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      The traveling salesman problem (TSP) is a generalized form of the simple 

problem to find the smallest closed loop or distance from route that connects a 

number of points in a plane.  We present a new heuristics method for solving TSP 

which is NP-hard.  Given a small set of data, we first fit a Gaussian process regression 

function and then find a route that minimizes this regression function.   The route is 

further transformed into a TSP tour.  The numerical experiment shows that our 

approach can find a reasonably good solution.  This method can predict an optimal 

solution which is higher than the optimal value by 1.4-13% when being experimented 

on test problems from TSPLIB (Bixby and Reinelt 1995).  We expect our heuristics to 

improve if we use a more effective method for a tour construction. 
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SOLVING THE TRAVELING SALESMAN PROBLEM WITH GAUSSIAN 

PROCESS REGRESSION 

 

INTRODUCTION 

 

The traveling salesman problem (TSP) is widely studied by mathematicians 

and operation researchers because it is commonly found in real-world problems, such 

as finding a minimum distance in logistics problems (Dorigo and Gambardell,  1996) 

and optimizing a production sequence for scheduling problems (Jeong, 1997).  The 

problem can simply be stated as: a traveling salesman wishes to visit exactly once 

each of a list of n cities (where the cost of traveling from city i  to city j  is ijC ) and 

then return to the home city.  The objective of TSP is to minimize the total cost of 

traveling,
, 1

n

ij
i j

C
=
∑  (Hoffman and Padberg, 1985). 

 

TSP is one of combinatorial optimization problems.  TSP is NP-complete.  

Thus, the running times for any heuristic algorithms to solve TSP increases 

exponentially with the number of cities (Hall, 1995).  Although the problem is 

difficult, a large number of heuristics perform well; some instances with many 

thousands of cities can be solved.  Applegate et al. (2006) solve a traveling salesman 

problem which models the production of printed circuit boards having 7,397 holes.  

Later, they solve another problem with over the 13,509 largest cities in the U.S.    

 

We employ some random tours “independent variables” and total costs or 

total distances “dependent variables” to generate a total cost regression function.  

Therefore, TSP can be viewed as a regression problem.  The relationship between 

dependent variables and independent variables are likely to be nonlinear; thus, a 
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multiple linear regression cannot be applied.  Gaussian process regression (GPR) is 

capable of fitting arbitrary-shaped functions, so it is selected to fit a response function 

for TSP 

 

GPR provides a powerful methodology for modeling data that exhibit 

complex characteristics such as nonlinear behaviors while retaining mathematical 

simplicity.  Gaussian process is a collection of random variables, any finite number of 

which has (consistent) Gaussian distribution.  An example of Gaussian process 

applications is in prediction control (Kocijan et al., 2003). 
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OBJECTIVES 

 
The objective of this study is to apply GPR to TSP to predict the minimum 

cost or distance and to apply a numerical method to estimate a corresponding TSP 

tour of this prediction. 

 

Assumptions 

 

           This study will be considered under the following delimitation below: 

 

We consider a geographical TSP.  A geographical TSP has their coordinates as 

latitudes and longitudes of the Earth. 

The distance or cost matrix are symmetric. 

The GPR hyperparameters are calculated based on all of the generated data. 

GPR prediction model based on a square exponential covariance function with 

automatic relevance determination (ARD) and independent noise. 

Test problem is 96 Africa, Ulysses22, Ulysses16, and Burma14 from TSPLIB (Bixby 

and Reinelt 1995) 

 

Significance of study 

  

The benefit of this study is to speed up the calculation of the TSP tour and to provide 

a good (close to optimal) TSP tour within a small amount of time. 
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LITERATURE REVIEW 

 
Development of TSP and related works on GPR are described as follows: 

Sections 1 and 3 describe the related TSP and GPR literature.  We describe GPR and 

the Sparse Multiscale GPR theory in Sections 2 and 4.  The squared Exponential 

Kernel and hyperparameter adaptation by using automatic relevance determination 

which is used in applying GPR to TSP are described in Sections 5 and 7.  Spare 

Multiscale Gaussian Process Regression is our proposed method (Section 6). 

 
1.  Traveling Salesman Problems 
 

The classical TSP is symmetric, i.e., distance from node i  to node j  is equal 

to distance from node j  to node i .  Lui et al. (2007) propose a heuristic for this type 

of TSP.  Their method is to split a TSP tour into overlapped blocks and then improve 

each block separately.  By doing a local search using the Generalized Crossing 

method, each block is explored intensively in order to improve the existing solution.  

When comparing with an adaptive neural network method (Cochrane, and Beasley,  

2003), this algorithm obtains a better solution.  

 

The constraints of TSP are not only to visit all the cities exactly once but 

sometimes TSP also has other conditions on distance or cost such as the Orienteering 

and Discounted-Reward TSP, where both are NP-hard (Blum et al.,  2007).  The goal 

of the Orienteering TSP is to find the path with maximum reward collected, subject to 

a hard limit on total distance.  While in the Discounted-Reward TSP, the length limit 

is given a discount factor in order to maximize total discount reward collected. 

 

TSP is applied to many real-world situations.  One of the common problems is 

when cities can be dynamically added or removed.  Varga et al. (2009)  propose  a 

multi-agent approach, based on the sensitive stigmergic agent system model (Grasse 

1959), refined with new types of messages between agents.  The agent sends 

messages every time change occurs; for instance, when an agent observes that the city 
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has disappeared or appeared.  After testing under various pheromone sensitivity levels 

and learning abilities for agents, the proposed model appear to have good 

performance. 

 

       Hasegawa (2006) shows that TSP can be applied to complex physical 

problems.  The temperature cycling experiments is a local search process that has a 

resemblance to polymer glass dynamics at the point that a memory effect and  a 

relaxation acceleration appear in the case of negative and positive cycling.  The 

temperature cycling experiments is formulated as a random Euclidean TSP and is 

solved with the Metropolis algorithm (Metropolis et al., 1953).    
 

2.  Gaussian Process  

 

The material in this section is taken from Kalaitzis (2009), Shah (2009), and 

Rasmussen and Williams (2006). 

 

 Formally, a Gaussian process (GP) is a stochastic process over a feature space 

(an abstract space where each pattern sample is represented as a point in n-

dimensional space.  Its dimension is determined by the number of features used to 

describe the patterns).  The probability distribution 1 2( ( ), ( ), , ( ))np f x f x f x… of a 

function ( )f x  for any finite set of points { }1 2, , , nx x x…  mapped to that space is 

Gaussian, and such that any of these Gaussian distributions is Kolmogorov consistent 

(Kalaitzis, 2009). 

 

Kolmogorov consistency is satisfied when ( , )ij i jK k x x=  for some covariance 

function k  such that all possible k  are positive semi-definite (i.e., 0T
yy K ≥ ).  

Exchangeability is satisfied when the random variable data are independent and 

identically distributed.  It means that the order in which they become available has no 
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impact on the marginal distribution; hence there is no need to fix ordering of a data 

from the training set for validation purposes. 

 

A GP can be specified by giving the second order characteristics: mean 

function and covariance function.  Let us define the mean function as ( )xμ and the 

covariance function as ( , ')k x x , as follows: 

 

( ) [ ( )];  x E f xμ =                                             (1) 

 

( , ') [( ( ) ( ))( ( ') ( '))]    -  - k x x E f x x f x xμ μ= .            (2) 

 

A GP is thus a generalization of the Gaussian probability distribution.  It is 

specified by a mean function ( )xμ and covariance function ( , ')k x x as follows: 

 

( ) ( ( ), ( , '))   f x GP x k x xμ∼ .                                   (3) 

 

A GP automatically implies the consistency property which simply means that 

if the GP specifies normal distribution of dependent variable by mean and covariance 

as ( )1 2( ( ), ( )) ,f x f x N μ ∑∼  then it has already specified ( )1 1 11( ( )) ,f x N μ ∑∼ where 

11∑  is a relevant sub-matrix of ∑ .  Examination of a larger set of variables does not 

change the distribution of the smaller set.  Let us consider a simple Bayesian linear 

regression model ( ) ( )  Tf x xφ ω= with prior (0, ). pNω ∼ ∑   Thus, we have the 

mean and covariance to be 

 

[ ( )] ( ) [ ] 0   TE f x x Eφ ω= =                                        (4) 
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[ ( ) ( ')] ( ) [ ] ( ') ( ) ( ').    T T T
pE f x f x x E x x xφ ωω φ φ φ= = ∑                   (5) 

 

Thus, ( )f x  and ( ')f x  are jointly Gaussian distributed with mean and 

covariance as given in the Equations (4) and (5).  The choice of different covariance 

functions allows us to take into consideration different aspects of ( )f x .  In our case, 

the choice is the squared exponential covariance function, given below: 

 
2

2 2
2

-( - ')( , ') exp ( , '),
2

   f n
x xk x x x x

l
σ σ δ

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
                          (6) 

 

where 2
fσ  gives us the maximum allowable covariance of ( )f x .  When 'x x=  then 

( , ')k x x approaches its maximum where the Gaussian process appears to be a smooth 

function as its neighbors are alike.  The parameter l  affects the length of the 

dependence.  If x  is far away from 'x , then ( , ') 0k x x ≈ .  Parameter 2
nσ  helps to 

decide the covariance of the noise, and ( , ')x xδ  is the Kronecker delta function, 

where ( , ')x xδ =1 if 'x x= and 0 otherwise. 
 

( )f x

x
          

Figure 1 Effect of a hyperparameter l  ( l =2). 
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( )f x  

x 1 
   
 

Figure 2 Effect of a hyperparameter l  ( l =0.5). 
 
 

( )f x  

x  

 

Figure 3 Effect of a hyperparameter l  ( l =0.1). 
 

In Figures 1-3, sample data is generated from a GP with hyper-parameters 

( , , )f nl σ σ  = (2, 1.27, 0.3).  Using Gaussian process prediction, we obtain a 95% 

confidence region for the underlying function.  Figures 2 and 3 show the Gaussian 

process predictions on the same data set using different hyper-parameters (0.5, 1.27, 

0.3) and (0.1, 1.27, 0.3) respectively. 

 

In Figure 3, we notice that the error variance is larger for the input values that 

are distant from the training data.  When we have the length scale very large such as 

in Figure 1, the regressed mean does not pass near any training point.  Thus, there is a 
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need of closely studying the hyper-parameters in order to get the right regression 

curve.  It can be shown that the squared exponential covariance function corresponds 

to a Bayesian linear regression model with an infinite number of basis functions 

(Shah 2009).  We can also obtain the covariance function from a linear combination 

of an infinite number of Gaussian- shaped basis functions. 

 

Given n  observations y  which is scalar and y  = ( )f x  at a test points x , our 

objective is to predict *y  at a set of prediction points *x .  The GP can be represented 

as a sample from a multivariate Gaussian distribution as 

 

*

* * **

0,
Ty K K

N
y K K

⎛ ⎞⎡ ⎤⎡ ⎤
⎜ ⎟⎢ ⎥⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠

∼ .                                      (7) 

 

The three matrices in the covariance matrix are given by: 

 

1 1 1 2 1

2 1 2 2 2

1 2

( , ) ( , ) ( , )
( , ) ( , ) ( , )

( , ) ( , ) ( , )

n

n

n n n n

k x x k x x k x x
k x x k x x k x x

K

k x x k x x k x x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⋅ ⋅ ⋅

= ⎢ ⎥⋅ ⋅ ⋅⎢ ⎥
⎢ ⎥⋅ ⋅ ⋅
⎢ ⎥
⎢ ⎥⎣ ⎦

…
…
…
…
…
…  ,                        (8) 

 

[ ]* * 1 * 2 *( , ) ( , ) ( , ) nK k x x k x x k x x= … , ** * *( , ),K k x x=                    (9) 

 

where ( , ')k x x  is defined in Equation (2).  For n  training points and *n  test 

points, *( , )k x x  is a *n n× matrix.  To get the posterior distribution over the function, 

we need to restrict the joint prior distribution to contain only those functions which 
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agree with the observed data points.   Thus we need to condition the joint Gaussian 

prior distribution on the observation: 

 
1 1

* * ** * *( , ).  Ty y N K K y K K K K− −∼ −                              (10) 

 

Our best estimate *y  is the mean of this distribution: 

 
1

* *K K yμ −= ,                                             (11) 

 

and the variance in our estimate is 

 
2 1

** * *
TK K K Kσ −

∗ = − .                                   (12) 

 

The above expressions can be written in a more simplified form.  Consider the 

mean prediction as a linear combination of observations y .  Thus, we look at the 

equation as a linear combination of n  kernel functions (a weighing function), each of 

which is centered on a training point.  Thus, we have that 

 

* *
1

( , ),
n

i i
i

k x xμ α
=

=∑                                        (13) 

 

where 1K yα −= .  The variance of a Gaussian process is the difference between two 

terms: the first term * *( , )k x x  is the prior covariance from which we subtract the 

information the observations or test points give us about the function.  One particular 

implementation of Gaussian process is by using Cholesky decomposition, instead of 

directly inverting the matrix K .  This is faster and numerically more stable.  In 

MATLAB notations, the use of the following equations is recommended below: 
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    ( )L cholesky K=                         (14) 

 

   
TL

L
y

α =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 .                                                  (15) 

 

The predictive mean Equation (11) becomes: 

 

* *
TKμ α=                                                     (16) 

 

     
*

L
K

υ = .                          (17) 

 

The predictive variance is: 

 

     2
* *( , ) Tk x xσ υ υ∗ = −  .                                  (18) 

 

The reliability of our Gaussian process is dependent on how well we select the 

covariance function ( , )k • • .  Thus, the choices of , fl σ  and nσ  in Equation (6) are 

vital.  We determine their values by the maximum likelihood method.  The marginal 

likelihood is the integral of the likelihood times its prior: 

 

( ) ( ) ( ),p X p y X p y X dyθ θ= ∫ ,    (19) 

 

where ( , , )f nlθ σ σ= , as defined in Equation (6).  The marginal likelihood is written 

on condition at the hyperparameters (the parameters of the covariance function)θ .  

We recall it as the log marginal likelihood since it is obtained through log-

marginalize-marginal likelihood function over the latent function:  
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11 1log ( , ) log log(2 )
2 2 2

T
yy yy

np y x y K y Kθ π−= − − −               (20) 

 

where 2
yy xx nK K Iσ= +  is the covariance matrix for the noisy targets y  and 

[ ] ( ),xx i jij
K k x x=    is the covariance matrix for the noise-free latent.  To maximize 

the posteriori estimate of , ( , )p x yθ θ  has to be at its greatest.  Thus, assuming we 

have little prior knowledge about what θ  should be, we need to maximize the 

log( , )y x θ  which is given by Equation (20).  If the above method of Cholesky 

decomposition is used, then the log marginal likelihood can be calculated as 

 
1log ( ) log log 2
2 2

T
ii

i

np y X y Lα π= − − −∑                            (21) 

 

where L  is specified on Equation (14). 

 
3.  Gaussian Process Regression 

 

In statistics, regression analysis includes the techniques of analyzing the 

relationship between independent variables and dependent variables.  The history of 

linear regression dates back to 1875 when Galton (1886) applies the technique to the 

inherited characteristics of sweet peas.  Pearson (1986) presents a linear regression 

theory for a rigorous treatment of a regression model and their corresponding 

correlation.  This model can only analyze the linear relationship between the 

independent variables and the dependent variables although the dependent variables 

can be transformed.   The background theory in this section is taken from Shah 

(2009), and Rasmussen and Williams (2006). 
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The connection between the linear regression model and the Gaussian process 

regression (GPR) model comes from projecting the independent variables into a 

higher dimensional space where we may use the linear model.  The concept of 

Gaussian process regression is named after Carl Friedrich Gauss because it is based 

on the Gaussian distribution.   

 

A typical linear regression model is 

 

( )y f x ε= +  where 2(0, )Nε σ∼ .                         (22) 

 

 A regression model in terms of GPR is 

 

                         ( ( ), ( , ')).TY N x k x xμ∼             (23) 

 

 The model of Y  as a noise realization of μ  is 2( ) ( , )np y N yμ μ σ= .   

Define 1( ,..., )nX x x= , [ ]* *( , )ii
k k x x=  and [ ] ( ),xx i jij

K k x x=   .  For every data 

point, a vector *k  is “concatenated” as an extra line and column of the covariance 

matrix cK  to give rise to 1cK + , where 1c N= …  ( N  is dimension of feature space) is 

incremented every time a new *k  is added to cK  as follow 

 

               ( )
*

1
* * *,
c

c T

K k
K

k k x x+

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

.                  (24) 

 

 Considering a zero mean function of the data ( ( ) 0xμ = ) and 

* *( ( ) ) ( ( ), ) / ( )p f x y p f x y p y=  thus 

 
2

*

* * * *

0,
( ) ( , )

xx n
T

y K I k
N

f x k k x x
σ⎛ ⎞⎡ ⎤+⎡ ⎤

⎜ ⎟⎢ ⎥⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠
∼  ,                             (25) 
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when x∗ is a test point and latent function ( )xμ μ∗ ∗= ; thus, we have that 

 
2 1

,( )T
xx nY K I kμ σ −

∗ ∗= +                                               (26) 

 
2 2 1

* ,( , ) ( )    T
xx nk x x k K I kσ σ −

∗ ∗ ∗ ∗= − +                                                 (27) 

 
2 .yy xx nK K Iσ= +                                                               (28) 

 

A prediction distribution of GPR is                    

 
1log( ( )) log .T

yy yyp y X y K y K c−∝ − − +                                            (29) 

 

where c  is a constant that is independent of the hyperparameters (Walder et al.  

2008).  In MATLAB notations, the use of the following equations is recommended 

below: 

 

                                  2( )nL cholesky K Iσ= + .                        (30) 

 

Then L  is substituted into Equations (15), (16) and (21) to determine the predictive 

mean, variance, and log marginal likelihood, respectively.  Figure 4 shows a sampling 

observation with noise data, and Figure 5 shows the predictive distribution of GPR 

over a sampling observation with noise data in Figure 4.  Even GPR distribution is 

not the best solution for fitting the curve function, but it gives predictions based on 

adjustable sets of parameters. 
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Figure 4  Sampling observation with noise data (Rasmussen, 2006) 
 

 

 
 

Figure 5  Predictive distribution of Gaussian process regression (Rasmussen, 2006) 
 

 

4.  Variation on Gaussian Process Regression  
 

Ebden (2008) illustrates the GPR concept in a typical prediction problem.  

Given a set of random variables ,Y  he explains that the behavior of Y can be 

described by an underlying function ( )f x  through the relation ( ) (0, )Y f x N= + Σ , 

where (0, )N Σ  is a normal random vector with mean of zero and covariance matrixΣ .  

Statistical methods can be used to approximate ( )E Y x∗ by estimating ( )f x  from the 

given setY . 
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Sollich and Williams (2005) use the equivalent kernel (EK) to understand 

GPR for large sample sizes based on a continuum limit.  They use EK to estimate 

learning curves for GPR.  EK provides a simple means to understand the learning 

curve of the behavior of GPR, even in the case where the learner’s covariance 

function is not well matched to the structure of the target function.   

 

Normally, Gaussian process terms have single outputs with a stationary 

covariance function and continuities because the covariance matrix must be positive 

definite.  Meeds and Osindero (2006) develop a fully generative infinite mixture 

model for multi-model outputs of Gaussian processes with non-stationary covariance 

functions, discontinuities, multimodality and overlapping output signals.  The infinite 

Gaussian mixture model is a generalization of finite Gaussian mixtures to an infinite 

number of components.  This model is shown to be better than Rasmussen and 

Ghahramni (2002) model which is a conditional model by using stochastic indicator 

variables.    

 

Boyle and Frean (2005) present an alternative to achieve Gaussian process 

model with multiple outputs by treating the Gaussian process with white noise 

convolved sources with smoothing kernels, and parameterizing the kernel instead.  

The applications of the model are limited because it is based on a covariance matrix. 

 

Generally, GPR inputs must be statistically independent.  Williams et al.  

(1998) present GPR with noise whose variances depend on input.  They use a natural 

non-parametric prior for variable noise rates ( ( , ')x xδ ) in Equation (6) and give an 

effective method of sampling the posterior distribution by using the Markov Chain 
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Monte Carlo.  When applied to the data set with varying noise, the posterior noise 

rates obtained are well matched to the known structure. 

 
5.  The Squared Exponential Kernel 

 

In the case of a GPR model with finite number of parameters, the covariance 

function xxK can have at most as many non-zero eigenvalues as the number of 

parameters in the model (the material in this section is taken from Kalaitzis (2009), 

and Rasmussen and Williams (2006)).  Hence, for any problem of any given size, the 

matrix xxK  is non-invertible.  Ensuring that it is not ill-conditioned, the diagonal 

noise term is added to the covariance matrix.  In an infinite-dimensional feature 

spaceφ , this issue does not occur as the features are integrated out and the covariance 

between data points is no longer expressed in terms of the features but by a 

covariance function.  The covariance matrix xxK  are expressed in terms of the 

features φ  

 
2 ( ) ( ),ij w h i h j

h
K x xσ φ φ= ∑                                            (31) 

 

by considering a feature space and integrating with respect to their core.  Specifically, 

we introduce the function ( )xφ which maps a D-dimensional input vector x  into an N 

dimensional feature space ( ) ( ) Tf x x wφ=  then an Equation (31) becomes 
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x hx hS dh
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r

σ φ φ φ φ

π

∞

−∞→∞
=

∞

−∞

= =

⎛ ⎞⎛ ⎞−⎛ ⎞−
= − −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞−
= −⎜ ⎟⎜ ⎟

⎝ ⎠

∑ ∫

∫                 

 (32) 

 

where one ends up with an infinitely differentiable function on an infinite 

dimensional space of features.  Taking the constant out-front as the signal variance 
2
fσ and dividing the denominator by two, gives rise to the standard form of the 

unvaried squared-exponential (SE) covariance function below, 

 
2 21( , ) exp( ( ) ( )) ,

2
T

i j f i j i j n ijk x x x x M x xσ σ δ= − − − +    (33) 

 

where M  is a symmetric positive-definite (SPD) matrix containing the inverse 

hyperparameters of the kernel and ijδ  is a Kronecker delta function which is unity if 

i j= and zero otherwise.  The squared-exponential (SE) is a stationary kernel; it is a 

function of ( )T
i jd x x= − which makes it translation invariant in the input space.  In 

the standard multivariate form Equation (34), 

 
2( )M diag −= A , 1( , , ) ,T

D=A A … A    (34) 

 

where { } 2 2( , , )T
f nMθ σ σ=  is a vector containing the hyperparameters of the SE 

kernel.  Each dA , 1, ,d D= …  is a characteristic length scale associated to the thd  

dimension of X and governs the amount that ( )f x  varies along that dimension.  This 

kernel is also known as the automatic relevance determination SE (ARDSE) kernel 
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because of its ability to highlight the relevance of attributes to the training target.  A 

small lengthscale dA would mean that ( )f x varies very rapidly along the thd   

dimension, and a large lengthscale would mean that ( )f x  is almost a constant 

function of input dx (see Figure 6) 
 

 
 

Figure 6  Two-dimensional functions drawn at random from noise-free exponential  

kernel ( 2
nσ =0) Gaussian processes: (a) Function varies the same along both  

dimensions with hyperparameters A  = (1,1)T .  (b) Function varies less 

rapidly along the dimension of 2x  with hyperparameters A  = (1, 2)T .  

(Rasmussen and Williams,  2006) 
 

This trait of the SE kernel becomes very powerful when combined with 

hyperparameter adaptation.  Other hyperparameters include the signal variance 2
fσ  

which is a vertical scale of function variation and the noise variance 2
nσ .  It is not a 

hyperparameter of the SE itself, but unless we consider it as a constant in the noisy 

case, its adaptation can give different explanations about the latent function that 

generated the data.  One can also combine covariance functions as long as they are 
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positive-definite.  Examples of valid combined covariance functions include the sum 

and convolution of two covariance functions.  In fact, Equation (33) is a combined the 

SE kernel with a covariance function of isotropic Gaussian noise. 

 
6.  Sparse Multiscale Gaussian Process Regression 

 

Let ( )kς  be a Gaussian process defined by zero mean Gaussian random 

variable with covariance xxK .  Let μ  be drawn from ( )kς , called ,xμ  distributed 

according to (Walder et al.  2008)  

 

( ) ( 0, )x xxp N Kμ μ μ= .                                                           (35) 

      

To determine the likelihood of a function expressed as a summation of fixed 

basis functions, the probability density function (p.d.f.) of xμ  is set to be
1

,
m

i i
i

c μ
=
∑  for 

some .ic R∈   At the end, an infinite limit of the above case is considered, so taking the 

limit n → ∞ of uniformly distributed points x  leads to the following p.d.f. for ( )kς .  

Equation (35) can be drawn from the following p.d.f.   for ( )kς ,  

 
1

1 2
( )

1 , 1

1( ) 2 exp ( , ) .
2

m m

k i i xx i j k i j
i i j

p c K c cς μ π ψ μ μ
−−

= =

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ ∑                   (36) 

 

A norm in the Hilbert space with reproducing kernel K will be denoted by 

k
• , and inner product is denoted by ,

K
• •  (Melkumyan and  Ramos 2009).  Let 

xxKμ α= ,   and xxK  is invertible, then 1 .xxKα μ−=  Following this finite analogy, 1k −  

is intended for the function which, for  

 

( ) ( , ) ,x k x dxμ α= •∫                                  (37)  
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satisfies        1( ) ( , ) ( ).x k x dxμ α− • = •∫         Define    

: ( ) ( , ) ,k kM M x k x dxα α α→ = •∫  

( , ) ( , , )k x y cg x y σ= , where 0c > , 0 dRσ > ∈ and g  is a normalized Gaussian on 
d dR R× with diagonal covariance matrix.  Then we have that 

 

 1( ) ( )( ) ( , ) ,kM x k x dxα α −• = •∫                                      (38) 

 

                           (•,•, )
1( ) ( , , ) (•, , ) ( ).i i i j cg i ix g x v M g v x
c σμ σ σ σ⎛ ⎞= = −⎜ ⎟
⎝ ⎠

                       (39) 

 

As the covariance function and the basis functions are all Gaussian, we can 

obtain, in closed form, 

 

1
, (•,•, )

,

1( , ) ( , ) ( , ) (•, , ) ( )

1 ( , ).

k i j i i cg j j

i i j

k x y g x v M g v y dxdy
c

g x v
c

σψ μ μ σ σ σ

σ σ σ

− ⎛ ⎞= −⎜ ⎟
⎝ ⎠

= + −

∫∫     

                   
              (40) 

 

From Equations (38), (39), and (40), we can write a prior probability of 

arbitrary Gaussian mixtures as shown in Equation (40) 

 

, , ,
1 , 1

1 1( ( , , )) ( , ) exp ( ) .
2

m m

i i i i j i j i j
i i j

P cg cg v cc g v v
c

ς σ σ σ σ σ
= =

⎛ ⎞⎛ ⎞• • • ∝ − + −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑                 (41)         

The neglected factor is equal to the inverse of the integral of the right hand 

side of Equation (41) with respect to all functions 
1

( , , )
m

i i i
i

c g v σ
=

•∑  (Walder et al.  

2008). 

 
7.  Hyperparameter adaptation by using automatic relevance determination 
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In general, the automatic relevance determination (ARD) functionality of the 

SE kernel allows one to give intuitive interpretations of the adapted hyperparameters 

by optimizing hyperparameters.  ARD provides a method of maximum likelihood  

that allows the relative importance of different inputs to be inferred from the data as 

step below: 

 

1. Give the hyperparameter vector which controls how far away from 

zero each weight is allowed to go. 

 

2. Maximize the marginal likelihood of the model to train the 

hyperparameter vector and the outcome of this optimizing method is many elements 

of hyperparameter vector go to infinity. 

 

An example below shows the Gaussian process context of automatic relevance 

determination, or ARD.  Suppose we consider a Gaussian process with 2-D input 

space 1 2= (x , )xx .  The SE kernel function formulation can be written as: 

 
2

2
0

1

1( , ') exp ( ' )
2 i i i

i

k x x x xθ η
=

⎧ ⎫= − −⎨ ⎬
⎩ ⎭

∑ .   (42) 

 

 In Figure 7, we see that, as a particular parameter iη  becomes small, the 

function becomes relatively insensitive to the corresponding input variable ix .   By 

adapting these parameters to a data set using maximum likelihood, it becomes 

possible to detect input variables that have little effect on the predictive distribution, 

because the corresponding values of iη  will be small.  This can be useful in practice 

because it allows inputs to be discarded.   
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            1 2 1η η= =                                                    1 21, 0.01 η η= =  

 

Figure 7   Three-dimensional functions when adapting iη  parameter where two 
horizontal axis is inputs( 1 2and x x ) and vertical axis is output of a function 

( ( , ')k x x ). 

 

An ARD is illustrated using a simple synthetic data set having three inputs 

1 2,x x and 3x  in Figure 8.  The target variable t , is generated by sampling 100 values 

of 1x  from Gaussian distribution, evaluating the function 1sin(2 )xπ  and then adding 

Gaussian noise.  Values of 2x  are given by copying the corresponding values of 1x  

and adding noise, and values of 3x are sampled from an independent Gaussian 

distribution.  Thus 1x  is a good predictor of t , 2x  is a more noisy predictor of t , and 

3x  has only chance correlations with t .  
 

 

The marginal likelihood for a Gaussian process with ARD parameters 1η , 

2η ,and 3η    is optimized using the scaled conjugate gradients algorithm.  From Figure 

8 that 1η  converges to a relatively large value, 2η  converges to a much smaller value, 

and 3η  becomes very small indicating that 3x  is irrelevant for predicting t  
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                          ( , ')k x x  

 

Iteration 

Figure 8   Illustration of automatic relevance determination in a Gaussian process for 
a synthetic problem having three inputs 1 2,x x  and 3x  for which the curves 
show the corresponding values of the hyperparameters 1η  (red), 2η  
(green), and 3η  (blue) as a function of the number of iterations when 
optimizing the marginal likelihood.   

 

The ARD framework is easily incorporated into the exponential-quadratic 

kernel to give the following form of kernel function, which has been found useful for 

applications of Gaussian processes to a range of regression problems.   

 

In our research, we use Gaussian process for machine learning tool box 

(GPML tool box) with an SE covariance function and allow the separate length scale 

for each input with an ARD and independent noise. 
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MATERIALS AND METHOD 

 

Materials 
 

1. Hardware: Laptop computer, Lenovo Group Limited, 7735E21 model, 

OS name is Microsoft Window XP Professional Service Pack 3.    

2. Special software: MATLAB R2009A for Gaussian process analysis.   

(GPML) 

3. Literature: The literature will be copied from the website of the main 

library of Kasetsart University and the Gaussian process website.    

4. Data Sources:     

 

4.1 Test problem from http://softlib.rice.edu/pub/tsplib/tsp/., 

January 30, 2010, unpublished. 

4.2 Geographic TSP calculated distance formula from 

http://www.neverreadpassively.com/2008/05/tsplib-library-of standard-tsp.html 

4.3 Gaussian process for Machine Leaning (GPML) software from 

http://www.gaussianprocess.org/gpml/chapters/ 

4.4 MATLAB manual from http://www.mathworks.es/ 

 

Method 
 

We use GPR technique for creating a prediction function and solving TSP.  We 

define our notations as follows: 

 

ry     =     total distance of sampling tours r ,                                                       

                        1, 2,3, ,r R= …  

 

,r ix    =     path i  of the sampling tour r , where 
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       ,r ix     =   {0 :  if  path  does not exist on tour 
1  : if  path  exists on tour 

i r
i r  

 

        ia      =    distance of path i . 

 

Our objective function is  

 

                       Min ,
1

m

r i r i
i

y a x
=

= ∑ .                                                       (43) 

 

We apply the GPML toolbox developed by Rasmussen and Williams (2006) to 

fit the GPR function and optimize the prediction function.  From Equation (27), 

GPML toolbox defines Equation (44) in term of α  below 

 

                  2 1( ) ,T
xx nK I Yα σ −= +                                            (44) 

 

thus prediction term is 

 

    .kμ α∗ ∗= .                                                              (45) 

 

The objective function for applied GPR on TSP is 

 

  Min .kμ α∗ ∗= ,                                                                (46) 

 

where x∗ is a TSP tour. 

 

The GPML toolbox use a GPR with a squared exponential covariance 

function and allow a separate length scale for each input with ARD for determining 

hyperparameters and independent noise: 
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2 2
,

1exp( ( ) ( )) ,
2

T
f i i n ik x x M x xσ σ δ∗ ∗ ∗ ∗= − − − +                          (47) 

 

where fσ  is a hyperparameter, pqδ  is a Kronecker delta function, 2( )M diag −= A , and 

A is a vector of positive value hyperparameter.   The steps in applying GPR are 

divided into two cases:  

 

• No reduction of independent variables. 

 

1. Generate sampling tours and calculate their corresponding total distance 

2. Use a GPML tool box to obtain a GPR function to approximate an 

optimal TSP tour. 

3. Transform an optimal solution to a TSP tour. 

 

• Reduction of independent variables. 

 

1. Construct a subtour by a greedy heuristic. 

2. Generate sampling tours and calculate their corresponding total distance 

3. Use a GPML tool box to obtain a GPR function to approximate an 

optimal TSP tour. 

4. Transform an optimal solution to a TSP tour. 

 

The second case is set up for reducing the size of the search space by reducing 

the number of nodes and reducing a computational time by constructing a subtour 

with fn nodes.  When the number of nodes in a TSP decreases, α  as defined can be 

calculated faster.  The flow diagram of our TSP calculation is shown in Figure 9. 
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Figure 9  Flow Diagram of our Heuristic method 
 

The steps to apply GPR for TSP are explained in details below: 

 

2.1      Construct a subtour by a greedy heuristic. 
 

First, we search a distance matrix to find a minimum distance ijd   

where ijd  is the thij element of the distance matrix D .  Then these two nodes are 

connected to form a subtour.  These steps are repeated until we get fn  nodes in a 

subtour.   “SearchNodeMin” function is used to construct a subtour (Figures 10-11). 
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Figure 10  “SearchNodeMin” function in MATLAB 
 

This “SearchNodeMin” parameters are described below: 

 

•  Number_Node             =    Total number of nodes or cities in 

TSP ( n ). 

•  Distance Matrix           =    Distance matrix of  the TSP matrix 

of size[ n n× ] 

•  N_SearchNodeFix       =     Number of paths in subtour matrix 

of size [ fn -1] 

•  Fit_Path                       =    Paths in subtour matrix of size 

[ fn 2× ] 

•  Fit_node                       =    Nodes in subtour matrix of size 

[ 1fn × ] 

This function return a subtour matrix.  The programming flow diagram is 

explained in Figure 11 below: 

[Fit_path,Fit_node] = 
SearchNodeMin(Number_Node,Dis_matrix,N_SearchNodeFix) 
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Find the minimum distance in the matrix, 
then collect a reference row and column 

in subtour. Set reference column=ST

Collect in subtour

Search all the node in ST row and 
calculate distance

End

Check that selected node is not the same 
as in ST and subtour and its distance is 

lowest

Does a subtour has "nf" nodes?

Yes

Yes

No

No

 
 

Figure 11  Flow chart of a greedy heuristic to construct a subtour 
 

      2.2  Generate sampling tours and calculate their corresponding total 
distance.    
   

Tours and their corresponding total distance are generated by starting 

with a subtour of size fn .  We randomly permute the remaining fn n−  nodes, by 
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using “Randperm” function in MATLAB, to form a complete tour.  We repeat this 

step r  times to get r random tours.  Sample tours are aggregated into a data matrix 

X , whose dimension is [ ]r m× , where ( )
1

1

n

i
m n i

−

=

= −∑  and its corresponding total 

distance into a response vector Y , whose dimension is[ 1]r× .  To generate sampling 

tour and their corresponding total distance, we develop MATLAB functions below: 
 

• “notmain”  

• “Gen_routhfixstart” and “Gen_routhfixstartSearch”  

 

The “notmain” function is used to return nodes that are not in a subtour 

 

 

 

 

Figure 12   “notmain” function 

 

The “notmain” parameters are described below: 

 
• main        =     Nodes in subtour [1 fn× ] 

• node        =     Number of node in the problem  [ n ] 

 

The “notmain” return the nodes which are not in subtour matrix.  Their matrix 

size is [ ( ) 1fn n− × ].  The “Gen_routhfixstart” and “Gen_routhfixstartSearch” 

functions are used to generate a tour and their corresponding total distance, but the 

“Gen_routhfixstartSearch” functions is used when we want to decrease the size of the 

problem by creating subtours. 
 

 

 

[possibleNodeRandom] = notmain(main,node) 
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Figure 13  “Gen_routhfixstart” and “Gen_routhfixstartSearch” functions 
 

“Gen_routhfixstart” and “Gen_routhfixstartSearch” parameters are described below: 

 

• Number_Node                      =    Number of nodes in problems 

( n ) 

• number_fixnode                     =   Number of nodes in subtour ( fn ) 

• Distance matrix                      =   Distance matrix of the TSP. 

• N_Random                        =    Number of sampling tours ( R )   

• N_iter                                   =    Number of desired iterations for 

the algorithm to run 

• startnode                    =    The beginning node in subtours 

• Endnode                               =     The end of node in the subtours 

• possibleNodeRandom           =    Nodes that are not in subtour 

matrix. 

• [1 ( )fn n× − ] 

• fixRoutemetric                       =  Nodes in subtour matrix [1 fn× ] 

 

N_iter is number of iteration for creating a group of R sampling data but in 

our experiment we set to use only one iteration. 
 

 
[total_dist,pop] = 
Gen_routhfixstart(Number_Node,Dis_matrix,N_Random,N_iter) 
 
[total_dist,pop,kk] = Gen_routhfixstartSearch 
(Number_Node,number_fixnode,Dis_matrix,N_Random,N_iter,startnode,Endnod
e,possibleNodeRandom,fixRoutemetric) 
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      2.3       Use a GPML toolbox to obtain a GPR function to approximate an 
optimal TSP tour 
 

A GPR function is created from sampling tours and their 

corresponding total distance for predicting a minimum total distance.  The steps are 

described as follows: 
 

• Determine a starting solution, which is a TSP tour. 

• Estimate parameters α () and covariance function ( , )k x •  in Equations 

(16) and (18).   

• Using a GPR function, μ , and α () from Equations (16) and (18) 

determine a route with minimum distance for the GPML implementation is called 

“minimize.”. 

 

The programming function for using approximate an optimal TSP tour is in Figure 14. 
 

 

 

 

 

 

Figure 14  GPR functions to approximate an optimal TSP tour 
 

The detail of these programming in Figure 14 are shown below: 

 

Line (1):   Find the number of rows and columns in X . 

Line (2):   Specify a covariance function made up of the sum of a squared exponential  

                 (SE)  covariance term with ARD, and independent noise. 

Line (3):   Create a zero matrix vector 

Line (4):   Set a starting point of hyperparameter ( 0X ). 

[n,D]=size(x);                                                                                                                     (1) 
covfunc = {'covSum', {'covSEard','covNoise'}};                                                               (2) 
logtheta0 = zeros(D+2,1);                                                                                                 (3) 
logtheta0(D+2) = -1.15;                                                                                                    (4) 
logtheta = minimize(logthetao, 'gpr', -100, covfunc, x, y);                                    (5) 
[X, fX, i] = minimize2( 0X ,-100,logtheta, covfunc, x, y);                                                  (6) 
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Line (5):   Train the hyperparameter by maximizing the approximate marginal        

                 likelihood of the SD method 

Line (6):    Predict the optimal TSP tour and total distance. 

 

The “minimize2” modifies the original “minimize.” in GPML so that it can 

solve the TSP. 

 
      2.4      Transform an optimal solution into a TSP tour. 

 

The route that we obtain in Part 2.3 (the predicted route) may not be a 

TSP tour, so we need to construct a tour from it.  We first build disjoint subtours and 

connect them to form the rest of a TSP tour by a greedy heuristic, that is to select 

links with small distance first.  After that, we link the rest of a TSP tour with a 

subtour that we create in part 2.1. 

 

To transform an optimal solution into a TSP tour is using the step of 

programming function below: 

 
• “GetrouteX” function 

• “Fitnode” function 

• “Fit” function 

 

The “GetrouteX” function returns a decimal path matrix from the predicted 

binary tour. 
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Figure 15  “GetrouteX” function 
 

“GetrouteX” parameters are described below: 

 
• X  = Predicted  solution matrix in term of a 

binary  

tour [1 m× ] (from “minimize2” function) 

• node  = Number of nodes  that are not in subtour  

( fn n− ) 

• possibleNodeRandom = Matrix of node that are not in subtour 

[1 ( )fn n× − ] (from “ notmain” function) 

• RouteX  = Predicted  solution matrix in term of 

decimal path matrix  [ 2× ( fn n− +1)] 

• XX  = Predicted  solution  matrix in term of  

decimal path matrix  [ 2 m× ] 

• CharacterX  = Matrix that explains the meaning of 

predicted  solution matrix in term of a binary tour 

The decimal path matrix is transformed to a TSP tour by using “Fitnode” 

function for creating T matrix and using “Fit” function for creating HH matrix based 

on the programming flow in Figure 18. 
 

 

 

 

Figure 16  “Fitnod” function 
 

 

[RoutX,XX,CharacterX] = GetrouteX(X,node, possibleNodeRandom) 

[T,H] = Fitnode(RouteX,node,startnode,distancematrix) 
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“Fitnod” parameters are described below: 

 
• RouteX  = Predicted  solution matrix in term of 

decimal path matrix  [ 2× ( fn n− +1)] 

• node  = Number of nodes  that are not in the 

subtour  

• ( fn n− ) 

• startnode  = Starting search node in T matrix  

• distancematrix  = Distance matrix of problem 

• T  = T matrix 

• H  = H matrix 

 

 

 

 
Figure 17  “Fit” function 

 

“Fit” parameters are described below: 

 
• T   = T matrix 

• node   = Number of nodes  that are not in 

subtour  

• ( fn n− ) 

• H   = H matrix 

• distancematrix   = Distance matrix of problem 

• possibleNodeRandom  = Nodes that are not in subtour 

matrix.   [1 ( )fn n× − ] 

• HH   = HH matrix 

 

[HH] = Fit (T,node,H, distancematrix, possibleNodeRandom) 
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The detail of transforming a predicted route into a TSP tour is shown in Figure 

18.   This lowest distance is selected in “T route”, and we find the path which can 

connect with the end of T route and that has a lowest distance. This step is repeated 

until we cannot find any more connecting path.  The nodes which are not in T route is 

called “K matrix” and the routes which are not in T route is called “H matrix”.  Then 

we delete the routes in H matrix which have the same nodes as T route and delete the 

node in K matrix which have node the same as H matrix.  Then we select the lowest 

distance path in H, collect it in HH matrix and repeat this step until we select all of 

paths in H.  We collect nodes of K which have lowest path distance in HH until all of 

nodes in K are selected.  After that we combine HH matrix, T matrix and subtour.  

Finally, we calculate total distance. 
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Figure 18  Transform a GPR optimal solution into a TSP tour flow chart. 
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RESULTS AND DISCUSSION 

 

We fist describe details of test problems in Section 1 and the results of 

experiments are shown in Section 2. 

 

1.  Test problems 
 

We use the geographical TSP from TSPLIB (Bixby and Reinelt 1995, 

http://softlib.rice.edu/pub/tsplib/tsp/). 

 

1.1 96 Africa-Sub: 96 cities with the possible number of solutions is  

1499.92 10×  (14!) and the true optimal solution is 52,277.9 km. (Optimum tours are 

in appendix Table A4). 

1.2 Ulysses22: 22 cities with the possible number of solutions is 211.12×10  

(22!)  and the true optimal solution is 6,945.2. km. (Optimum tours are in appendix 

Table A1 ). 

1.3 Ulysses16: 16 cities with the possible number of solutions is 132.09 10×   

(16!)         and   the  true optimal solution is  6,795.8 km. (Optimum tours are in 

appendix Table A2 ). 

1.4 Burma14:  14 cities with the possible number of solutions is  108.71 10×  

(14!) and the true optimal solution is 3,356.1 km. (Optimum tours are in appendix 

Table A3 ). 

In the experiment, the sample sizes ( R  ) for GPR are 500, 1500, 2500 and 

3500.    
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2.  Results of numerical experiments 

 

We have two control parameters: fn , is the number of nodes in a subtour and 

R  is the number of random tours in a sample for creating a GPR function.  The 

results are shown in Tables 1-2 and Figure 19. 

 

Table 1 shows the predicted minimum distance from the GPR functions, but 

these tours may not form TSP tours.  The underlined numbers are minimum distance 

for a given fn .  The best cases seem to be when the sample size is largest ( R =3500).  

We can conclude that when R  and fn  increase our method seem to predict a better 

solution.  The best scenarios for each test problems in Table 1 are close to the true 

optimal solutions, so we can use these lowest predictions to be our target to find TSP 

tours as shown in Table 2. 

 

As expected, we see that as the test problems become more difficult (higher 

number of cities), the distances of our TSP tours deviate from the optimal tours 

significantly.  For the Burma14 problem, the best relative deviation is only 16% 

whereas for the Ulysses22 problem, the best relative deviation is 33%.  The benefit of 

reducing the search space by initially creating a subtour ( fn > 0) is greater for a large 

test problem.  In Figure 19, we see that the relative deviations of  fn = 10, 12 and 14 

are smaller than the case with fn = 0.  For the Ulyssess22 problem, while setting 

fn =2 and 4 do not seem to help improve the quality of the solutions. 

 

Considering that our heuristic sees only a very small fraction of the search 

space, less than 64 10−× %, its performance is impressive.  For the test problem with 

22 cities, our TSP tour gives the distance within 33% to 76% of the optimal distance, 
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ignoring the possible outlier at 117%.  The numerical results seem to suggest that we 

get a better solution when we increase the sample size R . 

 

However that result shown in Table 2 and Figure 19 are based on one 

experiment for each case.  To see the trend of results, we repeat experiments again 

and the result shown in Figure 20. 

 

From Figure 20, we see that if fn increases, the 95% of confident intervals are 

shorter.  As a result, our predictions are more precise when we increase fn .  

Moreover, 95% intervals include the lowest optimal solution.  Thus, if we repeat the 

experiment, we will have more opportunity to get better predicted TSP tours. 
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Table 1  Predicted minimum distance from a GPR function before being transformed  
   to TSP tours.(the underlined entries are the minimum of that row.) 

 

Ulysses22 

R  

fn           500       1,500       2,500       3,500  

0 12,493.4 12,246.8 11,966.7 11,694.5 

2 11,193.1 11,188.5 10,584.0 10,579.6 

4 10,175.1 9,578.1 9,565.3 10,137.2 

6 9,929.3 8,869.2 9,398.7 9,013.7 

10 8,316.8 9,162.2 9,131.3 7,043.2 

12 6,699.8 6,697.2 6,379.9 9,138.9 

14 9,222.8 6,137.8 9,217.5 6,093.0 

Ulysses16 

0 9,080.1 10,308.0 9,829.0 9,289.8 

2 9,180.7 8,362.2 8,474.6 8,955.4 

4 7,454.6 7,590.5 7,571.8 7,763.3 

6 7,944.5 7,492.9 7,040.0 6,898.9 

Burma14 

0 4,305.5 4,131.9 4,253.3 3,803.7 

2 4,237.7 4,305.2 3,852.2 4,136.7 

4 4,044.3 3,454.5 4,018.3 3,830.4 
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Table 2  Distance of TSP tours after being transformed to a TSP tour. 
 

Ulysses22 (Optimum value = 6945) 

fn  
R  

500 1,500 2,500 3,500 

0 13,174.3 12,592.2 14,206.2 11,694.5 

2 13,037.2 13,326.6 13,059.6 11,879.7 

4 11,905.6 10,900.8 12,292.0 12,236.0 

6 12,006.4 12,156.9 12,237.4 15,064.9 

10 9,917.0 10,034.7 11,529.5 10,610.4 

12 9,624.2 9,847.6 9,476.0 9,583.9 

14 9,222.8 10,712.9 10,528.5 9,222.8 

Ulysses16 (Optimum value = 6795) 

0 9,572.2 11,282.0 12,991.0 9,289.8 

2 9,761.5 11,993.8 9,994.8 10,393.2 

4 7,454.6 8,387.1 8,853.7 10,507.5 

6 9,729.9 8,949.0 8,440.0 6,898.9 

Burma14(Optimum value = 3356) 

0 4,305.5 4,237.9 4,705.7 3,886.1 

2 6,285.2 5,130.6 6,005.5 5,250.1 

4 5,602.5 4,289.9 5,483.9 4,742.6 

 

Relative deviations from the optimal solutions of after transformed to a TSP 

tour are shown in Figure 19.    
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Figure 19  Percentage of prediction total distance at after transformed to a TSP tour 
and real optimal value with R =3500 and 1 replications. 
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Figure 20  95% Confidence Intervals of repeating experiment at after transformed to 
a TSP tour with R =3500 and 4 replications.  Horizontal axis is fn and 
vertical axis is distance.  
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fn  does not matter when a number of cities is small but when a number of 

cities  is large, large fn  helps to predict the better solution.  From Figure 20, at 

Ulysses 22 problem, comparing with fn = 0 and fn =14, predicted value of  fn =14 is 

better than fn = 0. 
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Figure 21  95% Confidence Intervals of  repeating experiment at R =2500 and 3     

replications at 96 cities of  666-cities Africa   

 

In Figure 21 and Table 3, although a number of cities in this problem are 96 

cities that are means this problem is more complexity than the last problems 

(Ulysses22, Burma 16 and Burma 14), the results from applied GPR in TSP at fn =85 

are better for predicted the TSP tour and their corresponding total distance compare 

with optimum distance from TSPLIB (52,277).  Thus increasing a number of fn  in 

subtour and increasing R , the predicted values are closer to the actual optimum 

solution as shown in Figures 20-21. Finally, we can conclude that applied GPR in 

TSP is a powerful heuristic method for solving the TSP which is an NP-Hard problem. 
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Table 3  Distance of TSP tours after and before being transformed to a TSP tour of  
96 cities of  666-cities Africa problem and 3 replications. 

 
 
 Distance Before Distance After 

0      178,171.35      217,850.81  
0      177,852.82      193,327.82  
0      179,013.57      207,356.83  
5      175,478.64      216,858.57  
5      173,920.71      188,153.22  
5      174,190.50      189,585.07  
10      163,095.47      201,510.02  
10      167,241.25      190,020.23  
10      165,204.68      192,247.27  
15      157,373.69      190,100.37  
15      160,042.21      188,292.77  
15      160,070.82      191,396.45  
30      126,786.33      147,495.90  
30      127,097.54      151,531.07  
30      124,544.93      145,304.33  
45        56,140.39        71,549.36  
45        81,935.82        89,776.47  
45        62,433.32        80,114.00  
85        42,008.44        48,036.16  
85        43,159.27        48,880.55  
85        42,612.13        50,648.49  

 
 

fn
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Figure 22 A relations of number of node in subtour and a computational time 

   

Figure 22 show that when number of nodes in subtour increase, a 

computational time will decrease. So our method of grouping subtour, not only 

provide a good estimate solution but also reduce a computational time of  

programming. 
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CONCLUSION 

 
We apply GPR to TSP with an initial numerical experiment.  Our idea is to 

reduce the size of the problem by initially creating a subtour.  Then, we use a small 

sample of TSP tours to create a GPR function and minimize it to get the solution with 

the minimum distance.  Finally, it is transformed into a TSP tour.   

 

At the first time, test problem in our experiment is only 10 to 25 nodes. After 

we evaluate test problems, we expand the limit of number of node to 100 nodes. As a 

result, we select 96 cities of Africa to be one of our test problems. In our numerical 

experiment, we show that our heuristic performs quite well.  In particular, when the 

sample size R  increases, the predicted results are better.  Moreover, when the number 

of nodes in a subtour fn  increases, the distances of our TSP tours are closer to the 

true optimal ones.  

 

 We expect our heuristic to improve if we can find a better method for 

constructing a subtour and transforming to a TSP tour.  One of the major problem in 

solving TSP by GPR is running time when generate GPR function.  As a result, we 

recommend a Sparse Multiscale Gaussian Process Regression method for reducing 

the running time in a process of estimate GPR hyperparameter by using  randomly 

sampling data.  When apply GPR in TSP, we recommend to reduce 50% of  a total 

number of nodes at the first time and then reduce more than 50% later for saving time 

to get a best solution. Moreover, we can not use this method if a number of  a rest 

node ( a total number of nodes minus a number of nodes in subtour) equal to a 

number of sampling data. 
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Appendix A 
TSP data of test problem 
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Appendix Table A1  Data of Ulysses 22, Ulysses16 and Burma14. 
 

   Ulysses 22  Ulysses 16   Burma 14  

Node X Y X Y X Y 

1 38.24 20.42 38.24 20.42 16.47 96.1 

2 39.57 26.15 39.57 26.15 16.47 94.44 

3 40.56 25.32 40.56 25.32 20.09 92.54 

4 36.26 23.12 36.26 23.12 22.39 93.37 

5 33.48 10.54 33.48 10.54 25.23 97.24 

6 37.56 12.19 37.56 12.19 22 96.05 

7 38.42 13.11 38.42 13.11 20.47 97.02 

8 37.52 20.44 37.52 20.44 17.2 96.29 

9 41.23 9.1 41.23 9.1 16.3 97.38 

10 41.17 13.05 41.17 13.05 14.05 98.12 

11 36.08 -5.21 36.08 -5.21 16.53 97.38 

12 38.47 15.13 38.47 15.13 21.52 95.59 

13 38.15 15.35 38.15 15.35 19.41 97.13 

14 37.51 15.17 37.51 15.17 20.09 94.55 

15 35.49 14.32 35.49 14.32     

16 39.36 19.56 39.36 19.56     

17 38.09 24.36         

18 36.09 23         

19 40.44 13.57         

20 40.33 14.15         

21 40.37 14.23         

22 37.57 22.56         
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Appendix Table A2   Data of 96 Africa-Sub problem. 
 

Africa-Subproblem  

Node X Y Node X Y Node X Y Node X Y 

1 4.55 23.31 25 13.38 25.21 49 6.2 3.24 73 15.25 28.17

2 8.06 15.24 26 15.2 38.53 50 6.2 7.27 74 20.09 28.36

3 2.38 16.54 27 9 38.5 51 0.2 6.44 75 17.5 31.03

4 31.38 8 28 11.36 43.09 52 3.4 8.47 76 15.47 35 

5 33.39 7.35 29 8.06 15.57 53 3.52 11.31 77 19.49 34.52

6 34.02 6.51 30 4.4 17.26 54 4.22 18.35 78 25.58 32.35

7 34.05 4.57 31 3.28 16.39 55 0.2 9.27 79 15.57 5.42 

8 35.48 5.45 32 1.51 15.35 56 4.16 15.17 80 7.15 12.3 

9 35.43 0.43 33 16.46 3.01 57 4.18 15.18 81 22.59 14.31

10 36.4 3.03 34 12.39 8 58 0.04 18.16 82 22.34 17.06

11 22.5 5.3 35 10.23 9.18 59 5.54 22.25 83 26.38 15.1 

12 36.2 6.37 36 9.31 13.43 60 0.3 25.12 84 24.45 25.55

13 36.48 10.11 37 8.3 13.15 61 3.23 29.22 85 25.45 28.1 

14 34.44 10.46 38 6.18 10.47 62 1.57 30.04 86 26.15 28 

15 32.54 13.11 39 5.19 4.02 63 0.19 32.25 87 29.12 26.07

16 32.07 20.04 40 6.41 1.35 64 1.17 36.49 88 29.55 30.56

17 31.12 29.54 41 5.33 0.13 65 2.01 45.2 89 33 27.55

18 31.16 32.18 42 6 1.13 66 4.03 39.4 90 33.58 25.4 

19 29.58 32.33 43 6.2 2.37 67 6.1 39.11 91 33.55 18.22

20 30.03 31.15 44 12.22 1.31 68 6.48 39.17 92 23.21 43.4 

21 24.05 32.53 45 13.3 2.07 69 8.48 13.14 93 18.55 47.31

22 19.37 37.14 46 12 8.3 70 12.44 15.47 94 12.16 49.17

23 15.36 32.32 47 11.51 13.1 71 11.4 27.28 95 20.1 57.3 

24 13.11 30.13 48 12.07 15.03 72 12.49 28.13 96 4.38 55.27
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Appendix Table A3   Optimal solution of Ulysses 22, Ulysses16 and Burma14. 
 

Ulysses 22 Ulysses 16 Burma 14 

Rank Node Rank Node Rank Node 

1 1 1 1 1 1 

2 14 2 14 2 2 

3 13 3 13 3 14 

4 12 4 12 4 3 

5 7 5 7 5 4 

6 6 6 6 6 5 

7 15 7 15 7 6 

8 5 8 5 8 12 

9 11 9 11 9 7 

10 9 10 9 10 13 

11 10 11 10 11 8 

12 19 12 16 12 11 

13 20 13 3 13 9 

14 21 14 2 14 10 

15 16 15 4     

16 3 16 8     

17 2         

18 17         

19 22         

20 4         

21 18         

22 8         
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Appendix Table A4  Optimal solution of 96 Africa-Sub problem. 
 

No. Node No. Node No. Node No. Node 

1 29 25 26 49 74 73 50 

2 2 26 28 50 84 74 52 

3 3 27 27 51 86 75 53 

4 4 28 65 52 85 76 55 

5 5 29 96 53 78 77 51 

6 6 30 94 54 88 78 49 

7 7 31 95 55 87 79 43 

8 8 32 93 56 89 80 42 

9 9 33 92 57 90 81 41 

10 10 34 77 58 91 82 40 

11 12 35 76 59 83 83 39 

12 13 36 68 60 82 84 44 

13 14 37 67 61 81 85 45 

14 15 38 66 62 80 86 11 

15 16 39 64 63 79 87 33 

16 17 40 63 64 70 88 34 

17 20 41 62 65 69 89 35 

18 18 42 61 66 57 90 38 

19 19 43 60 67 56 91 37 

20 21 44 59 68 58 92 36 

21 25 45 71 69 54 93 32 

22 24 46 72 70 48 94 31 

23 23 47 73 71 47 95 30 

24 22 48 75 72 46 96 1 
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Appendix Table A4  Distance m

etric of  Ulysses 225 

Appendix Table A5  Distance metric of  Ulysses 22 
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6Appendix Ta 

Appendix Table A6   Distance metric of  Ulysses 16 
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Appendi7x Table A5  Distance m

etric of Burm
a 14 

Appendix Table A7  Distance metric of Burma 14 
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Appendix Table A8  Prediction distance for applied GPR in TSP. 
 

Problem fn  Distance 

Ulysses 22 - 12,592 

Ulysses 22 - 11,694 

Ulysses 22 - 13,298 

Ulysses 22 - 12,991 

Ulysses 22 2 13,037 

Ulysses 22 2 13,060 

Ulysses 22 2 13,240 

Ulysses 22 2 12,209 

Ulysses 22 6 13,563 

Ulysses 22 6 11,929 

Ulysses 22 6 11,519 

Ulysses 22 6 15,065 

Ulysses 22 10 9,505 

Ulysses 22 10 11,489 

Ulysses 22 10 9,159 

Ulysses 22 10 11,426 

Ulysses 22 14 10,020 

Ulysses 22 14 10,233 

Ulysses 22 14 10,555 

Ulysses 22 14 9, 223 

Ulysses  16 - 10,872 

Ulysses  16 - 11,172 
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Appendix Table A8  Prediction distance for applied GPR in TSP. 

 

Problem fn  Distance 

Ulysses  16 - 10,424 

Ulysses  16 - 9,417 

Ulysses  16 3 10,704 

Ulysses 16 3 9,323 

Ulysses 16 3 8,380 

Ulysses 16 3 8,702 

Ulysses 16 6 8,440 

Ulysses 16 6 8,456 

Ulysses 16 6 6,899 

Ulysses 16 6 8,673 

Ulysses 16 8 8,753 

Ulysses 16 8 8,817 

Ulysses 16 8 10,283 

Ulysses 16 8 10,283 

Burma 14 - 4,717 

Burma 14 - 4,717 

Burma 14 - 6,587 

Burma 14 - 3,886 

Burma 14 2 3,881 

Burma 14 2 4,860 

Burma 14 2 4,215 

Burma 14 2 4,942 
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Appendix Table A8  (Continued) 

 

Problem fn  Distance 

Burma 14 4 4,578 

Burma 14 4 4,872 

Burma 14 4 4,290 

Burma 14 4 4,743 

Burma 14 6 3,961 

Burma 14 6 4,279 

Burma 14 6 3,919 

Burma 14 6 4,170 
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Appendix B 
Programming 
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Appendix B1  Generate Route and distance function 

 

function [total_dist,pop] = Gen_routhfixstart 

(Number_Node,Dis_matrix,N_Random,N_iter) 

 

Nod = Number_Node; 

[nr,nc] = size(Dis_matrix); 

if Nod ~= nr || Nod ~= nc 

    error('Invalid XY or DMAT inputs!') 

end 

n = Nod - 1;  

pop_size = N_Random; 

num_iter = max(1,round(real(N_iter))); 

% Initialize the Population 

pop = zeros(pop_size,n); 

for k = 1:pop_size 

    pop(k,:) = randperm(n)+1;  

end 

 global_min = Inf; 

total_dist = zeros(1,pop_size); 

dist_history = zeros(1,num_iter); 

tmp_pop = zeros(4,n); 

new_pop = zeros(pop_size,n); 

dmat=Dis_matrix; 

for iter = 1:num_iter 

       for p = 1:pop_size 

        d = dmat(1,pop(p,1));  

        for k = 2:n 

            d = d + dmat(pop(p,k-1),pop(p,k)); 

        end 

        total_dist(p) = d; 

    end 
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    total_dist=total_dist'; 

end 

 

_ _ _ _ _ __ _ _ _ _ __ _ _ _ _ __ _ _ _ _ _ 

 

function [total_dist,pop,kk] = Gen_routhfixstartSearch 

(Number_Node,number_fixnode,Dis_matrix,N_Random,N_iter,startnode,Endnode,p

ossibleNodeRandom,fixRoutemetric) 

 

Nod=Number_Node; 

n = Number_Node-number_fixnode; 

[nr,nc] = size(Dis_matrix); 

if Nod ~= nr || Nod ~= nc 

    error('Invalid XY or DMAT inputs!') 

end 

pop_size = 4*ceil(N_Random/4); 

num_iter = max(1,round(real(N_iter))); 

pop = zeros(pop_size,n); 

kk = zeros(pop_size,n); 

for k = 1:pop_size 

    kk(k,:)=randperm(n);    

end 

for k = 1:pop_size 

    for j=1:n 

    ff=kk(k,j); 

    pop(k,j)=possibleNodeRandom(1,ff); 

    end 

end 

global_min = Inf; 

total_dist = zeros(1,pop_size); 

dist_history = zeros(1,num_iter); 

tmp_pop = zeros(4,n); 
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new_pop = zeros(pop_size,n); 

dmat=Dis_matrix; 

     pp=number_fixnode-1; 

     fixdis =zeros(1,1); 

        for k = 1:pp 

            fixdis = fixdis+ dmat(fixRoutemetric(1,k),fixRoutemetric(1,k+1)); 

        end  

for iter = 1:num_iter 

    for p = 1:pop_size 

        d = dmat(startnode,pop(p,1))+dmat(pop(p,n),Endnode); % Add Start Distance 

and end distance 

        for k = 2:n 

            d = d + dmat(pop(p,k-1),pop(p,k)); 

        end 

        total_dist(p) = d+fixdis; 

    end 

    total_dist=total_dist'; 

end 

end 

 

Appendix B2  Search subroute function 

 

function [X,Y] = SearchNodeMin (Number_Node,Dis_matrix,N_SearchNodeFix) 

 

X=zeros(N_SearchNodeFix,2); 

P=max(max(Dis_matrix)); 

Y=zeros(N_SearchNodeFix+1,1);  

for i = 1:Number_Node  

    for j = 1:Number_Node    

  if isequal(i,j)==0;   

           if Dis_matrix(i,j)<P 

              P= Dis_matrix(i,j); 
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              Y(1)=i; 

           X(1,1)=i; 

           X(1,2)=j; 

           end 

  end   

    end  

end  

for u=2:N_SearchNodeFix 

  for i = 1:Number_Node   

 if i==X(u-1,2) 

    P=max(max(Dis_matrix)); 

    for j = 1:Number_Node  

        if isequal(i,j)==0  

            if isequal(j,X(1,1))==0  

       s=0; 

          for y=1:(u-1) 

           if 

or(and(isequal(i,X(y,1)),isequal(j,X(y,2))),and(isequal(j,X(y,1)),isequal(i,X(y,2))))==

1  

               s=s+1;  

           end 

           if isequal(j,Y(y))==1 

               s=s+1;  

           end 

          end 

          if s==0  

           if or(Dis_matrix(i,j)<P,Dis_matrix(i,j)==P) 

              P= Dis_matrix(i,j); 

              Y(u)=i; 

           X(u,1)=i; 

           X(u,2)=j; 

           end 
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          end 

            end 

        end 

    end   

 end 

  end 

end 

pp=X(N_SearchNodeFix,2); 

Y(N_SearchNodeFix+1)=pp; 

 Y=Y'; 

 end 

 

Appendix B3  Transform to Binary code 

 

[Rdsize,n]=size(RoutX); 

N=n+1; 

Num_var=0; 

tt=0; 

BeforeP=0; 

AfterP=0; 

Count=0; 

for I=1:(N-1) 

Num_var= N-I+Num_var; 

end 

CharacterX=zeros(Rdsize,Num_var); 

    for J=1:Rdsize 

        p=0; 

        p=RoutX(J,1); 

  CharacterX(J,p-1)=1;  

pp=RoutX(J,n); 

CharacterX(J,pp)=1; 

 for I=2:n 
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    BeforeP= RoutX(J,I-1); 

    AfterP= RoutX(J,I); 

    if BeforeP>AfterP 

        Add=BeforeP-AfterP; 

        Count=0; 

        for f=1:AfterP-1 

            Count=N-f+Count; 

        end 

         Add=Count+Add; 

         CharacterX(J,Add)=1; 

    end 

    if BeforeP<AfterP 

        Add=AfterP-BeforeP; 

        Count=0; 

        for f=1:BeforeP-1 

            Count=N-f+Count; 

        end 

         Add=Count+Add;    

    

     CharacterX(J,Add)=1; 

    end    

 end 

    end        

end 

_ _ _ _ _ __ _ _ _ _ __ _ _ _ _ __ _ _ _ _ _ 

 

function CharacterX = EditXSearch(RoutX) 

 

 [Rdsize,n]=size(RoutX); 

N=n; 

Num_var=0;  

%Generate X data 
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for I=1:(N-1) 

Num_var= N-I+Num_var; 

end 

CharacterX=zeros(Rdsize,Num_var);  

    for J=1:Rdsize 

        p=RoutX(J,1); 

  CharacterX(J,p)=1;  

pp=RoutX(J,n); 

CharacterX(J,pp)=1;  

 for I=2:n 

    BeforeP= RoutX(J,I-1); 

    AfterP= RoutX(J,I); 

    if BeforeP>AfterP 

        Add=BeforeP-AfterP; 

        Count=0; 

        for f=1:AfterP-1 

            Count=n-f+Count; 

        end 

         Add=Count+Add; 

         CharacterX(J,Add)=1; 

    end 

    if BeforeP<AfterP 

        Add=AfterP-BeforeP; 

        Count=0; 

        for f=1:BeforeP-1 

            Count=n-f+Count; 

        end 

         Add=Count+Add;    

     CharacterX(J,Add)=1; 

    end 

 end 

    end        



                                                                                 

 

74

end 

 

Appendix B4  Transform to TSP route 

 

function [X,XX,CharacterX] = GetrouteX(RoutX,node,routenotfit) 

 

[Rdsize,kk]=size(RoutX); 

N=node; 

Num_var=0; 

X=zeros(2,N-1); 

for I=1:(N-1) 

Num_var= N-I+Num_var; 

end 

if kk ~= Num_var 

  error('Error: Number of x do not agree with number of nodes') 

end 

CharacterX=zeros(2,Num_var); 

XX=zeros(2,Num_var); 

xx=0; 

for I=1:(N-1) 

    count=node-I; 

   K=0;  

 for J=I:(N-1) 

     K=K+1; 

    count=count-1; 

    if I==1 

CharacterX(1,K)=node-count; 

CharacterX(2,K)=I; 

    else 

 CharacterX(1,xx+K)=node-count;  

 CharacterX(2,xx+K)=I;    

    end 
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end 

xx=xx+N-I; 

end 

for I=1:Rdsize      

 for J=1:Num_var 

     p=RoutX(I,J); 

     if p>0 

   XX(1,J)= CharacterX(1,J);  

   XX(2,J)= CharacterX(2,J); 

     end 

 end 

    end       

count=0; 

 for J=1:Num_var 

     p=XX(1,J); 

     if p>0 

         count=count+1; 

  X(1,count)= XX(1,J); 

   X(2,count)= XX(2,J); 

     end 

 end  

binary 

 if nargin == 3 

      [nr,cr]=size(X); 

      for i=1:nr 

          for j=1:cr 

             PL=routenotfit(1, X(i,j)); 

             X(i,j)=PL; 

          end 

      end 

  end  
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end 

_ _ _ _ _ __ _ _ _ _ __ _ _ _ _ __ _ _ _ _ _ 

 

function [X,Y] = Fitnode(RouteX,node,startnode,distancemetric) 

 

X=zeros(node,1); 

before=startnode; 

Ex=RouteX; 

for i=1:node 

nds=find(RouteX==before); 

[row3 col3]=ind2sub(size(RouteX),nds); 

[row,col] = Find_smalllestdistance(RouteX,row3,col3,distancemetric,X,before); 

if row==1 

    next=RouteX(row+1,col); 

    X(i,1)=before; 

    X(i+1,1)=next; 

   before=next; 

   Ex(1,col)=0; 

   Ex(2,col)=0; 

elseif row==2 

    next=RouteX(1,col); 

    X(i,1)=before; 

   X(i+1,1)=next; 

   before=next; 

   Ex(1,col)=0; 

   Ex(2,col)=0; 

else 

   X(i+1,1)=0;  

   before=0; 

end 

end 
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 [nRR,cRR]=size(X); 

  count=0; 

  for i=1:nRR 

      if(X(i,1)>0) 

          count=count+1; 

      end 

  end 

  if count>0 

  c=0; 

  ccc=zeros(count,1); 

  [nRR,cRR]=size(X); 

  for i=1:nRR 

      if X(i,1)>0 

        c=c+1; 

        ccc(c,1)=X(i,1); 

      end 

  end 

  X=ccc; 

  end 

  [n,c]=size(Ex); 

Count=0; 

for i=1:c 

if Ex(1,i)>0 

    Count=Count+1; 

end 

end 

nn=Count; 

Y=zeros(2,nn); 

Count=0; 

for i=1 :c 

if Ex(1,i)>0 

    Count=Count+1; 
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    Y(Count,1)=Ex(1,i); 

    Y(Count,2)=Ex(2,i);  

end 

end 

Y=Y'; 

end 

_ _ _ _ _ __ _ _ _ _ __ _ _ _ _ __ _ _ _ _ _ 

 

function [RR] = Fit(main,node,Other,d,j) 

b 

if nargin == 4 

[Notmain] = notmain(main,node); 

elseif nargin == 5 

[Notmain] = notmain(main,node,j);     

end 

if Notmain==0 

    RR=main; 

else 

  [Other] = CheckMainforOther(main,Notmain,Other); 

 [n,c]=size(main); 

  if  Other==0 

    [RR,freenode] = connectfreenode(main(n,1),Notmain,d); 

  else   

    [RR,freenode,Otherroute] = connectfreenode(main(n,1),Notmain,d,Other);    

  end   

  [nRR,cRR]=size(RR); 

  count=0; 

  for i=1:nRR 

      if(RR(i,1)>0) 

          count=count+1; 

      end 

  end 
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  if count>0 

  c=0; 

  ccc=zeros(count,1); 

  [nRR,cRR]=size(RR); 

  for i=1:nRR 

      if RR(i,1)>0 

        c=c+1; 

        ccc(c,1)=RR(i,1); 

      end 

  end 

  RR=ccc; 

  end  

 end 

end 

 

Appendix B5  Subfunction of Transform to TSP route 
 

function [rowf,colf,nextx,dis1,z] = 

Find_smalllestdistance(RouteX,row,col,disstancemetric,X,before) 

 

if isempty(row)==0 

  [n,c]=size(row); 

  nextx=zeros(n,1); 

  dis1=zeros(n,1); 

 for i=1:n 

    p=row(i,1); 

  k=col(i,1); 

if p==1 

    nextx(i,1)=RouteX(p+1,k); 

elseif p==2 

    nextx(i,1)=RouteX(p-1,k);    

end   
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dis1(i,1)=disstancemetric(before,nextx(i,1)); 

 end 

 for i=1:n 

 nds=find(X==nextx(i,1)); 

 [rownex colnex]=ind2sub(size(X),nds); 

if isempty(rownex)==0 

   nextx(i,1)=0; 

end 

 end 

   disMax=max(max(disstancemetric)); 

   [n,c]=size(row);  

   rowf=0; 

  colf=0;           

for i=1:n 

    if nextx(i,1)~=0 

  if or(dis1(i,1)< disMax,dis1(i,1)== disMax)   

     disMax=dis1(i,1);    

          rowf=row(i,1); 

          colf=col(i,1); 

z=1;  

  end 

    end 

end 

elseif isempty(row)==1 

   rowf=0; 

  colf=0;    

end 

end 

_ _ _ _ _ __ _ _ _ _ __ _ _ _ _ __ _ _ _ _ _ 

 

function [freenode] = freenodecheck(freenode,Otherroute) 
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[nO,cO]=size(Otherroute); 

count=0; 

[n,c]=size(freenode); 

for i=1:n 

    before=freenode(i,1); 

    nds=find(Otherroute==before); 

    [row3 col3]=ind2sub(size(Otherroute),nds); 

    if nds~=0 

      freenode(i,1)=0; 

      count=count+1; 

    end    

end 

c=count; 

if c~=0 

count=0; 

 freenode2=zeros(c,1); 

[n,c]=size(freenode); 

for i=1:n 

    if (freenode(i,1)~=0) 

      count=count+1; 

      freenode2(count,1)=freenode(i,1); 

    end 

end 

freenode=freenode2; 

end 

end 

_ _ _ _ _ __ _ _ _ _ __ _ _ _ _ __ _ _ _ _ _ 

 

function [Notmain] = notmain(main,node,j) 

 

if nargin == 2 

    X=zeros(node,1);  
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for i=1:node 

    X(i,1)=i; 

end 

elseif nargin == 3 

X=j'; 

[oo,node]=size(j); 

end 

 count=0;    

for i=1:node 

    before=X(i,1); 

    nds=find(main==before,1); 

    if (isempty(nds)==0) 

      X(i,1)=0; 

      count=count+1; 

    end 

end 

c=node-count; 

if c~=0 

count=0; 

Notmain=zeros(c,1);  

for i=1:node   

    if X(i,1)~=0 

      count=count+1; 

      Notmain(count,1)=X(i,1); 

    end 

end 

else 

Notmain=0;     

end 

end 

_ _ _ _ _ __ _ _ _ _ __ _ _ _ _ __ _ _ _ _ _ 
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function [Otherroute] = other(freenode,d,Otherroute) 

 

       [nf,cf]=size(freenode); 

    [nO,cO]=size(Otherroute); 

    Otherroute2=Otherroute; 

count=0; 

   for i=1:nO 

       for j=1:cO 

    before=Otherroute2(i,j); 

    nds=find(Otherroute==before); 

    [row3 col3]=ind2sub(size(Otherroute),nds); 

    [nR,cR]=size(row3); 

    if nds~=0 

        dis1=max(max(d)); 

     for z=1:nR 

         if Otherroute2(row3(z),col3(z))~=0 

         if and(row3(z),col3(z))~=0 

         if row3(z)==1 

      dis=d(Otherroute2(row3(z),col3(z)),Otherroute2(row3(z)+1,col3(z)));  

         elseif row3(z)==2 

      dis=d(Otherroute2(row3(z),col3(z)),Otherroute2(row3(z)-1,col3(z)));  

         end 

        if dis<=dis1 

            rZ=row3(z); 

            cZ=col3(z); 

            dis1=dis; 

        end 

         end 

        end 

     end 

          for z=1:nR 

         if col3(z)~= cZ 
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  Otherroute(1,col3(z))=0; 

  Otherroute(2,col3(z))=0;  

        end 

         end 

          end 

    end 

       end 

   count=0; 

   [nO,cO]=size(Otherroute); 

   for i=1:cO 

       if Otherroute(1,i)>0 

           count=count+1; 

       end 

   end 

   if count>0 

    Otherroute2=zeros(2,count);  

    c=0; 

    for i=1:cO 

        if Otherroute(1,i)~=0 

            c=c+1; 

           Otherroute2(1,c)= Otherroute(1,i); 

           Otherroute2(2,c)= Otherroute(2,i); 

        end 

    end 

    Otherroute=Otherroute2; 

   end 

   end 

_ _ _ _ _ __ _ _ _ _ __ _ _ _ _ __ _ _ _ _ _ 

function [Other] = CheckMainforOther(main,Notmain,Other) 

    

 [n,c]=size(Notmain); 

K=Other; 
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count=0; 

[nOther,cOther]=size(Other); 

newOther=zeros(nOther,cOther); 

for i=1:n 

    before=Notmain(i,1); 

    nds=find(Other==before); 

    [rowX colX]=ind2sub(size(Other),nds); 

    [nm,cm]=size(rowX); 

    for h=1:nm 

    if (nds~=0)     

     newOther(rowX(h),colX(h))=Other(rowX(h),colX(h));    

    end      

    end    

end 

for i=1:cOther 

    for j=1:nOther 

    if newOther(j,i)==0 

       if j==1 

         newOther(2,i)=0; 

       elseif j==2 

          newOther(1,i)=0 ; 

       end 

    end 

    end 

end 

[n,c]=size(main); 

count=0; 

for i=1:cOther 

    if newOther(1,i)~=0 

        count=count+1; 

    end 

end  
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if count==0 

    Other=0; 

else 

K=zeros(2,count); 

count=0; 

for i=1:cOther 

    if newOther(1,i)~=0 

        count=count+1; 

        K(1,count)=newOther(1,i); 

        K(2,count)=newOther(2,i);    

    end 

end 

Other=K; 

end 

end 

 

Appendix B6  Create distance matrix 

 

function distances=dis2(x,y) 

N_cities = size(x,1);  

distances = zeros(N_cities,N_cities); 

for i = 1:N_cities 

   for j = (i+1):N_cities 

       distances(j,i) = pos2dist(x(i),y(i),x(j),y(j),2); 

      distances(i,j)=distances(j,i); 

   end 

end 

end 

_ _ _ _ _ __ _ _ _ _ __ _ _ _ _ __ _ _ _ _ _ 

 

function dist = pos2dist(lag1,lon1,lag2,lon2,method) 
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if nargin < 4 

    dist = -99999; 

    disp('Number of input arguments error! distance = -99999'); 

    return; 

end 

if abs(lag1)>90 || abs(lag2)>90 || abs(lon1)>360 || abs(lon2)>360 

    dist = -99999; 

    disp('Degree(s) illegal! distance = -99999'); 

    return; 

end 

if lon1 < 0 

    lon1 = lon1 + 360; 

end 

if lon2 < 0 

    lon2 = lon2 + 360; 

end 

if nargin == 4 

    method = 1; 

end 

if method == 1 

    km_per_deg_la = 111.3237; 

    km_per_deg_lo = 111.1350; 

    km_la = km_per_deg_la * (lag1-lag2); 

    if abs(lon1-lon2) > 180 

        dif_lo = abs(lon1-lon2)-180; 

    else 

        dif_lo = abs(lon1-lon2); 

    end 

    km_lo = km_per_deg_lo * dif_lo * cos((lag1+lag2)*pi/360); 

    dist = sqrt(km_la^2 + km_lo^2); 

else 

    R_aver = 6374; 
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    deg2rad = pi/180; 

    lag1 = lag1 * deg2rad; 

    lon1 = lon1 * deg2rad; 

    lag2 = lag2 * deg2rad; 

    lon2 = lon2 * deg2rad; 

    dist = R_aver * acos(cos(lag1)*cos(lag2)*cos(lon1-lon2) + sin(lag1)*sin(lag2)); 

end 

 

 

Appendix B7  Use GPML to create hyperparameter and minimize function 

 

[n,D]=size(x); 

logtheta0 = zeros(D+2,1);         

logtheta0(D+2) = -1.15; 

covfunc = {'covSum', {'covSEard','covNoise'}}; 

logtheta = minimize(logtheta0, 'gpr', -100, covfunc, x, y); 

[X0, fX1, i0] = minimize2(x0,-100,logtheta, covfunc, x, y); 
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Appendix C 
GPML Toolbox manual 
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Appendix C1  Description of the GPR function gpr.m on GPML toolbox 

 

The basic computations needed for standard Gaussian process regression (GPR) 

are straight forward to implement in MATLAB.  Several implementations are 

possible, here we present an implementation closely resembling Algorithm in C1. 

 
 

Appendix Figure C1  GPR algorithm 
 

with three exceptions: Firstly, the predictive variance returned is the variance for 

noisy test-cases, whereas C1 Algorithm gives the variance for the noise-free latent 

function; conversion between the two variances is done by simply adding (or 
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subtracting) the noise variance.  Secondly, the negative log marginal likelihood is 

returned, and thirdly the partial derivatives of the negative log marginal likelihood. 

 

A simple implementation of a Gaussian process for regression is provided by 

the gpr.m program (which can conveniently be used together with minimize.m for 

optimization of the hyperparameters).  The program can do one of two things: 

 

• compute the negative log marginal likelihood and its partial derivatives the 

hyperparameters, usage  

 

[nlml dnlml] = gpr(logtheta, covfunc, x, y) 

 

which is used when "training" the hyperparameters, or 

 

• compute the (marginal) predictive distribution of test inputs, usage  

 

[mu S2]  = gpr(logtheta, covfunc, x, y, xstar) 

 

Selection between the two modes is indicated by the presence (or absence) of 

test cases, xstar.  The arguments to the gpr.m function are: 
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Appendix Table C11 Input and output of GPR function 

 

Inputs 

logtheta a (column) vector containing the logarithm of the hyperparameters 

covfunc the covariance function 

X a n by D matrix of training inputs 

Y a (column) vector if training set targets (of length n) 

Xstar a nn by D matrix of test inputs 

Outputs 

Nlml the negative log marginal likelihood 

Dnlml 
 Column vector with the partial derivatives of the negative log marginal 

likelihood (the logarithm of the hyperparameters). 

Mu  Column of predictive means 

S2  Column vector of predictive variances 

 

  The covfunc argument specifies the function to be called to evaluate 

covariances.  The covfunc can be specified either as a string naming the function to 

be used or as a cell array.  A number of covariance functions are provided, see 

covFunctions.m for a more complete description.  A commonly used covariance 

function is the sum of a squared exponential (SE) contribution and independent noise.  

This can be specified as:  

 

  covfunc = {'covSum', {'covSEiso','covNoise'}}; 

 

where covSum merely does some bookkeeping and calls the squared 

exponential (SE) covariance function covSEiso.m and the independent noise 

covariance covNoise.m.  The squared exponential (SE) covariance function (also 

called the radial basis function (RBF) or Gaussian covariance function) is given by in 

equation below : 
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2 2 2
2

1( , ) exp( ( )
2y p q f p q n pqk x x x x
l
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for the scalar input case, and equation 
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2
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for multivariate inputs.   
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Appendix D 

   Numerical Example 
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Appendix D Numerical Example 

 

 We have 5 nodes of Geographic TSP thus 5 nodes have symmetric 

distance properties.  We need to predict the minimum distance of this TSP problem 

and find TSP route by using GPR method which has 2 nodes in subtour.  Latitudes 

and longitudes of Geographic TSP are shown in Appendix FigureD1: 

 

 

Node Latitude 

 

Longitude

 

1 38.24 20.42 

2 39.57 26.15 

3 40.56 25.32 

4 36.26 23.12 

5 33.48 10.54 
 

Appendix Figure D1 Latitude and longitude from GEO TSP. 
 

Appendix D1  Calculate distance matrix 

 

 1 2 3 4 5 

1 0 517 493 325 1035

2 517 0 130 454 1548

3 493 130 0 515 1527

4 325 454 515 0 1188

5 1035 1548 1527 1188 0 
 

Appendix Figure D2 Distance matrix 
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Appendix D2  Construct a subtour by a greedy heuristic 

 

  The minimum distance is 130 Km.   from path i = 2 and j = 3 which 

shown in Appendix FigureD3, subtour is shown in Appendix Figure D4 and the 

rest tour are shown in Appendix FigureD5. 

 
      node 

 node 1 2 3 4 5 

1 0 517 493 325 1035

2 517 0 130 454 1548

3 493 130 0 515 1527

4 325 454 515 0 1188

5 1035 1548 1527 1188 0 
 

Appendix Figure D3 Distance matrix which shown minimum distance. 
 

2 

3 

 
Appendix Figure D4 Subtour 

 

 

1 

4 

5 

 

Appendix Figure D5  The rest tour 
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Appendix D3  Generate sampling tour and their corresponding total distance 

 

We generate 3 sampling tours ( X ) in Appendix Figure D6 and total distance 

(Y ) in Appendix Figure D7.  After that we redefine the rest node in ordinary number 

which shows in Appendix Figure D8 and sampling tour are redefined base on the rest 

tour in Appendix Figure D8 (Appendix Figure D9). 

 

 

Tour No. Tour 

1 1 4 5 

2 4 5 1 

3 5 1 4 
 

Appendix Figure D6  3 sampling tours( X ) 
 

 

Tour No. Distance

1 3684 

2 3385 

3 3471 

 

Appendix Figure D7  Their corresponding total distance (Y ) 

 

Current New 

1 1 

4 2 

5 3 

 

Appendix Figure D8  The rest tour are redefined 
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Tour No. Tour 

1 1 2 3 

2 2 3 1 

3 3 1 2 
 

Appendix Figure D9  Redefined sampling tour 
 

Each of redefined sampling tours is re-writing in binary matrix that shown in 

Appendix Figure D10.  The value in binary matrix is 1 if the path from node i to node 

j appear and 0 if the path from node i to node j do not appear.  Because of geographic 

TSP are symmetric so the lower triangular of a binary matrix can be deleted from 

Appendix Figure D10(Appendix Figure D11).  The tours are transformed to 1 row 

matrix ( 'X ) which shown in Appendix Figure D12. 

 

Tour No.1 Tour No.   2 Tour No.   3 

   node 

node 1 2 3 

  node 

node 1 2 3 

  node 

node 1 2 3 

1 0 1 0 1 0 0 1 1 0 1 1 

2 1 0 1 2 0 0 1 2 1 0 0 

3 0 1 0 3 1 1 0 3 1 0 0 

 

Appendix Figure D10 Binary term of sampling tour 
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Tour No.1 Tour No.   2 Tour No.   3 

   node 

node 1 2 3 

  node 

node 1 2 3 

  node 

node 1 2 3 

1 - 1 0 1 - 0 1 1 - 1 1 

2 - - 1 2 - - 1 2 - - 0 

3 - - - 3 - - - 3 - - - 

 
Appendix Figure D11  Binary matrix after reducing variable 

 

Tour No. Tour 

1 1 0 1 

2 0 1 1 

3 1 1 0 
 

Appendix Figure D12  One row matrix of each tour ( 'X ) 
 

Appendix D4  Use GPR function to approximate an optimal TSP tour. 

 

We determine a starting solution, which is a TSP tour.   In our experiment 

starting solution is TSP tour which has lowest total distance. 

 

Tour No. Tour Distance 

1 1 0 1 3684 

2 0 1 1 3385 

3 1 1 0 3471 
  

Appendix Figure D13  Selected starting solution 
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Parameters are estimated to creating GPR function which is used for predicted 

the optimal value of TSP problem.   The prediction value are shown in Appendix 

Figure D14 

 

Tour Distance 

1 1 0 3570 
 

Appendix Figure D14  Prediction value 
 

Appendix D5  Transform an optimal solution to a TSP tour. 

 

A one row route is transformed to binary matrix (Appendix Figure D15).   It is 

transformed again to a path matrix [ 2 pathn× ] (Appendix Figure D16) and select a 

lowest distance path in a path matrix.    

 

       node

node 1 4 5 

1 - 1 1 

4 - - 0 

5 - - - 
 

Appendix Figure D15  Binary Matrix of optimal solution 
 
 

Tour 

1 2 

1 1 

4 5 

Distance

325 1035

 
Appendix Figure D16   Path matrix 
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We select the lowest distance tour which is tour 2, but tour 2 can not connect 

which tour 1 because the end of tour 2 is 3.  We can separate T, H, and K matrixes in 

Appendix Figure D17 which H matrix is deleted 

Distance

54

21

Tour

1035325

11

5

1H= K= 5
4

1T=
 

 
Appendix Figure D17   Delete paths in H which have node the same as T. 

 

From matrix T, K an H, we will get TSP tour below in D18. 

 

Tour Distance 

2 3 1 4 5 3684 
 

Appendix Figure D18   TSP Tour 
 

The optimal solution from GPR prediction is lower than a solution when 

transform to a TSP tour because of a tour construction in the last step. 
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