nds);

if isempty(rownex)==0

 nextx(i,1)=0;

end

 end

 disMax=max(max(disstancemetric));

 [n,c]=size(row);

 rowf=0;

 colf=0;

for i=1:n

 if nextx(i,1)~=0

 if or(dis1(i,1)< disMax,dis1(i,1)== disMax)

 disMax=dis1(i,1);

 rowf=row(i,1);

 colf=col(i,1);

z=1;

 end

 end

end

elseif isempty(row)==1

 rowf=0;

 colf=0;

end

end

_ _ _ _ _ __ _ _ _ _ __ _ _ _ _ __ _ _ _ _ _

function [freenode] = freenodecheck(freenode,Otherroute)

81

[nO,cO]=size(Otherroute);

count=0;

[n,c]=size(freenode);

for i=1:n

 before=freenode(i,1);

 nds=find(Otherroute==before);

 [row3 col3]=ind2sub(size(Otherroute),nds);

 if nds~=0

 freenode(i,1)=0;

 count=count+1;

 end

end

c=count;

if c~=0

count=0;

 freenode2=zeros(c,1);

[n,c]=size(freenode);

for i=1:n

 if (freenode(i,1)~=0)

 count=count+1;

 freenode2(count,1)=freenode(i,1);

 end

end

freenode=freenode2;

end

end

_ _ _ _ _ __ _ _ _ _ __ _ _ _ _ __ _ _ _ _ _

function [Notmain] = notmain(main,node,j)

if nargin == 2

 X=zeros(node,1);

82

for i=1:node

 X(i,1)=i;

end

elseif nargin == 3

X=j';

[oo,node]=size(j);

end

 count=0;

for i=1:node

 before=X(i,1);

 nds=find(main==before,1);

 if (isempty(nds)==0)

 X(i,1)=0;

 count=count+1;

 end

end

c=node-count;

if c~=0

count=0;

Notmain=zeros(c,1);

for i=1:node

 if X(i,1)~=0

 count=count+1;

 Notmain(count,1)=X(i,1);

 end

end

else

Notmain=0;

end

end

_ _ _ _ _ __ _ _ _ _ __ _ _ _ _ __ _ _ _ _ _

83

function [Otherroute] = other(freenode,d,Otherroute)

 [nf,cf]=size(freenode);

 [nO,cO]=size(Otherroute);

 Otherroute2=Otherroute;

count=0;

 for i=1:nO

 for j=1:cO

 before=Otherroute2(i,j);

 nds=find(Otherroute==before);

 [row3 col3]=ind2sub(size(Otherroute),nds);

 [nR,cR]=size(row3);

 if nds~=0

 dis1=max(max(d));

 for z=1:nR

 if Otherroute2(row3(z),col3(z))~=0

 if and(row3(z),col3(z))~=0

 if row3(z)==1

 dis=d(Otherroute2(row3(z),col3(z)),Otherroute2(row3(z)+1,col3(z)));

 elseif row3(z)==2

 dis=d(Otherroute2(row3(z),col3(z)),Otherroute2(row3(z)-1,col3(z)));

 end

 if dis<=dis1

 rZ=row3(z);

 cZ=col3(z);

 dis1=dis;

 end

 end

 end

 end

 for z=1:nR

 if col3(z)~= cZ

84

 Otherroute(1,col3(z))=0;

 Otherroute(2,col3(z))=0;

 end

 end

 end

 end

 end

 count=0;

 [nO,cO]=size(Otherroute);

 for i=1:cO

 if Otherroute(1,i)>0

 count=count+1;

 end

 end

 if count>0

 Otherroute2=zeros(2,count);

 c=0;

 for i=1:cO

 if Otherroute(1,i)~=0

 c=c+1;

 Otherroute2(1,c)= Otherroute(1,i);

 Otherroute2(2,c)= Otherroute(2,i);

 end

 end

 Otherroute=Otherroute2;

 end

 end

_ _ _ _ _ __ _ _ _ _ __ _ _ _ _ __ _ _ _ _ _

function [Other] = CheckMainforOther(main,Notmain,Other)

 [n,c]=size(Notmain);

K=Other;

85

count=0;

[nOther,cOther]=size(Other);

newOther=zeros(nOther,cOther);

for i=1:n

 before=Notmain(i,1);

 nds=find(Other==before);

 [rowX colX]=ind2sub(size(Other),nds);

 [nm,cm]=size(rowX);

 for h=1:nm

 if (nds~=0)

 newOther(rowX(h),colX(h))=Other(rowX(h),colX(h));

 end

 end

end

for i=1:cOther

 for j=1:nOther

 if newOther(j,i)==0

 if j==1

 newOther(2,i)=0;

 elseif j==2

 newOther(1,i)=0 ;

 end

 end

 end

end

[n,c]=size(main);

count=0;

for i=1:cOther

 if newOther(1,i)~=0

 count=count+1;

 end

end

86

if count==0

 Other=0;

else

K=zeros(2,count);

count=0;

for i=1:cOther

 if newOther(1,i)~=0

 count=count+1;

 K(1,count)=newOther(1,i);

 K(2,count)=newOther(2,i);

 end

end

Other=K;

end

end

Appendix B6 Create distance matrix

function distances=dis2(x,y)

N_cities = size(x,1);

distances = zeros(N_cities,N_cities);

for i = 1:N_cities

 for j = (i+1):N_cities

 distances(j,i) = pos2dist(x(i),y(i),x(j),y(j),2);

 distances(i,j)=distances(j,i);

 end

end

end

_ _ _ _ _ __ _ _ _ _ __ _ _ _ _ __ _ _ _ _ _

function dist = pos2dist(lag1,lon1,lag2,lon2,method)

87

if nargin < 4

 dist = -99999;

 disp('Number of input arguments error! distance = -99999');

 return;

end

if abs(lag1)>90 || abs(lag2)>90 || abs(lon1)>360 || abs(lon2)>360

 dist = -99999;

 disp('Degree(s) illegal! distance = -99999');

 return;

end

if lon1 < 0

 lon1 = lon1 + 360;

end

if lon2 < 0

 lon2 = lon2 + 360;

end

if nargin == 4

 method = 1;

end

if method == 1

 km_per_deg_la = 111.3237;

 km_per_deg_lo = 111.1350;

 km_la = km_per_deg_la * (lag1-lag2);

 if abs(lon1-lon2) > 180

 dif_lo = abs(lon1-lon2)-180;

 else

 dif_lo = abs(lon1-lon2);

 end

 km_lo = km_per_deg_lo * dif_lo * cos((lag1+lag2)*pi/360);

 dist = sqrt(km_la^2 + km_lo^2);

else

 R_aver = 6374;

88

 deg2rad = pi/180;

 lag1 = lag1 * deg2rad;

 lon1 = lon1 * deg2rad;

 lag2 = lag2 * deg2rad;

 lon2 = lon2 * deg2rad;

 dist = R_aver * acos(cos(lag1)*cos(lag2)*cos(lon1-lon2) + sin(lag1)*sin(lag2));

end

Appendix B7 Use GPML to create hyperparameter and minimize function

[n,D]=size(x);

logtheta0 = zeros(D+2,1);

logtheta0(D+2) = -1.15;

covfunc = {'covSum', {'covSEard','covNoise'}};

logtheta = minimize(logtheta0, 'gpr', -100, covfunc, x, y);

[X0, fX1, i0] = minimize2(x0,-100,logtheta, covfunc, x, y);

89

Appendix C
GPML Toolbox manual

90

Appendix C1 Description of the GPR function gpr.m on GPML toolbox

The basic computations needed for standard Gaussian process regression (GPR)

are straight forward to implement in MATLAB. Several implementations are

possible, here we present an implementation closely resembling Algorithm in C1.

Appendix Figure C1 GPR algorithm

with three exceptions: Firstly, the predictive variance returned is the variance for

noisy test-cases, whereas C1 Algorithm gives the variance for the noise-free latent

function; conversion between the two variances is done by simply adding (or

Input : X (input), y (target), k (covariance function), 2
nσ (noise level), *x (test

input)

2()nL cholesky K Iσ= +
TL

L
y

α =
⎛ ⎞
⎜ ⎟
⎝ ⎠

* *
Ty K α=

Predictive variance is on Equations

*

L
K

υ =

[]* * *(,) TV y k x x υ υ= −

Log marginal likelihood is on equation

1log () log log 2
2 2

T
ii

i

np y X y Lα π= − − −∑

Return: *y (mean), []*V y (variance), log ()p y X (log marginal likelihood)

91

subtracting) the noise variance. Secondly, the negative log marginal likelihood is

returned, and thirdly the partial derivatives of the negative log marginal likelihood.

A simple implementation of a Gaussian process for regression is provided by

the gpr.m program (which can conveniently be used together with minimize.m for

optimization of the hyperparameters). The program can do one of two things:

• compute the negative log marginal likelihood and its partial derivatives the

hyperparameters, usage

[nlml dnlml] = gpr(logtheta, covfunc, x, y)

which is used when "training" the hyperparameters, or

• compute the (marginal) predictive distribution of test inputs, usage

[mu S2] = gpr(logtheta, covfunc, x, y, xstar)

Selection between the two modes is indicated by the presence (or absence) of

test cases, xstar. The arguments to the gpr.m function are:

92

Appendix Table C11 Input and output of GPR function

Inputs

logtheta a (column) vector containing the logarithm of the hyperparameters

covfunc the covariance function

X a n by D matrix of training inputs

Y a (column) vector if training set targets (of length n)

Xstar a nn by D matrix of test inputs

Outputs

Nlml the negative log marginal likelihood

Dnlml
 Column vector with the partial derivatives of the negative log marginal

likelihood (the logarithm of the hyperparameters).

Mu Column of predictive means

S2 Column vector of predictive variances

 The covfunc argument specifies the function to be called to evaluate

covariances. The covfunc can be specified either as a string naming the function to

be used or as a cell array. A number of covariance functions are provided, see

covFunctions.m for a more complete description. A commonly used covariance

function is the sum of a squared exponential (SE) contribution and independent noise.

This can be specified as:

 covfunc = {'covSum', {'covSEiso','covNoise'}};

where covSum merely does some bookkeeping and calls the squared

exponential (SE) covariance function covSEiso.m and the independent noise

covariance covNoise.m. The squared exponential (SE) covariance function (also

called the radial basis function (RBF) or Gaussian covariance function) is given by in

equation below :

93

2 2 2
2

1(,) exp(()
2y p q f p q n pqk x x x x
l

σ σ δ= − − +

for the scalar input case, and equation

2 2
,

1exp(() ()) ,
2

T
f i i n ik x x M x xσ σ δ∗ ∗ ∗ ∗= − − − +

for multivariate inputs.

94

Appendix D

 Numerical Example

95

Appendix D Numerical Example

 We have 5 nodes of Geographic TSP thus 5 nodes have symmetric

distance properties. We need to predict the minimum distance of this TSP problem

and find TSP route by using GPR method which has 2 nodes in subtour. Latitudes

and longitudes of Geographic TSP are shown in Appendix FigureD1:

Node Latitude

Longitude

1 38.24 20.42

2 39.57 26.15

3 40.56 25.32

4 36.26 23.12

5 33.48 10.54

Appendix Figure D1 Latitude and longitude from GEO TSP.

Appendix D1 Calculate distance matrix

 1 2 3 4 5

1 0 517 493 325 1035

2 517 0 130 454 1548

3 493 130 0 515 1527

4 325 454 515 0 1188

5 1035 1548 1527 1188 0

Appendix Figure D2 Distance matrix

96

Appendix D2 Construct a subtour by a greedy heuristic

 The minimum distance is 130 Km. from path i = 2 and j = 3 which

shown in Appendix FigureD3, subtour is shown in Appendix Figure D4 and the

rest tour are shown in Appendix FigureD5.

 node

 node 1 2 3 4 5

1 0 517 493 325 1035

2 517 0 130 454 1548

3 493 130 0 515 1527

4 325 454 515 0 1188

5 1035 1548 1527 1188 0

Appendix Figure D3 Distance matrix which shown minimum distance.

2

3

Appendix Figure D4 Subtour

1

4

5

Appendix Figure D5 The rest tour

97

Appendix D3 Generate sampling tour and their corresponding total distance

We generate 3 sampling tours (X) in Appendix Figure D6 and total distance

(Y) in Appendix Figure D7. After that we redefine the rest node in ordinary number

which shows in Appendix Figure D8 and sampling tour are redefined base on the rest

tour in Appendix Figure D8 (Appendix Figure D9).

Tour No. Tour

1 1 4 5

2 4 5 1

3 5 1 4

Appendix Figure D6 3 sampling tours(X)

Tour No. Distance

1 3684

2 3385

3 3471

Appendix Figure D7 Their corresponding total distance (Y)

Current New

1 1

4 2

5 3

Appendix Figure D8 The rest tour are redefined

98

Tour No. Tour

1 1 2 3

2 2 3 1

3 3 1 2

Appendix Figure D9 Redefined sampling tour

Each of redefined sampling tours is re-writing in binary matrix that shown in

Appendix Figure D10. The value in binary matrix is 1 if the path from node i to node

j appear and 0 if the path from node i to node j do not appear. Because of geographic

TSP are symmetric so the lower triangular of a binary matrix can be deleted from

Appendix Figure D10(Appendix Figure D11). The tours are transformed to 1 row

matrix ('X) which shown in Appendix Figure D12.

Tour No.1 Tour No. 2 Tour No. 3

 node

node 1 2 3

 node

node 1 2 3

 node

node 1 2 3

1 0 1 0 1 0 0 1 1 0 1 1

2 1 0 1 2 0 0 1 2 1 0 0

3 0 1 0 3 1 1 0 3 1 0 0

Appendix Figure D10 Binary term of sampling tour

99

Tour No.1 Tour No. 2 Tour No. 3

 node

node 1 2 3

 node

node 1 2 3

 node

node 1 2 3

1 - 1 0 1 - 0 1 1 - 1 1

2 - - 1 2 - - 1 2 - - 0

3 - - - 3 - - - 3 - - -

Appendix Figure D11 Binary matrix after reducing variable

Tour No. Tour

1 1 0 1

2 0 1 1

3 1 1 0

Appendix Figure D12 One row matrix of each tour ('X)

Appendix D4 Use GPR function to approximate an optimal TSP tour.

We determine a starting solution, which is a TSP tour. In our experiment

starting solution is TSP tour which has lowest total distance.

Tour No. Tour Distance

1 1 0 1 3684

2 0 1 1 3385

3 1 1 0 3471

Appendix Figure D13 Selected starting solution

100

Parameters are estimated to creating GPR function which is used for predicted

the optimal value of TSP problem. The prediction value are shown in Appendix

Figure D14

Tour Distance

1 1 0 3570

Appendix Figure D14 Prediction value

Appendix D5 Transform an optimal solution to a TSP tour.

A one row route is transformed to binary matrix (Appendix Figure D15). It is

transformed again to a path matrix [2 pathn×] (Appendix Figure D16) and select a

lowest distance path in a path matrix.

 node

node 1 4 5

1 - 1 1

4 - - 0

5 - - -

Appendix Figure D15 Binary Matrix of optimal solution

Tour

1 2

1 1

4 5

Distance

325 1035

Appendix Figure D16 Path matrix

101

We select the lowest distance tour which is tour 2, but tour 2 can not connect

which tour 1 because the end of tour 2 is 3. We can separate T, H, and K matrixes in

Appendix Figure D17 which H matrix is deleted

Distance

54

21

Tour

1035325

11

5

1H= K= 5
4

1T=

Appendix Figure D17 Delete paths in H which have node the same as T.

From matrix T, K an H, we will get TSP tour below in D18.

Tour Distance

2 3 1 4 5 3684

Appendix Figure D18 TSP Tour

The optimal solution from GPR prediction is lower than a solution when

transform to a TSP tour because of a tour construction in the last step.

102

CURRICULUM VITAE

NAME : Ms. Jarumas Chanatapanich

BIRTH DATE : October 17, 1985

BIRTH PLACE : Bangkok, Thailand

EDUCATION :YEAR INSTITUTE DEGREE/DEPLOMA

 2008 Kasetsart Univ. B.E.(Engineering)

 2011 Kasetsart Univ. M.E.(Engineering)

POSITION/TITLE :Buyer

WORK PLACE :Volvo Truck and Bus (Thailand) group Co.,Ltd

