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ABSTRACT

A global domain is uniformly partitioned into many smaller non-overlapping

sub-domains. Two modifications are made to the hierarchical domain decomposition

method to suit two-dimensional magnetotelluric problems. Under the hierarchical de-

composition, the unknowns are classified into three types: interior, interface, and in-

tersection. Instead of solving the whole domain, these divided systems are successively

solved with the lower and upper (LU) factorization via many smaller sub-systems and

a reduced system. By taking advantage of the finite difference method, the first modifi-

cation is to separate the interface into horizontal and vertical interfaces, and the second

modification is to apply a red-black ordering to the horizontal and vertical interface

system.

The accuracy of the developed technique is first validated with both syn-

thetic and inverted models. At the proper number of sub-domains, the developed tech-

nique is better than solving the whole domain in terms of computational time and

memory, and also has a higher efficiency when the model size increases. Pre-estimating

the memory used leads to a selection of the optimal number of sub-domains prior to

the actual calculation. Thus the trial and error approach for choosing the number of

sub-domains can be avoided. The proposed domain decomposition technique is proven

to be efficient at solving two-dimensional problems and also shows the potential for

solving three-dimensional problems.
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relative time maps. 84
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CHAPTER I

INTRODUCTION

Magnetotellurics (MT) is an increasingly popular method in various geo-

physical applications such as environmental studies, tectonic and crustal studies, geother-

mal exploration, and mineral and gas exploration. Thus, the fast inversion programs, the

process that finds the model to fit the observed data, are demanded. The MT forward

problem is very important, because the inversion requires many forward solutions. The

forward algorithm must therefore be improved to gain more efficient inversion. Here,

the domain decomposition method is chosen to solve two-dimensional magnetotelluric

forward problems as a feasibility test before applying it to three-dimensional problems.

In this thesis, the fundamentals of magnetotellurics is given in Chapter

2. The MT forward problem with the finite difference (FD) approach is described in

Chapter 3. Solving the resulting systems with the traditional iterative solvers might be

less efficient because the iterative solvers might fail to converge when the models are

too large or too complicated. The direct solver, LU factorization, was therefore chosen

as a solver, and will be referred to as FDWD.

However, to solve large problems, particularly three-dimensional problems,

direct solvers might be impractical (see Streich, 2009) because of memory limitations.

Basically, the domain decomposition method turns one system of equations into many

smaller sub-systems of interiors and a reduced system of interfaces, the Schur com-

plement. Therefore, applying the direct solver on the decomposed domain is more

reasonable.

The domain decomposition method used in this thesis is based on the hi-

erarchical domain decomposition method (HD) which will be described in Chapter 4.

Under the hierarchical domain decomposition, the unknowns could be classified into

three categories: interior, interface and intersection. The system is then transformed to

many smaller sub-systems of interiors, and two reduced systems of interfaces and inter-

sections. From the numerical experiments, HD provides the same accuracy as FDWD

and uses lower memory when there are small numbers of sub-domains, but HD did not

improve the computational time.

To obtain a higher efficiency, the hierarchical domain decomposition was

first modified by separating the interfaces into the horizontal and vertical interfaces,
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which will be referred to as MHD and will be described in Chapter 5. This results in

a smaller interface system. The numerical results also showed that MHD is superior to

HD in terms of time and memory. However, the computation time of MHD is still quite

close to that of FDWD.

A second modification was therefore made to the interface system of MHD.

Because of the block tridiagonal matrix pattern in some parts of the interface system, a

combination of red-black ordering and Schur complement could be implemented. This

modification will be referred to as MHDRB and will be described in Chapter 6. From

the numerical results, MHDRB is better than HD and MHD in terms of time and

memory. Moreover, MHDRB has better efficiency than FDWD at proper numbers of

sub-domains.

In Chapter 7, the mesh size is varied to demonstrate the potential of the

developed domain decomposition methods. All three domain decomposition solvers

become more efficient as the model size increases. Thus the developed technique is

proven to be efficient in two-dimensional problems and also shows potential for solving

three-dimensional problems. When the hierarchical domain decomposition is modified,

the minimized computational loads are provided at different numbers of sub-domains. A

changing in the optimal number of sub-domains is also discussed. Moreover, the strategy

of choosing the optimal number of sub-domains is also presented and the conclusions of

this thesis are given at the last chapter.
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CHAPTER II

FUNDAMENTAL OF MAGNETOTELLURICS

2.1 Introduction to magnetotellurics

Magnetotellurics (MT) is one of the techniques of geophysics for imaging the

resistivity structure of the subsurface by measuring the natural occurring electromag-

netic waves as a source. Due to the broad frequency range of the natural wave source,

MT sounding samples a volume of the Earth of depth ranging from tens of meters to

several hundreds of kilometers. This is deeper than other active EM methods which

are limited by the power of source. MT has found use in environmental applications

(e.g. Pellerin et al., 2004; Hautot et al., 2002), in petroleum and mineral exploration

(e.g. Mitsuhata et al., 1999; Turkoglu et al., 2009; Tuncer et al., 2006), in geothermal

explorations (e.g. Tang et al., 2008), and in crustal and tectonic studies (e.g. Noguera

& Rea, 2000; Unsworth, 2010).

To study deep structures, the observing periods must be extended, because

the penetration depth of electromagnetic waves is strongly determined by the electro-

magnetic skin depth,

δ =
√

2
ωσµ

=
√

2ρ
ωµ

, (2.1)

where µ is magnetic permeability, assumed to be that of free space µ0 for earth studies,

σ is the electrical conductivity, and ω is an angular frequency, ω = 2πf . Skin depth

is defined as the length that an electromagnetic wave decays by a factor of 1/e as it

propagates into the medium. It depends on frequency f and electrical conductivity

σ, the inverse of resistivity ρ, as shown in Figure 2.1. The exponential decay of elec-

tromagnetic waves makes them less sensitive to the structure deeper than their skin

depths. In MT studies, the investigation depth of each frequency is generally equal to

its electromagnetic skin depth.

The sources of electromagnetic waves can be categorized into two groups

depending on their frequencies. Those with frequencies less than 1 Hz are generated

from the interaction between the solar wind and the ionosphere. The frequency range

above 1 Hz comes from electrical phenomena in the atmosphere, e.g., lightning. This

local effect can saturate the recording signals.



Tawat Rung-Arunwan Fundamental of magnetotellurics / 4

Frequency (Hz)

0.0001     0.001            0.01              0.1                1               10             100             1000

R
es

is
ti

v
it

y
 (

O
h

m
-m

)
1000

100

10

1

0.1
10

 m

50
0 

km

20

50
10

0
20

0

50
0 

m

1 
km

2

5

10

20

50

20
0

10
0

Figure 2.1: Skin depths of electromagnetic waves in a homogeneous medium plotted as
a function of frequency and resistivity.

MT work was independently pioneered by Tikhonov (1950) and Cagniard

(1953). The theoretical formulation of MT is based on the assumption that electro-

magnetic waves are considered to be plane waves. Assuming that the wave propagates

vertically down into the earth, once it reaches the surface, the magnetic field, which

is changing with time, results in varying electric fields associated with currents in the

earth, called telluric currents.

By simultaneously recording the orthogonal components of electric and mag-

netic fields at the surface, the impedances can be obtained. Consequently, the resistivity

structure of the earth can be revealed.

2.2 Impedance tensor: MT response and dimensionality

In an MT survey, the electric and magnetic fields are generally measured in

the north-south and east-west directions, denoted by x- and y-directions, respectively.

This is because the electric and magnetic field components are related in the orthogonal

directions. The schematic plane view of an MT station is also shown in Figure 2.2.

Examples of time-varying electromagnetic fields are shown in Figure 2.3. Ex is correlated

to Hy, and Ey is correlated to Hx. The electric and magnetic fields in the time domain

are then transformed into the frequency domain using the Fourier transform.

The electric field E and magnetic field H are related by the impedance
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Figure 2.2: A schematic plane view of an MT station. The magnetic field components,
Hx, Hy and Hz, are measured by magnetometers. The electric fields, Ex and Ey, are
measured by the electric dipoles.

tensor Z as follows,

E = ZH, (2.2)

or (
Ex

Ey

)
=
(
Zxx Zxy

Zyx Zyy

)(
Hx

Hy

)
, (2.3)

where E, H, and Z are functions of the angular frequency ω. The magnetotelluric

responses, apparent resistivity ρa and phase φ, are obtained from

ρa,ij =
1
ωµ
|Zij |2, (2.4)

and

φij = tan−1

(
Im{Zij}
Re{Zij}

)
, (2.5)

respectively, where i or j denote the x- or y-directions. The apparent resistivity is de-

fined as the average resistivity of an equivalent uniform half-space. The phase represents

the relationship between the electric and magnetic fields.

An example of apparent resistivity and phase from the two-layer earth model

(Figure 2.4a) is shown in Figure 2.4b. High frequency responses reflect the shallow

structure, ρ1 = 100 Ω m, and, as decreasing frequencies (or increasing periods), the

apparent resistivity curve tends to the resistivity ρ2 of the second layer. When ρ2 =

ρ1 = 100 Ω m, the two-layer earth model becomes a halfspace model, and the apparent

resistivity is equal to the true resistivity of the model and it s phase is −45◦. If the
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Ex

Ey

Hx

Hy

Hz

10:08:02 PM 10:10:02 PM 10:12:02 PM 10:14:02 PM 10:16:02 PM 10:18:02 PM

Figure 2.3: The times series data of electric and magnetic field components measured
at one MT station.

second layer is more conductive, the phase decreases. However the phase increases with

the resistive layer.

The impedance tensor Z also contains information about dimensionality.

For a 1-D Earth (Figure 2.5a), where the conductivity varies with depths only,

Zxx = Zyy = 0,

Zxy = −Zyx.

In a 2-D Earth (Figure 2.5b), the conductivity varies in the vertical and one

horizontal directions, and the other horizontal direction is called the strike direction. In

this case,

Zxx = −Zyy,

Zxy 6= −Zyx.

An example of a 3-D model is shown in Figure 2.5c. The conductivity varies

in all three directions, and so

Zxx 6= −Zyy,

Zxy 6= −Zyx.
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2.3 Governing equations

The magnetotelluric responses can be computed from the ratio of electric

to magnetic field strength. The relationship between electric and magnetic fields is

governed by Maxwell’s equations. Inside a medium, in the absence of free charge,

Maxwell’s equations are:

∇×E = −∂B
∂t
, (2.6)

∇×H = J +
∂D
∂t

, (2.7)

∇ ·B = 0, (2.8)

∇ ·D = 0, (2.9)

where E is the electric field, B is magnetic induction, H is the magnetic intensity, D is

electric displacement, and J is the electric current density.

For an MT study, the electrical permittivity of rock, ε, is negligible and the

magnetic permeability, µ, is assumed to be that of free space, µ0 (Kaufman & Keller,

1981).

The Earth is assumed to be a linear isotropic medium, so two further rela-

tionships are hold:

B = µH, (2.10)

D = εE. (2.11)

The Earth acts as an ohmic conductor, so

J = σE. (2.12)

Applying equations (2.10), (2.11) and (2.12) to equations (2.6) to (2.9),

Maxwell’s equations with the time dependent part assumed to be e−iωt are rewritten

as,

∇×E = iωµH, (2.13)

∇×H = σE, (2.14)

where ω is the angular frequency.

From equations (2.13) and (2.14), the electric and magnetic fields depend

on the electrical conductivity σ, or inversely on the electrical resistivity ρ. To solve

for the electric and magnetic fields, the model is discretized and the finite difference

method is applied. This will be described in the next chapter.
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Figure 2.4: (a) The two-layer model. The conductivity of first layer ρ1 is 100 Ω m and
that of second layer ρ2 is varied. (b) MT responses from the two-layer model plotted as
a function of frequency.
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(a) (b)

(c)

Figure 2.5: Examples of spatial variation of model parameters in (a) 1-D model (b) 2-D
model and (c) 3-D model.
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CHAPTER III

MAGNETOTELLURIC FORWARD PROBLEM: FINITE

DIFFERENCE APPROACH

The forward algorithm is a very important part of the inversion program. It

is used to calculate the responses, apparent resistivity ρa and phase φ, from the known

structures. At the surface, the MT response are computed from the ratio of the electric

fields and magnetic fields, which are obtained by solving Maxwell’s equations.

To solve Maxwell’s equations, there are three usual approaches: the finite

difference (FD) method (e.g. Mackie et al., 1994; Smith, 1996; Siripunvaraporn et al.,

2002, 2005), the finite element (FE) method (e.g. Mitsuhata & Uchida, 2004; Zyserman

& Santos, 2000; Zyserman et al., 1999; Wannamaker et al., 1987; Xueming et al., 2010)

and the integral equation (IE) method (e.g. Avdeev & Avdeeva, 2009; Xiong, 1992;

Wannamaker, 1991). The FD and FE methods are efficient and robust than the IE

technique. However, FD is more popular due to its simplicity and accuracy.

In this chapter, the forward modeling code based on the finite difference

approach is described in detail. The FD technique used here will be referred to as

FDWD, because all unknowns inside the whole domain are solved simultaneously. In

the next chapter, the global domain is decomposed into many smaller sub-domains and

then solved with the domain decomposition technique.

3.1 Two-dimensional magnetotelluric forward problem

Electric (E) and magnetic (H) fields that constitute an electromagnetic

wave are mutually orthogonal. A changing electric field induces the magnetic field

which is perpendicular to the electric field. Similarly, a changing magnetic field induces

an electric field in the perpendicular direction. Given that the x-direction is the strike

direction, Faraday’s law (2.13) and Ampere’s law (2.14) can be decoupled into two

modes: transverse electric fields (TE mode) and transverse magnetic fields (TM mode).

The TE mode describes the currents parallel to the strike direction, while the TM

mode describes currents perpendicular to the strike. The components of the electric
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and magnetic fields of each mode are as follows,

(Ex, Hy, Hz) for TE mode,

(Hx, Ey, Ez) for TM mode.

To calculate the fields for TE mode, it is better to solve for electric field E

from the second order equation,

∇×∇×E = iωµσE. (3.1)

Equation (3.1) is derived from substituting H in (2.13) into (2.14). Once Ex is obtained,

Hy and Hz are calculated from (2.13). Similarly, to solve for the magnetic fields H for

the TM mode, a second order equation of H,

∇× ρ∇×H = iωµH, (3.2)

is used. This is derived from substituting E in (2.14) into (2.13). Once Hx is solved,

Ey and Ez can be obtained from (2.14).

Two curl equations of electric field and magnetic field share the same pat-

tern. In order to avoid redundancy, the equations for TE and TM modes will be generally

written as

∇× α∇×G = iωµβG, (3.3)

where G, α and β are defined as shown in the following table

Mode G α β

TE E 1 σ
TM H ρ 1

In Cartesian coordinates, G = G(x, y, z) and (3.3) can be expanded as

∂

∂y

(
α

(
∂Gy

∂x
− ∂Gx

∂y

))
− ∂

∂z

(
α

(
∂Gx

∂z
− ∂Gz

∂x

))
= iωµβGx,

∂

∂z

(
α

(
∂Gz

∂y
− ∂Gy

∂z

))
− ∂

∂x

(
α

(
∂Gy

∂x
− ∂Gx

∂y

))
= iωµβGy,

∂

∂x

(
α

(
∂Gx

∂z
− ∂Gz

∂x

))
− ∂

∂y

(
α

(
∂Gz

∂y
− ∂Gy

∂z

))
= iωµβGz.

(3.4)

For the two-dimensional problem, given that the x-direction is the strike

direction, the resistivity model is varied in the y- and z-directions, and only Gx exists.

Equation (3.4) reduces to

∂

∂y

(
α
∂Gx

∂y

)
+

∂

∂z

(
α
∂Gx

∂z

)
+ iωµβGx = 0. (3.5)
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Figure 3.1: Conductive and resistive blocks with vertical contact buried in 100 Ω m half-
space. The left and right blocks have resistivity of 10 Ω m and 1000 Ω m, respectively.
The model is discretized using 12 × 16 rectangles. Both electric and magnetic fields
are defined at the nodes (junctions denoted by cross symbols). The boundary fields are
located at the edges of model.

Before applying the finite difference formulation, the model is first dis-

cretized into a rectangular grid. Figure 3.1 illustrates an example of the resistivity

model that is non-uniformly discretized into 12×16 rectangles in the z- and y-directions,

respectively. Both electric and magnetic fields are defined at the nodes. The indexing

discrete field Gx, resistivity ρ, and grid spacings, ∆y and ∆z, are illustrated in Figure

3.2. The node (i, j) is defined at the top left corner of each rectangle. Resistivity ρi,j

represents the resistivity of the rectangle bounded by nodes (i, j), (i, j+1), (i+1, j+1),
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ρi−1,j−1

ρi,j−1

ρi−1,j

ρi+1,j ρi+1,j+1

ρi,j+1ρi,j
∆zi

∆zi−1

∆yj∆yj−1

Gxi−1,j−1 Gxi−1,j

Gxi,j−1 Gxi,j Gxi,j+1

Gxi+1,j+1Gxi+1,j

z

y

Figure 3.2: Resistivity ρi,j is defined at the center of each rectangle. Fields Gxi,j are
defined at the nodes. Mesh sizes in vertical and horizontal directions are ∆zi and ∆yj ,
respectively.

and (i+ 1, j). The discrete form of equation (3.5) related to Gx at node (i, j) is

ᾱR

∆yj
(Gx,i,j+1 −Gx,i,j)−

ᾱL

∆yj−1
(Gx,i,j −Gx,i,j−1)

(∆yj−1 + ∆yj)/2

+

ᾱD

∆zi
(Gx,i+1,j −Gx,i,j)−

ᾱU

∆zi−1
(Gx,i,j −Gx,i−1,j)

(∆zi−1 + ∆zi)/2
+ iωµβ̄avgGx,i,j = 0,

(3.6)
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where β̄avg, ᾱU , ᾱD, ᾱL, and ᾱR are the average electrical properties defined by

β̄avg =
βi−1,j−1∆zi−1∆yj−1 + βi−1,j∆zi−1∆yj + βi,j∆zi∆yj + βi,j−1∆zi∆yj−1

∆zi−1∆yj−1 + ∆zi−1∆yj + ∆zi∆yj + ∆zi∆yj−1
,

ᾱU =
αi−1,j−1∆yj−1 + αi−1,j∆yj

∆yj−1 + ∆yj
,

ᾱD =
αi,j−1∆yj−1 + αi,j∆yj

∆yj−1 + ∆yj
,

ᾱL =
αi−1,j−1∆zi−1 + αi,j−1∆zi

∆zi−1 + ∆zi
,

ᾱR =
αi−1,j∆zi−1 + αi,j∆zi

∆zi−1 + ∆zi
.

Rewriting equation (3.6),

2ᾱR

tyj∆yj
Gx,i,j+1 +

2ᾱL

tyj∆yj−1
Gx,i,j−1 +

2ᾱD

tzi∆zi
Gx,i+1,j +

2ᾱU

tzi∆zi−1
Gx,i−1,j

+
(
iωµβ̄avg −

2ᾱR

tyj∆yj
− 2ᾱL

tyj∆yj−1
− 2ᾱD

tzi∆zi
− 2ᾱU

tzi∆zi−1

)
Gx,i,j = 0

(3.7)

with tzi and tyj defined as,

tzi = ∆zi−1 + ∆zi,

tyj = ∆yj−1 + ∆yj .

In order to obtain a symmetric system, we must multiply equation (3.7) by

tzityj which gives

2ᾱRtzi
∆yj

Gx,i,j+1 +
2ᾱLtzi
∆yj−1

Gx,i,j−1 +
2ᾱDtyj

∆zi
Gx,i+1,j +

2ᾱU tyj

∆zi−1
Gx,i−1,j

+
(

(tzityj)iωµβ̄avg −
2ᾱRtzi

∆yj
− 2ᾱLtzi

∆yj−1
− 2ᾱDtyj

∆zi
− 2ᾱU tyj

∆zi−1

)
Gx,i,j = 0,

(3.8)

and then rewrite equation (3.8) as

CR
i,jGx,i,j+1 + CL

i,jGx,i,j−1 + CD
i,jGx,i+1,j + CU

i,jGx,i−1,j + CC
i,jGx,i,j = 0, (3.9)

where

CR
i,j =

2ᾱRtzi
∆yj

,

CL
i,j =

2ᾱLtzi
∆yj−1

,

CD
i,j =

2ᾱDtyj

∆zi
,

CU
i,j =

2ᾱU tyj

∆zi−1
,

CC
i,j =

(
(tzityj)iωµβ̄avg −

2ᾱRtzi
∆yj

− 2ᾱLtzi
∆yj−1

− 2ᾱDtyj

∆zi
− 2ᾱU tyj

∆zi−1

)
.



Fac. of Grad. Studies, Mahidol Univ. M.Sc. (Physics) / 15

The parameters CR
i,j , C

L
i,j , C

D
i,j , and CU

i,j are the coupling coefficients from nodes (i, j+1),

(i, j−1), (i+1, j) and (i−1, j) to node (i, j), respectively, while CC
i,j is the self-coupling

coefficient.

Applying equation (3.9) to all interior nodes, we obtain a system of equa-

tions,

Ax = b, (3.10)

where A is a sparse five-banded coefficient matrix, b is the right-hand side vector

associated with the boundary nodes, and x is the unknown vector which represents

either electric or magnetic fields depending on the calculation mode. In the MT problem,

A is symmetric but not hermitian (complex only diagonal elements).

Gx(1)

Gx(2)

Gx(3)

Gx(4)

Gx(5)

Gx(6)

Gx(7)

Gx(8)

Gx(9)

Gx(10)

Gx(11)

Gx(12)

Gx(13)

Gx(14)

Gx(15)

Gx(16)

Gx(17)

Gx(18)

Gx(19)

Gx(20)

Gx(21)

Gx(22)

Gx(23)

Gx(24)

Gx(25)

Gx(26)

Gx(27)

Gx(28)

Gx(29)

Gx(30)

Gx(31)

Gx(33)

Gx(32)

Gx(34)

Gx(35)

Gx(36)

z

y

Figure 3.3: An example of a computational model consisting of a 5×5 rectangles, where
the non-uniform discretization is omitted. The nodes are defined at the corners. Direc-
tion of ordering indices is down first followed by right.

In general, if the model is discretized into Mz ×My rectangles in z- and

y-directions, respectively, there are (Mz + 1)(My + 1) nodes, in which (Mz − 1)(My− 1)

nodes of those are the unknowns. The dimension of A is therefore (Mz − 1)(My −
1) × (Mz − 1)(My − 1). For a 5 × 5 grid, for instance, there are 36 nodes in total, in

which 16 nodes are unknowns and 20 nodes are at the boundary, as shown in Figure 3.3.

The boundary nodes can be calculated from one-dimensional problems, which will be

described in Section 3.2. The resulting system of equations, Ax = b, can be expressed

as equation (3.11) and the sparsity pattern of the coefficient matrix A is shown in Figure
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3.4.

After obtaining the electric or magnetic fields from the second order equa-

tions, (3.1) and (3.2), the corresponding fields are solved from the first order equations,

Faraday’s law (2.13) and Ampere’s law (2.14). At the surface, apparent resistivity and

phases are then computed from the ratios of electric fields to magnetic fields, which will

be described in Section 3.3.

0BBBBBBBBBBBBBBBBBBBBBBBBBB@

CC
8 CD

8 CR
8

CU
9 CC

9 CD
9 CR

9
CU

10 CC
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CU
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Gx(14)
Gx(15)
Gx(16)
Gx(17)
Gx(20)
Gx(21)
Gx(22)
Gx(23)
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Gx(27)
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Gx(29)

1CCCCCCCCCCCCCCCCCCCCCCCCCA

=

0BBBBBBBBBBBBBBBBBBBBBBBBBB@

CL
8 Gx(2) + CU

8 Gx(7)
CL

9 Gx(3)
CL

10Gx(4)
CL

11Gx(5) + CD
11Gx(12)

CU
14Gx(13)

0
0

CD
17Gx18

CU
20Gx(19)

0
0

CD
23Gx24

CR
26Gx(32) + CU

26Gx(25)
CR

27Gx(33)
CR

28Gx(34)
CR

29Gx(35) + CD
29Gx(30)

1CCCCCCCCCCCCCCCCCCCCCCCCCCA
(3.11)

To solve the system of equations Ax = b, two types of method, namely,

direct methods and iterative methods, are normally used. Advantages and disadvantages

were discussed in many earlier publications (e.g. Streich, 2009; Operto et al., 2007). Here

we briefly summarize them.

A clear advantage of a direct method, e.g., Gaussian elimination, LU-

factorization, is at the accuracy of the solutions, because the solution is not approx-

imated. It therefore provides an accurate solution. However, this comes at a large

computational cost. Direct solvers usually require large memory to store the coeffi-

cients and also a large amount of CPU time to solve them. This is particularly true for

large two-dimensional or three-dimensional problems.

An iterative method minimizes the norm of Ax−b through many different

kinds of iterative schemes. It therefore requires a small amount of memory. Because it



Fac. of Grad. Studies, Mahidol Univ. M.Sc. (Physics) / 17

Figure 3.4: The sparsity pattern of coefficient matrix A resembles the pattern of the
matrix in equation (3.11), which is a sparse five-banded matrix.

successively converges to the solution, it can occasionally break down or become idle,

i.e., no convergence, particularly when the system is ill-conditioned. This is caused by

models which are too large or too complicated. In MT, long period problems can result

in ill-conditioned systems as well.

In reality, the Earth is geologically complex. Consequently, the system

of equations becomes ill-conditioned. Thus, to obtain a robust forward solver, LU-

factorization is chosen as a solver in this thesis and will be referred to as FDWD. A

typical LU-factorization to solve the system consists of two steps:

1. LU-factorization, that decomposes A = LU, where L and U are lower and upper

matrices, respectively.

2. Forward and backward substitution using the lower and upper matrices previously

decomposed in Step 1

However, a direct solver, like LU-factorization, cannot be used for very large models,

particularly in three-dimensional cases, because of the large memory requirement. If the

computational domain is broken into many smaller sub-domains, the direct solver be-

comes reasonable. In this thesis, a domain decomposition technique is therefore studied

with the purpose of solving MT forward problems with the direct solver.

3.2 One-dimensional magnetotelluric forward problem

As shown in Figure 3.1, a one-dimensional problem is used as a boundary

for a two-dimensional problem. In one-dimensional problems, the fields Gx are defined

as a function of depth (z-direction).
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∆zi

∆zi−1

Gxi−1

Gxi

Gxi+1

ρi

ρi−1

Figure 3.5: One-dimensional model at column j of the two-dimensional model shown in
Figure 3.2.

As with two-dimensional problems, we start from the second order Maxwell’s

equations (3.3) which are expanded to equation (3.4). In one dimensional problems, the

resistivity model is varied only in the z-direction. Hence equation (3.5) is reduced to

∂

∂z

(
α
∂Gx

∂z

)
+ iωµβGx = 0. (3.12)

At the column node j (Figure 3.5), the discrete form of equation (3.12) is

αi

∆zi
(Gx,i+1 −Gx,i)−

αi−1

∆zi−1
(Gx,i −Gx,i−1)

(∆zi−1 + ∆zi)/2
+ iωµβ̄avgGx,i = 0,

(3.13)

where

β̄avg =
βi−1∆zi−1 + βi∆zi

∆zi−1 + ∆zi
We rewrite (3.13) as

2αi

tzi∆zi
Gx,i+1 +

2αi−1

tzi∆zi−1
Gx,i−1 +

(
iωµβ̄avg −

2αi

tzi∆zi
− 2αi−1

tzi∆zi−1

)
Gx,i = 0, (3.14)

where

tzi = ∆zi−1 + ∆zi.

In order to yield a symmetric system, we must multiply (3.14) by tzi,

2αi

∆zi
Gx,i+1 +

2αi−1

∆zi−1
Gx,i−1 +

(
tziiωµβ̄avg −

2αi

∆zi
− 2αi−1

∆zi−1

)
Gx,i = 0, (3.15)

and rewrite equation (3.15) as

CD
i Gx,i+1 + CU

i Gx,i−1 + CC
i Gx,i = 0, (3.16)
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where

CD
i =

2αi

∆zi
,

CU
i =

2αi−1

∆zi−1
,

CC
i =

(
tziiωµβ̄avg −

2αi

∆zi
− 2αi−1

∆zi−1

)
.

The parameters CD
i , and CU

i are coupling coefficients from nodes i+1 and i−1 to node

i, respectively, while CC
i is self-coupling coefficient.

Applying (3.16) to the one-dimensional model, we obtain a system of equa-

tions,

A1x1 = b1, (3.17)

where the subscript 1 denotes one-dimensional system. For example, the first column

in Figure 3.3, node Gx(1) to Gx(6) is solved by applying (3.16). The field at top node

Gx(1) and last node Gx(6), are set to one and zero, respectively. The resulting system

is 
CC

2 CD
2 0 0

CU
3 CC

3 CD
3 0

0 CU
4 CC

4 CD
4

0 0 CU
5 CC

5



Gx(2)
Gx(3)
Gx(4)
Gx(5)

 =


CD

2

0
0
0

 . (3.18)

Its sparsity pattern is shown in Figure 3.6.

Figure 3.6: The sparsity pattern of matrix A1 in equation (3.18) is a sparse tridiagonal
matrix.

3.3 MT Response calculation

The MT responses which are apparent resistivity and phase can be obtained

from the ratios of electric fields to magnetic fields at the surface. As stated in Section

3.1, when x is the strike direction, the components of the fields in TE and TM modes

are (Ex, Hy, Hz) and (Hx, Ey, Ez), respectively. After the field in the strike direction is
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solved from the second order equation, the corresponding fields are solved from Faraday’s

law (2.13) for TE mode and Ampere’s law (2.14) for TM mode. Solving for these

corresponding fields is described in the following.

The first order Maxwell’s equations, equations (2.13) and (2.14), both share

the same pattern, which will be represented by

∇×G = αF, (3.19)

where F, G and α are defined as stated in the following table,

Mode G F α

TE E H iωµ
TM H E 1/ρ

On the cartesian coordinate, F = F(x, y, z) and G = G(x, y, z). Equation

(3.19) can then be expanded as

(
∂Gz

∂y
− ∂Gy

∂z

)
= αFx,(

∂Gx

∂z
− ∂Gz

∂x

)
= αFy,(

∂Gy

∂x
− ∂Gx

∂y

)
= αFz.

(3.20)

In a two-dimensional problem with the x-direction as the strike direction,

only Gx exists. Equations (3.20) then reduce to

∂Gx

∂z
= αFy, (3.21)

∂Gx

∂y
= −αFz. (3.22)

On the discretized model, as shown in Figure 3.7, the field components Fy,i,j

and Fz,i,j are defined at the edges of rectangle with resistivity ρi,j . The discrete forms

of equations (3.21) and (3.22) are

Gx,i+1,j −Gx,i,j

∆zi
= ᾱzFy,i,j , (3.23)

and
Gx,i,j+1 −Gx,i,j

∆yj
= −ᾱyFz,i,j , (3.24)

respectively, where

ᾱz =
αi,j−1∆yj−1 + αi,j∆yj

∆yj−1 + ∆yj
,

ᾱy =
αi−1,j∆zi−1 + αi,j∆zi

∆zi−1 + ∆zi
.

(3.25)
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ρi−1,j−1

ρi,j−1

ρi−1,j

ρi,j

∆zi

∆zi−1

∆yj∆yj−1

Gxi−1,j

Gxi,j−1

Gxi,j

Gxi,j+1

Gxi+1,j

Fyi−1,j

Fyi,j

Fzi,j−1 Fzi,j

z

y

Figure 3.7: Fy,i,j and Fz,i,j are located at the edge of the rectangle with resistivity ρi,j .

∆yj∆yj−1

∆y′
j

Air

Earth

∆z1

Gx0,j

Gx1,j

Fys,j

Fz1,jFz1,j−1

Fzq,j−1 Fzq,j

Gxq,j

Fz0,jFz0,j−1

Fy0,j

∆z1/4

Figure 3.8: At the interface between air and earth, Fys,j is calculated from Gxq,j , Fz,q,j ,
Fz,q,j−1 and Fy,0,j , where Gxq,j , Fz,q,j , Fz,q,j−1 are the interpolated fields.
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In MT, only the responses at surface are required. The field F at the surface,

Fys, can be interpolated from

∇× F = βG, (3.26)

where β is 1/ρ and iωµ for TE and TM mode responses, respectively. Equation (3.26)

is expanded as (
∂Fz

∂y
− ∂Fy

∂z

)
= βGx,(

∂Fx

∂z
− ∂Fz

∂x

)
= βGy,(

∂Fy

∂x
− ∂Fx

∂y

)
= βGz.

(3.27)

From equations (3.23) and (3.24), we obtain Gx, Fy, and Fz. Equations (3.27) then

reduce to
∂Fz

∂y
− ∂Fy

∂z
= βGx. (3.28)

For the first layer of the Earth (Figure 3.8), the discrete form of equation (3.28) is

Fz,q,j − Fz,q,j−1

∆y′j
− Fy,0,j − Fys,j

∆z1/2
= β̄Gxq,j , (3.29)

where Gxq,j and Fzq,j are the linearly interpolated field at
1
4

∆z1 below the surface, and

are defined by

Gxq,j = Gx,0,j +
Gx,1,j −Gx,0,j

4
,

Fzq,j = Fz,0,j +
Fz,1,j − Fz,0,j

4
,

and

β̄ =
αi,j−1∆yj−1 + αi,j∆yj

∆yj−1 + ∆yj
,

∆y′j =
∆yj + ∆yj−1

2
.

Rewriting equation (3.29), Fys,j is obtained from

Fys,j = Fy,0,j +
∆z1

2
(β̄Gxq,j −

Fz,q,j − Fz,q,j−1

∆y′j
). (3.30)

After the electric and magnetic fields are obtained at the surface, the impedance

Z is then calculated from the ratio of the electric to magnetic field. From equation (2.3),

the impedances for the TE and TM modes are

Zxy =
Ex

Hy
, Zyx =

Ey

Hx
, (3.31)
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respectively. For the TE mode, the apparent resistivity ρa,xy and phase φxy are com-

puted from (2.4) and (2.5) using

ρa,xy =
1
ωµ
|Zxy|2, φxy = tan−1

(
Im{Zxy}
Re{Zxy}

)
. (3.32)

Similarly, the TM-mode apparent resistivity ρa,yx and phase φyx are given by

ρa,yx =
1
ωµ
|Zyx|2, φyx = tan−1

(
Im{Zyx}
Re{Zyx}

)
. (3.33)

As examples of MT responses, the apparent resistivity and phases from a

buried conductive block model, a buried resistive block model, and a buried conductive-

resistive block (two-block) model are shown in Figures 3.9, 3.10, and 3.11, respectively.

The responses change as a function of period, where shorter periods reflect shallow

structure and the longer periods indicate deeper structure.

For periods of 0.01 and 0.1 seconds, both TE and TM responses sense only

the shallow structure because the apparent resistivity is close to 100 Ω m, which is equal

to that of the overlying layer over the anomaly. However, at longer periods, the TE

and TM modes can sense the anomalies. For example, from the conductive block model

(Figure 3.9a), the TE mode shows a lower apparent resistivity about 20 Ω m at 100

seconds, before increasing to 100 Ω m. This indicates that the investigation depth of

longer periods is beyond the depth of the conductor.

As with the conductive block model, the TE mode yields the higher apparent

resistivity as periods increase for the resistive block model, and then falls back (Figure

3.10). Note that TM responses are more sensitive to the resistor than TE, because

TM responses abruptly change at locations near the anomaly. TE responses gradually

change along the profile length.

For the two-block model (Figure 3.11a), the curves jump between the con-

ductive and resistive blocks, because of the contrast in electrical resistivity. The jump

from the TE mode are less steep than that from the TM mode. However, as seen from

the two block model, the TM mode is more sensitive to the resistor than the TE mode.
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10 Ω m

856 km

533 km

362 km

2.7 km

37.5 km

30 km

Earth

Air

100 Ω m

(a)

(b)

(c)

        -70         -60         -50          -40         -30         -20

Phase (deg)

          1                     10                   100                  1000

Apparent resistivity (Ohm m)

Figure 3.9: (a) A conductive block of 10 Ω m is buried in a 100 Ω m background. The
responses, apparent resistivity (left panel) and phase (right panel) from the conductive
block model for (b) TE mode and (c) TM mode plotted as a function of period.
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1000 Ω m

856 km

533 km

362 km

2.7 km

37.5 km

30 km

Earth

Air

100 Ω m

(a)

(b)

(c)

        -70         -60         -50          -40         -30         -20

Phase (deg)

          1                     10                   100                  1000

Apparent resistivity (Ohm m)

Figure 3.10: (a) A resistive block of 1000 Ω m is buried in a 100 Ω m background. The
responses, apparent resistivity (left panel) and phase (right panel) from the resistive
block model for (b) TE mode and (c) TM mode plotted as a function of period.
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1000 Ω m10 Ω m

856 km

533 km

362 km

2.7 km

37.5 km

15 km 15 km

Earth

Air
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(b)

(c)

        -70         -60         -50          -40         -30         -20

Phase (deg)

          1                     10                   100                  1000

Apparent resistivity (Ohm m)

Figure 3.11: (a) A conductive block 10 Ω m and resistive block of 1000 Ω m are buried
in a 100 Ω m background (or two block model). The responses, apparent resistivity (left
panel) and phase (right panel) from the two block model for (b) TE mode and (c) TM
mode plotted as a function of period.
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CHAPTER IV

HIERARCHICAL DOMAIN DECOMPOSITION

In the previous section, all unknowns are simultaneously solved. If the mod-

els are very large, the direct solver might be impractical. Here, another technique is

chosen to solve the same system of equations. The computational domain is decomposed

into many smaller sub-domains. This technique is generally known as the domain de-

composition technique. The domain decomposition method via the Schur complement

is introduced in Section 4.2 and the hierarchical domain decomposition is then described

in Section 4.3. Numerical experiments for MT problems are also given in Section 4.4.

4.1 Introduction

The idea of domain decomposition simply says divide and conquer. Instead

of solving the whole domain at once, the domain decomposition method breaks the com-

putational domain into many smaller sub-domains. The system is then solved through

a series of smaller sub-systems.

Domain decomposition methods are considered to be one of the most pow-

erful tools for solving large-scale, industrial, ill-conditioned problems arising in various

fields such as computational electromagnetism (e.g. Larsson, 1999; Lu et al., 2008; Wang

et al., 2008; Lu & Shen, 1997; Yin et al., 2002), engineering problems (e.g. Guo et al.,

2006; Basermann et al., 2005; Bitzarakis et al., 1997), and geophysics problems (e.g.

Ben-Hadj-Ali et al., 2008; Sourbier et al., 2008; Pain et al., 2002; Xie et al., 2000; Zyser-

man & Santos, 2000; Zyserman et al., 1999; Xiong, 1999, 1992). Domain decomposition

methods are also used as preconditioning techniques (e.g. Pain et al., 2002; Larsson,

1999; Henon & Saad, 2006; Saad & Sosonkina, 1999).

Three reasons for using a domain decomposition technique in many research

problems are: (1) a potential for parallelization, (2) an ability to deal with complicated

structures, (3) a flexibility to handle different mesh sizes or even mathematical formu-

lations on different parts of the problem.

Domain decomposition methods generally fall into two major categories: an

overlapping domain decomposition and a non-overlapping domain decomposition, as il-

lustrated in Figure 4.1. On the overlapping technique, or Schwarz method, sub-domains
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(a) (b)

Figure 4.1: A computational domain is divided into two sub-domains, Ω1 and Ω2, with
(a) an overlapping region, and with (b) no overlapping region.

are updated via the overlapping region (e.g. Xiong, 1999). In the non-overlapping tech-

nique, sub-domains communicate among themselves through the interface (e.g. Ben-

amou & Despres, 1997; Rice et al., 2000).

In MT, Zyserman et al. (1999) and Zyserman & Santos (2000) applied the

non-overlapping domain decomposition techniques to two- and three-dimensional for-

ward problems, respectively. In their works, sub-problems are separately solved, and

iteratively updated by enforcing the interfaces with a transmission condition. The mem-

ory requirement is significantly diminished due to no appearance of the global matrix.

The technique is computationally efficient on a parallel system. However, their tech-

nique is sensitive to the model complexity, modes of calculation, and frequencies used.

Xiong (1999) demonstrated solving three-dimensional geo-electromagnetic

forward problems by an overlapping technique or Schwarz method. The sub-domain

solutions are successively updated from the adjacent sub-domains through the overlap-

ping region. Its convergence depends on the size of the overlapping region. The larger

the overlapping region, the faster the convergence, but this comes at a cost of solving

larger sub-problems. The numerical experiments show that the overall computational

times are higher than solving the whole system with the traditional iterative solvers on

a serial machine.

Before applying the domain decomposition method, one must answer these

four questions (Saad, 2003), which would help focusing on the scheme used.

1. Type of partitioning. Should the domain be partitioned along edges, or along

vertices, or by elements (see Figure 4.2)?

2. Overlap. Should sub-domains overlap or not?

3. Computing of interfaces. Should the interface be solved all at once (direct solution

approach, e.g., Schur complement) or successively updated by some constraints

(iterative approach)?
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4. Sub-domain solution. Should the sub-problems be solved by a direct or iterative

method?

(a) (b)

(c)

Figure 4.2: The computational domain is divided into four sub-domains (a) by vertex,
(b) by element, and (c) by edge (redrawn from Saad, 2003). The thick line indicates
boundaries of sub-domains.

In this thesis, element-based decomposition (Figure 4.2b) is chosen, because

it uses regularly shaped sub-domains which is consistent with the shape of the MT

model. In addition, the number of interfaces is approximately half of that obtained

from vertex-based partitioning because sub-domains share common interfaces. When

the computational domain is divided along the edges of elements there is no overlapping

regions between the sub-domains.

To achieve the goal of obtaining a robust solver for MT forward problems,

this thesis focuses on the non-overlapping technique through the Schur complement

method. It could be considered as the direct solution approach of computing interfaces,

which is in contrast to the iterative domain decomposition scheme (e.g. Zyserman &

Santos, 2000; Zyserman et al., 1999; Xiong, 1999; Pain et al., 2002). Furthermore, the

sub-problems are all solved with the direct solver, LU factorization. Therefore, the

domain decomposition technique applied in this work is not sensitive to the complexity
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of model, modes of calculation, and periods used.

4.2 Schur complement method

Figure 4.3a shows an example of the discretized model with 11× 11 interior

nodes. Electric fields or magnetic fields are defined on these nodes. Hence this produces

the system of equations, as described in chapter 3,

Ax = b, (4.1)

where A is the coefficient matrix, b the right-hand side vector associated with the

boundary, and x the unknown vector which is electric or magnetic field. Matrix A is a

sparse five-banded matrix, as shown in Figure 4.3b.

(a) (b)

Figure 4.3: (a) An example of a 12×12 mesh where the interiors are 11×11 = 121. The
non-uniform discretization and boundary nodes are omitted (b) Sparsity pattern of the
coefficients of matrix A obtained from 11× 11 node model (dimension of 121× 121).

After the computational domain is partitioned into PZ × PY sub-domains,

where PZ and PY are the number of sub-domains in the z- and y-directions, respectively,

the total number of sub-domains is P = PZ × PY . An example of a model partitioned

into 4 × 4 sub-domains is shown in Figure 4.4a. Nodes can then be classified into two

types: interiors (circles) and interfaces (triangles). The unknown vector b in equation

(4.1) is reordered so that the interiors ui of sub-domain i, where i = 1, ..., p, come first

and the interfaces v are at the end. Consequently, the system of equations (4.1) can be

rearranged as 
F11 0 · · · D1

0
. . . 0

...
... 0 FPP DP

DT
1 · · · DT

P G




u1
...

uP

v

 =


f1
...

fP
g

 , (4.2)
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where Fii gives the interior coupling within sub-domain i, Di corresponds to coupling

from sub-domain i to interfaces, DT
i is the reciprocal coupling, G is the interface co-

efficient matrix, and vectors fi and g are the corresponding right-hand sides of the

sub-domain i and the interface, respectively. Matrices Fii are sparse five-banded ma-

trices, but their bandwidths are smaller than in the original system. Matrices G, Di

and DT
i are sparse matrices. The sparsity pattern of the reordered matrix is shown in

Figure 4.4b.

(a) (b)

Figure 4.4: (a) The model is uniformly partitioned into 4× 4 sub-domains. Every sub-
domain has the same dimension, 2 × 2. The circles represent the interior nodes, while
the nodes in between (triangles) are the interface nodes. (b) Sparsity pattern of the
matrix in equation (4.10). It has a 2× 2 block structure.

Instead of applying the direct solver, equation (4.2) can be solved by using

block Gaussian elimination (Saad, 2003). Equation (4.2) is first expanded to smaller

systems of interiors ui and one system of interfaces v as follows,

Fiiui + Div = fi,
p∑

i=1

DT
i ui + Gv = g.

(4.3)

The interior ui can be written as

ui = F−1
ii (fi −Div). (4.4)

Substituting ui into the second equation of (4.3), we obtain the system of interface v,

(G−
p∑

i=1

DT
i F−1

ii Di)v = g−
p∑

i=1

DT
i F−1

ii fi, (4.5)

or, in short, as

Sv = g′, (4.6)
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where the Schur complement S and its right-hand side g′ are defined as

S = G−
p∑

i=1

DT
i F−1

ii Di, (4.7)

g′ = g−
p∑

i=1

DT
i F−1

ii fi. (4.8)

After v is found from (4.6), the interior ui is then obtained from

Fiiui = fi −Div, (4.9)

where Fii was earlier factorized in equation (4.6). Therefore, solving the interior ui is

a forward and backward substitution. Steps of the Schur complement method in case

of P sub-domains are summarized in Algorithm 1.

Algorithm 1 Schur complement method in the case of P sub-domains
1: Assign S = G
2: Assign g′ = g
3: for i = 1 to P do
4: Compute LU-factorization of Fii

5: Compute S = S−DT
i F−1

ii Di and g′ = g′ −DT
i F−1

ii fi
6: end for
7: Compute LU-factorization of S
8: Solve Sv = g′ by using forward/backward substitution
9: for i = 1 to P do

10: Solve Fiiui = fi −Div by using forward/backward substitution
11: end for

For simplicity, many block matrices, Fii, Di, and DT
i will be represented by

F, D, DT , respectively, and so the right-hand sides fi. Equation (4.2) will be written

as (
F D

DT G

)(
u
v

)
=
(

f
g

)
, (4.10)

where F is a block diagonal matrix, G, D and DT are sparse matrices. The sizes of

F and G are proportional to the numbers of interiors and interfaces, respectively. The

sizes of D and DT are proportional to the number of interiors and interfaces. The

system of equations (4.10) can be rewritten as a set of two equations,

Fu + Dv = f,

DT u + Gv = g.
(4.11)

First of all, the interior unknown u is expressed as

u = F−1(f−Dv). (4.12)
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Substituting u into the second equation of (4.11), the reduced system of interfaces v is

Sv = g′, (4.13)

where the Schur complement S and its right hand side g′ are defined as

S = G−DT F−1D, (4.14)

and

g′ = g−DT F−1f. (4.15)

After v is found from (4.13), the interiors u is then obtained from

Fu = f−Dv. (4.16)

Forming the Schur complement S might be not efficient if the inverse of F

is exactly computed. The alternative way of forming the Schur complement is to solve

for D′ from

FD′ = D, (4.17)

where D′ is a full matrix with the same dimension as D. The Schur complement and

its right hand side could be computed from

S = G−DT D′, (4.18)

and

g′ = g−D′T f, (4.19)

respectively.

Hence, any systems of equations rewritten in the 2× 2 block system could

be solved via the Schur complement method. Later in this thesis, this method will be

referred to as the standard Schur complement method.

A domain decomposition method via the Schur complement transforms the

whole system, equation (4.1), into several sub-systems of interiors Fii and one reduced

system, the Schur complement S in (4.13). However the Schur complement S is generally

a dense matrix. Therefore it could be prohibitively expensive to store and factorize

the Schur complement S, when the number of interface nodes becomes very large (see

Papadrakakis & Bitzarakis, 1996; Schöberl, 2001).

Hence the Schur complements are mostly used as a preconditioning tech-

nique (e.g. Larsson, 1999). Another application of the Schur complement method is

the hybrid direct/iterative solver, in which the direct solver and the iterative solver are

applied to the interior problems and the reduced system, respectively (see Ben-Hadj-Ali

et al., 2008; Sourbier et al., 2008).
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4.3 Hierarchical domain decomposition

Hierarchical domain decomposition is similar to the wirebasket techniques

of domain decomposition (see Smith, 1991, 1990). In this method, the intersection, the

point that interfaces cross each other, plays more important role than in the standard

Schur complement method. It was therefore chosen as a basis of domain decomposition

method in this thesis. This will lead to the modification that will be demonstrated in

Chapters 5 and 6.

Level 1: Interiors

Level 2: Interfaces

Level 3: Intersections

Figure 4.5: Diagram showing hierarchical property in two-dimensional magnetotelluric
applications (redrawn from Henon & Saad, 2006). The groups of unknowns (circles) are
grouped into three different levels (dashed concentric circles). Within the same level,
the unknowns are linked to the adjacencies via the unknowns in the lower level.

On the decomposed domain, the vertices are categorized into different levels.

Each level consists of a set of vertices, e.g. interiors and interfaces. The term hierarchical

refers to the important property that the set of vertices of any levels is a “separator” for

those in a lower level. Consequently, sets of unknowns in the same level have no direct

coupling to each other (see Figure 4.5). For instance, once the domain is partitioned,

the interfaces will separate the interiors. When horizontal interfaces cross the vertical

interfaces, the intersections will act as the separator of the interfaces. The intersections

are related to each other via the interfaces, and the interfaces are related to each other

via the interiors.

Under the finite difference formulation in two-dimensional MT problems,

nodes are related to the neighboring ones only in the up-, down-, left- and right-

directions and itself (5-point FD). Intersections therefore have no direct contribution
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to interiors but to interfaces (see Figure 4.6a). The intersections can then be excluded

from being in the same category as the interface as in the standard Schur complement

method. So the nodes can be classified into three levels from lowest to highest: (1)

interiors (circles), (2) interfaces (triangles), and (3) intersections (crosses), respectively,

as shown in Figure 4.6a.

(a) (b)

Figure 4.6: (a) For the partitioned domain, nodes are classified to three categories: in-
terior (circles), interface (triangles) and intersection (crosses). (b) The sparsity pattern
of the coefficient matrix in Figure 4.4b is reordered and becomes a 3× 3 block matrix.

The unknowns are also reordered by the level in increasing order from inte-

riors u, interfaces v and intersections w. For simplicity, the many block matrices, e.g.,

Fii, Di and DT
i in equation (4.2), are represented by F, D and DT , respectively. The

system of equations then becomes the 3× 3 block system, F D 0
DT G E
0 ET H

u
v
w

 =

 f
g
h

 , (4.20)

where F, G, and H are the coefficient matrices of interiors, interfaces, and intersections,

respectively. D and E represent the contribution from interiors to interfaces and from

interfaces to intersections, respectively, while their transposes represent the reciprocal

contributions. F is a block diagonal matrix. In contrast to the standard Schur comple-

ment, G is a block diagonal matrix. H is a diagonal matrix. The sizes of F, G and H

are proportional to the numbers of interiors, interfaces, and intersections, respectively.

D and E and their transposes are sparse matrices. The sizes of D and its transpose are

proportional to the numbers of interiors and interfaces. The sizes of E and its transpose

are proportional to the numbers of interfaces and intersections. On the right-hand side,

f and g correspond to the boundaries of the interiors and interfaces, respectively. As
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shown in Figure 4.6a, there is no boundary associated with the intersections, so h is

zero. The sparsity pattern is shown in Figure 4.6b. The 3× 3 block system in equation

(4.20) can be expanded as

Fu + Dv = f,

DT u + Gv + Ew = g,

ET v + Hw = h.

(4.21)

Two reduced systems, the interior-interface system and the interface-interior

system, can be derived from equation (4.21). The unknowns are then successively solved

from higher to lower orders. Thus, intersections are solved first and then interfaces and

interiors.

The interior-interface system is derived from the first two equations of

(4.21), (
F D

DT G

)(
u
v

)
=
(

f
g−Ew

)
. (4.22)

The interface-intersection system is obtained from substituting

u = F−1(f−Dv).

into the last two equations of (4.21) and rewriting as,(
S E

ET H

)(
v
w

)
=
(

g′

h

)
, (4.23)

where the interface Schur complement S and its right-hand side g′ are given by,

S = G−DT F−1D, (4.24)

g′ = g−DT F−1f. (4.25)

Equations (4.22) and (4.23) share the 2× 2 block structure, so they can be

solved by repeating the standard Schur complement method, equations (4.12) to (4.16).

The intersections are first solved from

H′w = h′, (4.26)

where the intersection Schur complement H′ and its right-hand side h′ are given by,

H′ = H−ET S−1E, (4.27)

h′ = h−ET S−1g′. (4.28)

H′ is a dense matrix but its size is equal to the number of intersections, which is very

small. After the intersections are known, the interfaces v are then found from

Sv = g′ −Ew, (4.29)
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and, eventually, the interiors u from

Fu = f−Dv, (4.30)

where F is factorized earlier in forming the interface Schur complemen S, equation

(4.24). Note that once the interface Schur complement is factorized, it can be used in

both forming the intersection Schur complement H′ , equation (4.27), and solving the

interface system, equation (4.29). Steps of applying the hierarchical domain decompo-

sition, equation (4.20) to (4.30), are summarized in Algorithm 2.

Algorithm 2 Schur complement method under the hierarchical decomposition
1: Assign S = G
2: Assign g′ = g
3: for i = 1 to P do
4: Compute LU-factorization of Fii

5: Compute S = S−DT
i F−1

ii Di and g′ = g′ −DT
i F−1

ii fi
6: end for
7: Compute LU-factorization of S
8: Compute H′ = H−ET S−1E and h′ = h−ET S−1g′

9: Compute LU-factorization of H′

10: Solve H′w = h′ by using forward/backward substitution
11: Solve Sv = g′ −Ew by using forward/backward substitution
12: for i = 1 to P do
13: Solve Fiiui = fi −Div by using forward/backward substitution
14: end for

Contrary to the reduced system in the standard Schur complement, the

interface Schur complement S is a block matrix. However it will be stored as a full

matrix due to applying LU factorization. For example, the model is partitioned into

4×4 sub-domains, as shown in Figure 4.7a. Ordering the interface segments from top to

bottom and then left to right, as indicated by the numbers results in the interface Schur

complement matrix with the block structure shown in Figure 4.7b. The numbers on

black-colored diagonal blocks are referred to the numbers of interface segments. Both

black- and red-colored blocks are dense matrices, and their sizes are proportional to

the corresponding the interface segments. The larger blocks, for example, belong to the

horizontal interfaces segments. However, they have different meanings. Blacks are the

coupling within interface segments. Reds are the filled-in blocks due to the definition of

the interface Schur complement, equation (4.24), which can be viewed as the relationship

between the interface segments via the interiors. For example, Interface 1 is related to

Interface 4 via the upper interior, and to Interfaces 2 and 5 via the lower interior (see

Figure 4.7a), so there are the red blocks in columns 2, 4 and 5 of row 1, respectively

(see Figure 4.7b).
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Figure 4.7: (a) Model is partitioned into 4 × 4 sub-domains as an example. Grey
represents interior segments. There are more horizontal nodes than vertical nodes.
Orange and green represent horizontal and vertical interface segments, respectively. The
horizontal interface segments are therefore larger than the vertical ones. Red represents
the intersections. Every interface segment is numbered. (b) The sparsity pattern of the
interface Schur complement S, in which the numbers on the black blocks correspond to
the interface segment number in Figure 4.7a.
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4.4 Numerical experiments

The hierarchical domain decomposition (HD) was tested and compared to

solving the whole domain (FDWD). The hierarchical domain decomposition was first

validated with both synthetic and inverted models by comparing apparent resistivity

and phase. The numerical efficiency of HD is shown by relative CPU time and memory.

The direct solver used is LAPACK’s LU factorization subroutine.

4.4.1 Validation

Responses of HD and FDWD are calculated from the three synthetic models:

the conductive block (Figure 3.9a), the resistive block (Figure 3.10a), and the two blocks

(Figure 3.11a), and the inverted model from Siripunvaraporn & Egbert (2000). The

calculation is performed in both TE and TM modes at six periods, 0.01, 0.1, 1, 10, 100

and 1000 seconds. The synthetic models are non-uniformly discretized into 120 × 360

grids in the z- and y-directions, respectively. The computational domain is decomposed

into 4 × 8 sub-domains with uniform partitioning. Every sub-domain is therefore at

39× 44 interiors. The inverted model is non-uniformly discretized into 84× 200 grids,

and then uniformly partitioned into 4× 8 sub-domains.

lo
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Figure 4.8: Inverted model from Siripunvaraporn & Egbert (2000). The actual model
size is larger than shown.

The results from the three synthetic models are shown in Figures 4.11 - 4.14,

and those from the inverted model are shown in Figures 4.15 and 4.16. These figures

show that responses from both FDWD and HD are mostly identical. The difference

in solutions is at the round-off level. This is as expected since both methods solve

the same system of equations except that HD breaks the computational domain into
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many smaller sub-domains and solves the problem through a series of smaller systems.

HD is also valid for other combinations of sub-domains other than 4 × 8 sub-domains.

In addition to uniform partitioning, the developed code also handles non-uniformly

partitioned models. This therefore validates the accuracy of solutions obtained from

hierarchical domain decomposition.
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0.01 s 0.01 s

0.1 s 0.1 s

Figure 4.9: Apparent resistivity (left panel) and phase (right panel) from the conductive-
block model (Figure 3.9a) for TE mode (solid line) and TM mode (dashed line) at
periods of 0.01, 0.1 and 1 seconds. The responses are computed using FDWD (solid
and dashed line) and HD (circles).
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100 s 100 s

Figure 4.10: Apparent resistivity (left panel) and phase (right panel) from the
conductive-block model (Figure 3.9a) for TE mode (solid line) and TM mode (dashed
line) at periods of 10, 100 and 1000 seconds. The responses are computed using FDWD
(solid and dashed line) and HD (circles).
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0.01 s 0.01 s

0.1 s 0.1 s

Figure 4.11: Apparent resistivity (left panel) and phase (right panel) from the resistive-
block model (Figure 3.10a) for TE mode (solid line) and TM mode (dashed line) at
periods of 0.01, 0.1 and 1 seconds. The responses are computed using FDWD (solid
and dashed line) and HD (circles).
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100 s 100 s

Figure 4.12: Apparent resistivity (left panel) and phase (right panel) from the resistive-
block model (Figure 3.10a) for TE mode (solid line) and TM mode (dashed line) at
periods of 10, 100 and 1000 seconds. The responses are computed using FDWD (solid
and dashed line) and HD (circles).
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0.01 s 0.01 s

0.1 s 0.1 s

Figure 4.13: Apparent resistivity (left panel) and phase (right panel) from the two-block
model (Figure 3.11a) for TE mode (solid line) and TM mode (dashed line) at periods
of 0.01, 0.1 and 1 seconds. The responses are computed using FDWD (solid and dashed
line) and HD (circles).
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Figure 4.14: Apparent resistivity (left panel) and phase (right panel) from the two-block
model (Figure 3.11a) for TE mode (solid line) and TM mode (dashed line) at periods of
10, 100 and 1000 seconds. The responses are computed using FDWD (solid and dashed
line) and HD (circles).
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0.1 s 0.1 s

Figure 4.15: Apparent resistivity (left panel) and phase (right panel) from the inverted
model (Figure 4.8) for TE mode (solid line) and TM mode (dashed line) at periods of
0.01, 0.1 and 1 seconds. The responses are computed using FDWD (solid and dashed
line) and HD (circles).
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Figure 4.16: Apparent resistivity (left panel) and phase (right panel) from the inverted
model (Figure 4.8) for TE mode (solid line) and TM mode (dashed line) at periods of
10, 100 and 1000 seconds. The responses are computed using FDWD (solid and dashed
line) and HD (circles).
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4.4.2 Numerical efficiency

At the same level of accuracy, the numerical efficiency of the hierarchical

domain decomposition (HD) is assessed by CPU time and memory and compared with

those obtained from solving the whole domain (FDWD). Memory is estimated from

the double precision complex variables declared inside the code. There might be other

memory usage by the operating system, but this is beyond our scope. The estimated

memory is therefore a lower limit.

In FDWD, matrix A in equation (3.17) is stored as a banded matrix in

LAPACK format. The memory usage of FDWD can be estimated from (Mz − 1)(My −
1)(3Mz − 1)× 16, where Mz and My are grid sizes in z- and y-directions, respectively.

Multiplication with 16 is required because complex double precision is used. If the

model is discretized at 120×360 mesh, (120−1)(360−1)(3 ·120−1)×16 u 234 MBytes

of memory is necessary. Although not simple, when the domain is partitioned into

PZ×PY sub-domains, the memory usage of HD is obtained from multiplying the number

of elements required (4.31) with 16.

No. of elementsHD =12 +MY +M2
Y +MZ − 3MYMZ +M2

Z

− 1
P 2

Y

M2
Y

+
1
PY

(MY −M2
Y )

+ PY (−15−MY + 9MZ − 2MYMZ − 2M2
Z)

+ P 2
Y (1 +MZ +M2

Z)

+
1
PZ

(−M2
Z + 3MYM

2
Z)

+
1

P 2
Y PZ

M2
YMZ

− 1
PY PZ

MYMZ

− 2
PY

PZ
M2

Z

+ PZ(−15 + 6MY − 2M2
Y −MZ − 2MYMZ)

+
PZ

PY
M2

Y

+ PY PZ(5 + 4MY + 4MZ + 2MYMZ)

− P 2
Y PZ(3 + 3MZ)

+ P 2
Z(1 +MY +M2

Y )

− PY P
2
Z(3 + 3MY )

+ 3P 2
Y P

2
Z .

(4.31)

CPU times shown in this thesis are obtained from an Intel Core Two Duo 6400, 2.13
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GHz machine with 8 GBytes of RAM. All codes are written in Fortran95. Different

machines and programming languages may result in different CPU times.

The first test is performed with the two-block model that is non-uniformly

discretized into 120 × 360 grids, or 119 × 359 = 42721 unknowns. The calculation is

performed only for the TE mode at period 10 seconds. Because of using LU factorization,

the complexity of models, calculation modes and periods used do not significantly affect

the computational time. Factors affecting the CPU time are model size and number of

sub-domains. For example, when the number of sub-domains is small, the sub-problems

Fii are large, while the interface system S and intersection system H′ are small. HD

was thus tested on various numbers of sub-domains.

In this work, the notation of partitioning is PZ × PY , where PZ and PY

are the numbers of sub-domains in z-direction (or vertical) and in y-direction (or hor-

izontal), respectively. The numbers of interiors, horizontal and vertical interfaces, and

intersections are related to the combination of numbers of sub-domains, as stated in

Table 4.1. The dimension of each segment type is the number of nodes in z-direction

by the number of nodes in y-direction. For example, the numbers and sizes of interiors,

interfaces, and intersections for the 120 × 360 mesh model partitioned into 4 × 4 sub-

domains is shown in Table 4.2.

Variable
type

Number of segment
Dimension of segment

in z-direction in y-direction
Interior PZ PY (MZ/PZ − 1)× (MY /PY − 1)

H-interface PZ − 1 PY 1× (MY /PY − 1)
V-interface PZ PY − 1 (MZ/PZ − 1)× 1
Intersection PZ − 1 PY − 1 1× 1

Table 4.1: Numbers of interiors, horizontal and vertical interfaces, and intersections
when the computation domain MZ ×MY is partitioned into PZ × PY .

Variable type No. of segments × No. of nodes per segments No. of nodes in total
Interior 16× 2, 581 41,296
Interface 12× 89 + 12× 29 1,416

Intersection 9× 1 9
Total - 42,721

Table 4.2: Numbers of interiors, interfaces, and intersections of 120 × 360 meshes par-
titionined into 4× 4 sub-domains are shown.

The contour plots of the number of nodes at various numbers of sub-domains

in the z- and y-directions are shown in Figure 4.17. As expected, the number of interior
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(a) (b)

(c)

Figure 4.17: From 120 × 360 mesh model, the numbers of (a) interiors, (b) interfaces
and (c) intersections are plotted as a function of the number of sub-domains in the z-
and y-directions.

nodes is large when the number of sub-domains is small This is indicated by the red

zone in Figure 4.17a. The number of interface nodes becomes larger as the number of

sub-domains increases and so does the number of intersections.

To show that the efficiency of HD depends on the numbers of sub-domains,

the numbers of sub-domains in the z- and y-directions are 2, 4, 6, 8 and 12, and 2, 4,

9, 18 and 24, respectively. The combination of these numbers will result in a uniform

partitioning of the 120 × 360 mesh model. The contour plots of actual CPU time and

memory are shown in Figures 4.18a and 4.18b, respectively. For this model size, FDWD

consumes 5.59 seconds of CPU time, and 234 MBytes of memory, as calculated earlier.

From the actual CPU time map (Figure 4.18a), HD tends to consume higher

CPU time and memory as the numbers of sub-domains increases. However, memory

saving is gained at small numbers of sub-domains. When compared to the map of

number of unknowns (Figure 4.17), the computational loads heavily depend on the

interiors sub-problems F in equation (4.20) for small numbers of sub-domains (bottom
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left of the map) and then move to the interface Schur complement S in equation (4.24)

at larger numbers of sub-domains (top right of the map). To better demonstrate the

efficiency of HD compared to FDWD, the relative CPU time and memory are calculated

from (4.32) and (4.33), respectively, and plotted, as shown in Figure 4.19.

Relative CPU time =
TimeHD − TimeFDWD

TimeFDWD
× 100 %, (4.32)

Relative memory =
MemoryHD −MemoryFDWD

MemoryFDWD

× 100 %. (4.33)

In the map of relative CPU time and memory, the positive sign indicates that FDWD

is superior to HD. Inversely, the negative sign shows that HD is superior to FDWD. It

is clearly seen that, with no partitioning, HD is better than FDWD in terms of CPU

time. The minimum CPU time from HD, 12.45 seconds at 4 × 4 partitioning, is 127%

higher, and the minimum memory is approximately 60% less at 4× 4 partitioning.

The hierarchical domain decomposition could basically be broken into 5

steps: (1) LU-factorization of interior sub-problems Fii, (2) forming and factorizing the

interface Schur complement S in equation (4.24), (3) solving for intersections, equation

(4.26), (4) solving for interfaces, equation (4.29), and (5) solving for interiors, equation

(4.30). Note that Step 3, solving for intersections, includes forming and factorizing the

intersection Schur complement H′. For example, the times from each step of HD at eight

sub-domains in the z-direction are plotted in Figure 4.20. The overall CPU time of HD

is dominated by forming and factorizing the interface Schur complement (triangles).

When the number of sub-domains increases, the sizes of matrix D, the contribution

from interior to interface, and its transpose are larger. Because the definition of the

interface Schur complement (4.24) requires multiplication with matrix D and DT , the

computational time in forming interface Schur complement S (Line 5 in Algorithm 2)

increases. Also, the interface Schur complement is a full matrix.

The system of intersections (diamonds) also increases in complexity, be-

cause the definition of H′, equation (4.26), contains the interface Schur complement.

Consequently, when the interface size is large, solving for the intersection consumes

more CPU time. Additionally, forming the intersection Schur complement H′ (Line 8

in Algorithm 2) is similar to forming the interface Schur complement, but E, the con-

tribution from the interface to the interior, and its transpose are rather smaller. H′

is a dense matrix but is very small. Thus solving the intersections is not as costly as

forming and factorizing the interface Schur complement S. After the interface Schur

complement is factorized, solving for the interfaces (squares) is just done by forward and

backward substitution, so it does not require a lot of CPU time. The load from interiors

sub-problems, factorization (circles) and substitution (stars), is very small, because the

interior sub-problems, Fii, are banded matrices.
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(a) (b)

Figure 4.18: (a) Actual CPU time and (b) memory used by HD to solve 120×360 model
at various numbers of sub-domains.

(a) (b)

Figure 4.19: (a) Relative CPU time and (b) memory maps correspond to Figures 4.18a
and 4.18b, respectively.

4.5 Summary

Contrary to the standard Schur complement method, the hierarchical

domain decomposition solves the problem through a number of smaller sub-systems of

interiors and two reduced systems of interface and intersection. At the same level of

accuracy, the hierarchical domain decomposition cannot reduce CPU time, but does

reduce the memory requirement for some numbers of sub-domains. The overall time of

the hierarchical domain decomposition is significantly influenced by forming and fac-

torizing the interface Schur complement. This indicates that the hierarchical domain

decomposition is not suitable for solving MT problems. Although the sub-problems

are smaller, matrix multiplication is required to form the interface Schur complement.

Also, high CPU time is used to factorize the interface Schur complement, which is a

full matrix. However, the size of the intersection Schur complement H′ is very small
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Figure 4.20: Overall time of HD (topmost solid line) consists of five steps: LU factoriza-
tion of Fii (circles), forming and factorizing interface Schur complement S (triangles),
solving for the intersections (diamonds), solving for the interfaces (squares) and solving
the interiors sub-problems for interiors (stars).

so that using the direct solver is reasonable. Thus, the modification must be applied

to the interface Schur complement. This is because under the finite difference method

in two-dimensional problems each node contributes only in the horizontal and vertical

directions. Therefore, the horizontal and vertical interfaces have no direct coupling to

each other. Consequently, the interface Schur complement could be broken by approxi-

mately one half.
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CHAPTER V

MODIFIED HIERARCHICAL DOMAIN

DECOMPOSITION

As demonstrated in the previous chapter, the performance of the hierar-

chical domain decomposition (HD) is not superior to solving the whole domain with a

traditional direct solver. Therefore, a modification is necessary to speed it up. The first

modification is to separate horizontal and vertical interfaces, which is described in this

chapter, and will be referred to as MHD. Its numerical tests are conducted in a similar

way to HD. The second modification is to implement the red-black ordering, which will

be explained in the next chapter.

5.1 Modification of the hierarchical domain decomposition

To fully benefit from the hierarchical decomposition, the interfaces are clas-

sified into two types: horizontal and vertical interfaces (see Figure 5.1a). This will lead

to a separation of the interface Schur complement S into a 2×2 block Schur complement

system, which requires less computing time and memory requirement.

Here, the interface vector v in a 3 × 3 block system, equation (4.20), are

reordered so that the horizontal interfaces vH comes before the vertical interfaces vV .

Equation (4.20) are then rewritten as the 4× 4 block system,
F DH DV 0

DT
H GH 0 EH

DT
V 0 GV EV

0 ET
H ET

V H




u
vH

vV

w

 =


f

gH

gV

h

 , (5.1)

where subscripts H and V represent horizontal and vertical interfaces, respectively.

Other variables are defined in a similar way to those in equation (4.20). The main

difference from the original is the separation of matrix G into GV and GH , where GH is

a coefficient matrix of the horizontal interfaces, and GV is for the vertical interfaces. DH

and DV are the coupling from interior to horizontal and vertical interfaces, respectively,

and DT
H and DT

V are their reciprocals. EH and EV are the coupling from horizontal and

vertical interfaces to intersections, respectively, and ET
H and ET

V are their reciprocals.

F, GH and GV are block diagonal matrices. H is a diagonal matrix. DH , DV , EH
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(a) (b)

Figure 5.1: (a) For the 4 × 4 sub-domains, nodes can be classified into four types: the
interior (circles), the horizontal interface (squares), the vertical interface (triangles) and
the intersection (crosses). (b) The sparsity pattern of the reordered matrix in equation
(5.1).

and EV and their transposes are sparse matrices. As with the hierarchical domain

decomposition, the size of F and H are proportional to the interiors and intersections,

respectively. GH and GV are proportional to the horizontal interfaces and vertical

interfaces, respectively. The sparsity pattern of the resulting matrix in equation (5.1)

is shown in Figure 5.1b. For the case of 4× 4 sub-domains, it is not essential to set the

horizontal interface prior to the vertical interface. However, setting horizontal interfaces

prior to vertical interfaces provides some advantages which will be explained later in

this chapter.

From equation (5.1), the interface Schur complement can be written in the

2× 2 block form as

S = G−DT F−1D

=
(

GH 0
0 GV

)
−
(

DT
H

DT
V

)
F−1

(
DH DV

)
=
(

SHH SHV

SV H SV V

)
,

(5.2)

where SHH and SV V are the interface Schur complements for the horizontal and vertical

interfaces, respectively, and SHV and SV H are the couplings from horizontal to vertical

interfaces and vertical to horizontal interfaces, respectively.

In the modified hierarchical domain decomposition, solving the intersection

problem, equation (4.26), and the interior sub-problems, equation (4.30), remains the

same. However, forming the intersection Schur complement, equation (4.27), and solving

the interface problem, equation (4.29), can be computed via the reduced system of



Fac. of Grad. Studies, Mahidol Univ. M.Sc. (Physics) / 57

interfaces, which are explained in the following

To form the intersection Schur complement H′, equation (4.27) can be

rewritten as,

H′ = H−
(
ET

H ET
V

)(SHH SHV

SV H SV V

)−1(EH

EV

)
= H−

(
ET

H ET
V

)(E′H
E′V

)
,

(5.3)

where E′V are first computed from

S′V V E′V = EV − SV HS−1
HHEH , (5.4)

where the reduced system, S′V V , of the interface Schur complement are defined as

S′V V = SV V − SV HS−1
HHSHV . (5.5)

E′H is then solved from

SHHE′H = EH − SHV EV . (5.6)

As with forming the intersection Schur complement H′, to obtain the inter-

faces, we start by rewriting (4.29) as,(
SHH SHV

SV H SV V

)(
vH

vV

)
=
(

g′H
g′V

)
−
(

EH

EV

)
w. (5.7)

vV is first obtained from

S′V V vV = g′V − SV HS−1
HH(g′H −EHw), (5.8)

where S′V V was defined in (5.5). vH is then solved from

SHHvH = g′H −EHw− SHV vV . (5.9)

Once the SHH and S′V V are factorized, they will be used in forming the

intersection Schur complement H′, equations (5.4) and (5.6), and solving the interface

problem, equations (5.8) and (5.9).

As mentioned earlier, the horizontal interface is set prior to the vertical

interface. The dimension of the reduced system S′V V is then equal to the number of

nodes on the vertical interfaces. On the contrary, if the vertical interface is set prior to

the horizontal interface, the dimension of the reduced interface system will be equivalent

to the number of nodes of the horizontal interface, which is much larger than that of

the vertical interface in two-dimensional MT problems.

Figure 5.2a shows the block pattern of the interface Schur complement from

setting the horizontal interface prior to vertical interface and the inverse is shown in
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Figure 5.2b. The bottom right block matrices, which correspond to the size of the

reduced interface system, in this two figures differ in dimension, which is larger for

Figure 5.2b than for Figure 5.2a. Setting the horizontal interface prior to the vertical

interface is important in this work because the model size of MT problem is generally

larger in the horizontal direction than in the vertical direction. With this configuration

it will require less computational loads for storing and factorizing the reduced interface

system.

In addition to setting the horizontal interface prior to the vertical interface,

the order of the interface segments within the same types is crucial. In this work, both

horizontal and vertical interface segments are ordered from top to bottom and then left

to right. This results in the optimized block structures which will be used in the next

chapter.

From the 4 × 4 partitioned model, where the segment number is shown

in Figure 4.7a, the horizontal interfaces, for example, are ordered from the group of

numbers 1, 2 and 3, and the group of 8, 9 and 10, and so on. Similarly, the vertical

interfaces are ordered from the group of numbers 4, 5, 6, and 7, and the group of 11, 12,

13 and 14, and so on. The resulting block pattern of the interface Schur complement is

shown in Figure 5.2a. These result in the upper left block SHH in the form of a block

diagonal matrix, and the lower right block SV V , which is the same for S′V V , in the form

a block tridiagonal matrix. Inversely, if both interface types are ordered from left to

right and then top to bottom, the block patterns of SHH and SV V are block tridiagonal

and block diagonal, respectively, as shown in Figure 5.3.

The advantage of having SHH in the form of a block diagonal matrix is

that LU factorization of the whole SHH is equivalent to that of its diagonal blocks.

The diagonal block of SHH will be denoted by SHH,ii. Therefore only diagonal blocks

of SHH will be stored. Although S′V V is a block tridiagonal matrix, it will be stored

as a full matrix due to applying LU factorization. Having S′V V in the form of block

tridiagonal matrix and its advantages will be explained in the next chapter. The steps

in factorizing the 2× 2 interface Schur complement is also summarized in Algorithm 3.

In this work, the horizontal interfaces are set to be prior to the vertical interfaces, and

both interface types are ordered from top to bottom and then left to right. These will

lead to the optimized computational load in storing and factorizing SHH and S′V V .

From the block structure of the interface Schur complement, only the non-

empty blocks of SHH , SHV , SV H and SV V are stored. Furthermore, forming the reduced

interface system S′V V in equation (5.5) could be performed block by block by using a

block matrix operation. For example, the interface Schur complement for the 4 × 4
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Algorithm 3 Factorizing the 2× 2 interface Schur complement
1: for i = 1 to PY do
2: Compute LU-factorization of SHH,ii

3: end for
4: Compute S′V V = SV V − SV HS−1

HHSHV

5: Compute LU-factorization of S′V V

partitioning, whose sparsity pattern is shown in Figure 5.2a, can be written as

(
SHH SHV

SV H SV V

)
=



SHH,11 0 0 0 SHV,15 0 0
0 SHH,22 0 0 SHV,25 SHV,26 0
0 0 SHH,33 0 0 SHV,36 SHV,37

0 0 0 SHH,44 0 0 SHV,47

SV H,51 SV H,52 0 0 SV V,55 SV V,56 0
0 SV H,62 SV H,63 0 SV V,65 SV V,66 SV V,67

0 0 SV H,73 SV H,74 0 SV V,76 SV V,77


,

(5.10)

where SHH , SHV , SV H and SV V with subscripts represent block matrices in SHH ,

SHV , SV H and SV V , respectively. The block matrix operation for computing S′V V,55,

for example, could be performed as

S′V V,55 = SV V,55 − SV H,51S−1
HH,11SHV,15 + SV H,52S−1

HH,22SHV,25.

Null block matrices in SHH , SHV , SV H and SV V are therefore excluded from the cal-

culation. After S′V V is completely formed, every block will be filled according to its

definition, equation (5.5). The block pattern of S′V V , as shown in Figure 5.4, is the

same as that of SV V in Figure 5.2a, but each block is now filled with yellow sub-blocks.

In the hierarchical domain decomposition, the dimension of a square matrix

interface Schur complement S in equation (4.24) is the number of all interface nodes.

The 120 × 360 mesh model partitioned into 4 × 4 sub-domains, for example, means S

has a size of 1416× 1416, which is 30.6 MBytes of memory to be stored.

In the modified hierarchical domain decomposition, the 2×2 interface Schur

complement, equation (5.2), consists of SHH , SHV , SV H and SV V , which are block

matrices. In general, the memory used for SHH , SHV , SV H and SV V can be estimated

from the product of the number of blocks and sub-blocks and the size of the interface

segment. The term sub-block refers to the colored-block in the sparsity pattern of the

2× 2 interface Schur complement. In Figure 5.2a, SHH , for example, contains 4 blocks,

and their sub-block dimensions are 3× 3.

Block and sub-block dimensions of SHH and SV V are directly related to

the numbers of horizontal and vertical interfaces in the z- and y-directions, as stated

in Table 5.1. The block and sub-block dimensions of the reduced interface system S′V V

are consistent with those of SV V . For both types of interfaces, sub-block dimension is
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Figure 5.2: The block pattern of interface Schur complement from different interface
ordering. (a) The horizontal interfaces are set to be prior to the vertical interfaces. (b)
The vertical interfaces are set to be prior to the horizontal interface. For both (a) and
(b), the interface segments with the same alignment are ordered from top to bottom
and then left to right. This two block patterns can be viewed as a 2× 2 block matrices
which are distinguished by the thick line. The numbers on black sub-blocks correspond
to those of interface segments in Figure 4.7a. Note that the bottom right block of Figure
5.2b is larger than that of Figure 5.2a.



Fac. of Grad. Studies, Mahidol Univ. M.Sc. (Physics) / 61

1

8

15

22

2

9

16

23

3

10

17

24

4

11

18

5

12

19

6

13

20

7

14

21

Figure 5.3: As with Figure 5.2a, but both the horizontal and vertical interfaces are
ordered from left to right and then top to bottom. This results in a different block
pattern that is less optimized, because SHH , the upper right block, is not a block
diagonal matrix. Note that the pattern of SHV and SV H are also changed.

Figure 5.4: The reduced interface system S′V V obtained from 4× 4 partitioning is now
filled with yellow sub-blocks according to its definition.
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consistent with the number of sub-domains in the z-direction, and block dimension is

consistent with the number of sub-domains in the y-direction.

Matrix Block dimension Sub-block dimension
SHH PY × PY PZ − 1× PZ − 1
SHV PY × PY − 1 PZ − 1× PZ

SV H PY − 1× PY PZ × PZ − 1
SV V PY − 1× PY − 1 PZ × PZ

Table 5.1: Block and sub-block dimensions of the interface Schur complement in MHD

The 4 × 4 partitioned model, for instance, results in an SHH with block

and sub-block dimensions of 4 × 4 and 3 × 3, respectively. However, SHH has only 4

diagonal blocks, and all 3× 3 sub-blocks are stored for each. The block and sub-block

dimensions of S′V V are 3× 3 and 4× 4, respectively, and the whole 3× 3 blocks of S′V V

will be stored.

The dimensions of the blocks and sub-blocks affect the memory stored for

the 2× 2 interface Schur complement. From the 120× 360 model partitioned into 4× 4

sub-domains, the numbers of elements in SHH , SHV , SV H and S′V V , shown in Table 5.2,

need about 11.9 MBytes of memory, which is 61% less than HD. However, the overall

memory reduction is essentially not equal to the reduction of the interface system. The

total number of elements to be stored can be computed from (5.11).

Matrix Number of elements
SHH 4× 32 × 892

SHV (2 · 3)× (3 · 4)× (89 · 29)
SV H (2 · 3)× (4 · 3)× (29 · 89)
S′V V (32)× 42 × 292

Total 777,924

Table 5.2: Number of elements stored for the interface Schur complement in MHD,
where the model size is 120× 360 and the model is partitioned into 4× 4 sub-domains.
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5.2 Numerical efficiency

The modified hierarchical domain decomposition (MHD) differs from the

hierarchical domain decomposition in that the interfaces are separated into horizontal

and vertical interfaces. However, the system of equations remains the same. Thus

there is no significant change in accuracy in solutions from MHD. To avoid redundancy,

the plots showing validation of MHD are omitted. Numerical tests are conducted to

evaluate the efficiency of MHD in terms of CPU time and memory. The model used is

the same as in Section 4.4.2 and all partitionings are also the same.

First of all, the contour plot of the number of interfaces is divided into a plot

of the horizontal interfaces and a plot of the vertical interfaces, as shown in Figure 5.5a

and 5.5b, respectively. The horizontal interfaces keep increasing as the number of sub-

domains in the z-direction increases, while the vertical interfaces increase as the number

of sub-domains in the y-direction increases. The number of interfaces is directly related

to the size of the interface Schur complement S. Therefore, the red zones in 5.5a and
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(a) (b)

Figure 5.5: The plot of the numbers of interfaces (Figure 4.17b) is divided into (a) the
numbers of horizontal interfaces and (b) the numbers of vertical interfaces.

5.5b could be used to specify the boundary of the optimized numbers of sub-domains.

The contour maps of actual CPU time and memory are shown in Figure 5.6,

and their relative values in Figure 5.7. At 6× 9 sub-domains, the CPU time consumed

by MHD is quite close to FDWD, and the memory usage is mostly improved all over

the plot with a maximum of 70% reduction at 6× 4 partitioning. Both CPU time and

memory of MHD are less than those from HD. However, MHD is not yet more efficient

than FDWD in terms of CPU time. The minimized zones of CPU time and memory lie

on the region bounded by the red zones in Figures 4.17a, 5.5a and 5.5b.

The reason why the overall time is greatly reduced could be explained by

plotting CPU time from each steps of MHD (Figure 5.8), which is similar to that of

HD (Figure 4.20). Forming and factorizing the interface Schur complement (triangles)

still plays an important role in MHD, but relatively less than HD. This indicates that

breaking the interface Schur complement into the 2× 2 block structure, equation (5.2),

helps reduce CPU time. Furthermore, CPU time used in solving for intersections (di-

amonds) also decreases, because the intersection Schur complement H′ involves the

interface Schur complement S (see equation (5.3) to (5.6)). LU factorization of Fii

(circles) solving for the interfaces (squares) and the interiors (stars) are the same as

described in Section 4.4.2.

5.3 Summary

In modified hierarchical domain decomposition, the interfaces are separated

into two groups, horizontal and vertical interfaces. The interface Schur complement

is then written as 2 × 2 block matrix, equation (5.2). This leads to the reduction in

factorization of interface Schur complement, instead of applying LU factorization to the
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(a) (b)

Figure 5.6: (a) Actual CPU time and (b) memory used by MHD to solve 120 × 360
model at various numbers of sub-domains.

(a) (b)

Figure 5.7: (a) Relative CPU time and (b) memory maps correspond to Figure 5.6a
and 5.6b, respectively.

whole interface Schur complement like HD. Because SHH , SHV , SV H and SV V are block

matrices, their null matrices are not stored and excluded from the calculation. MHD

thus provides higher efficiency than HD in both CPU time and memory. However, the

CPU time of MHD is slightly larger than FDWD.

In this chapter, the advantage of forming the interface reduced system S′V V

as a block tridiagonal matrix is not yet explained. The second modification focuses on

this block structure with the expectation that the CPU time will be better than for

FDWD.
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Figure 5.8: Overall time of MHD (topmost solid line) consists of five steps: LU factor-
ization of Fii (circles), forming and factorizing interface Schur complement S (triangles),
solving for the intersections (diamonds), solving for the interfaces (squares) and solving
the interiors sub-problems for interiors (stars).
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CHAPTER VI

MODIFIED HIERARCHICAL DOMAIN

DECOMPOSITION WITH RED-BLACK COLORING

The first modification made to the original hierarchical domain decomposi-

tion (HD) is to separate the horizontal and vertical interfaces and referred to as MHD.

This results in reducing the size of the interface Schur complement by approximately

one half. From the efficiency tests, MHD is superior to HD but not to solving the whole

domain.

Here, the second modification is to repeatedly apply the combination of

red-black coloring and the Schur complement. It will be used in the factorization of

diagonal blocks of SHH , denoted by SHH,ii, and the reduced system, S′V V , of interface

Schur complement. This modification will be referred to as MHDRB. The efficiency

tests are also similar to those in Chapters 4 and 5.

6.1 One-dimensional problem and red-black coloring

In the one-dimensional problem of 16 nodes (see Figure 6.1), these nodes

are related only in one direction. As an example, if the finite difference approach is

applied, we will obtain the system of equations,

A1x1 = b1, (6.1)

where A1 is the coefficient matrix, x1 is the unknown vector, and b1 is the vector

associated with the boundary. The subscript 1 indicates a one-dimensional problem

and will be omitted for simplicity. The coefficient matrix A is a tridiagonal matrix, as

shown in Figure 6.2a. The diagonal elements are self-coupling coefficients and the off-

diagonal elements represent coupling between neighboring nodes. Direct solvers, e.g.,

Gaussian elimination, LU-factorization, can solve this system.

However, if these nodes are alternately colored red and black (see Figure

6.1), the system of equations is consequently reordered so that the reds come before the

blacks. It then becomes the 2× 2 block system (see Figure 6.2b),(
ARR ARB

ABR ABB

)(
xR

xB

)
=
(

bR

bB

)
, (6.2)
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Figure 6.1: One-dimensional problem of 16 nodes, which are originally black-colored
nodes (top). These nodes are then alternately colored red and black (bottom).

where the subscripts R and B represent the red-colored and black-colored nodes, respec-

tively. ARR and ABB are the coefficient matrices of the reds and blacks, respectively.

ARB is the contribution from the blacks to the reds, and the reciprocal contribution is

ABR. A is a symmetric matrix and so ABR = AT
RB. bR and bB are the corresponding

right-hand side vectors.

(a) (b)

Figure 6.2: (a) The tridiagonal matrix A is obtained from one-dimensional problem
having 16 nodes (b) After applying red-back coloring, the coefficient matrix A is re-
ordered according to colors so that coefficients of red-colored nodes come first and end
with those of black-colored nodes. The sparsity pattern of A becomes a 2 × 2 block
matrix.

The system of equations (6.2) can be solved through the reduced system

(Saad, 2003) by repeating the standard Schur complement, equation (4.10) to (4.16),

as shown in the following. The unknown vector xB is first solved from

A′BBxB = b′B, (6.3)

where the reduced system, Schur complement, of this system A′BB and its right-hand

side b′B are defined by

A′BB = ABB −ABRA−1
RRARB, (6.4)
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b′B = bB −ABRA−1
RRbR. (6.5)

The unknown vector xR is then obtained by solving

ARRxR = bR −ARBxB, (6.6)

where ARR is earlier factorized in forming the reduced system, equation (6.4).

To fully exploit the combination of red-black coloring and the Schur com-

plement, red-black coloring is reapplied by redefining the black-colored nodes with red-

black coloring. This results in a smaller 2× 2 block system. Thus, solving through the

reduced system could be reapplied by repeating equations (6.4) to (6.6). Moreover, the

reducing step could be repeatedly applied so that there is only one black-colored node

left, as demonstrated by the diagram in Figure 6.3.

The coefficient matrix A in each reduction step is shown in Figure 6.4.

In the first reduction, the 16 nodes problem is reduced to an 8 nodes problem. The

blue elements are then filled to bottom right block (see Figure 6.4b), according to the

definition of the reduced system A′BB (6.4). The blue elements could be considered

as the coupling between the black nodes through the red nodes. Due to the filled-in

elements, the bottom right block becomes a tridiagonal matrix again, which resembles

the original system. The second reduction is then applied, which reduces the problem

size from 8 nodes to 4 nodes. As with the blue elements, the green elements are then

filled. The reduction step is applied so that the problem is reduced from 4 to 2 and

eventually 1, where the last node is a black-colored node. Note that there is no filled-in

element at the last reduction step.

1st reduction

2nd reduction

3rd reduction

Original system

4th reduction

Figure 6.3: The problem is reduced by redefining the black-colored nodes as reds and
blacks.
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(a) Original system

(b) 1st reduction (c) 2nd reduction

(d) 3rd reduction (e) 4th reduction

Figure 6.4: The coefficient matrix A of size 16 × 16 from the original problem and
matrices from each reduction step are shown. Blue, green and brown elements are
filled-in elements in the reduction steps 1, 2 and 3, respectively.
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6.2 Block matrix reduction by implementing red-black col-
oring and the Schur complement

In modified hierarchical domain decomposition, SHH and the reduced sys-

tem S′V V are block matrices. Taking a closer look, diagonal blocks of SHH (SHH,ii)

and matrix S′V V share the block tridiagonal pattern, as illustrated in Figure 5.2a and

5.4. This pattern resembles the coefficient matrix A from the one-dimensional problem,

but in a form of a block matrix, not an element. This pattern will be clearly observed

when the number of sub-domains increases. For example, the block pattern of SHH

and S′V V from 8 × 9 partitioned model is shown in Figure 6.5. Because of their block

tridiagonal pattern, factorizing SHH,ii and S′V V (Line 2 and 5 in Algorithm 3) can be

computed through a series of smaller sub-systems by repeatedly applying the combina-

tion of red-black coloring and the Schur complement. This modification will be referred

to as MHDRB.

When the computational domain is partitioned into 8× 9 sub-domains, the

combination of red-black coloring and the Schur complement will be applied to nine

SHH,ii matrices and one S′V V matrix. If LU-factorization is directly applied as MHD,

their null matrices will be included. The sub-block dimension of each SHH,ii is 7 × 7

and the block dimension of S′V V is 8 × 8. As in Figure 6.4 in the previous section,

the 7 × 7 and 8 × 8 block matrix reductions are demonstrated in Figures 6.6 and 6.7,

respectively. Additional fill-in block matrices are 4 and 10 for 7 × 7 and 8 × 8 block

matrices, respectively.

Instead of storing all sub-blocks of SHH,ii like in HD, there are only the

original sub-blocks and some additional filled-in blocks to be stored, and similarly for

S′V V . The number of filled-in blocks could be counted from the reduction step, e.g., from

Figures 6.8 and 6.9. However, storing SHV and SV H remains the same as in MHD.

For example, the model with size of 120× 360s partitioned into 4× 4 sub-

domains will use 22% less memory than MHD for storing SHH and S′V V , where the

numbers of elements in SHH and S′V V are shown in Table 6.1. The 3×3 and 4×4 block

reductions are shown in Figure 6.8 and 6.9, respectively. However, this number does

not correctly represent the overall memory reduction. The total number of elements for

MHDRB can be approximately obtained from (6.7).

Matrix Number of elements
SHH 4× (7 + 0)× 892

S′V V (7 + 0)× 42 × 292

Total 315,980

Table 6.1: Number of elements stored for the interface Schur complement in MHDRB
when the model size is 120× 360 and the model is partitioned into 4× 4 sub-domains.
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(a)

(b)

Figure 6.5: (a) The block pattern of diagonal blocks of SHH . (b) Matrix S′V V from 8×9
partitioned model. Both have the same pattern of block tridiagonal matrix.
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(a) Original system (b) 1st reduction (c) 2nd reduction

Figure 6.6: Original block system with 7× 7 blocks repeatedly applied with the combi-
nation of red-black coloring and the Schur complement. Blue blocks are filled in due to
the definition of the reduced system.

(a) Original system (b) 1st reduction

(c) 2nd reduction (d) 3rd reduction

Figure 6.7: Original block system with 8× 8 blocks repeatedly applied with the combi-
nation of red-black coloring and the Schur complement. Blue and green blocks are filled
in due to the definition of the reduced system.
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In contrast to MHD, SHH,ii and S′V V now are block matrices. Thus, ap-

plying the combination of the red-black ordering and the Schur complement could be

performed using the block matrix operation. Their null matrices will be excluded from

storing and calculation. Consequently, this results in lower computational loads than

HD, and hopefully the CPU time will be better than FDWD.

6.3 Numerical efficiency

Because of the second modification, the interface Schur complement system

is decomposed into many smaller systems. The block structures of SHH and S′V V share

the same tridiagonal block matrix. The combination of red-black coloring and the Schur

complement could then be applied. As with the first modification, MHDRB does not
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(a) Original system (b) 1st reduction

Figure 6.8: Original block system with 3 × 3 blocks is repeatedly applied with the
combination of red-black coloring and the Schur complement, where no additional fill-in
blocks are required.

(a) Original system (b) 1st reduction (c) 2nd reduction

Figure 6.9: Original block system with 4× 4 blocks repeatedly applied with the combi-
nation of red-black coloring and the Schur complement. Blue blocks are filled in due to
the definition of the reduced system.

change the system of equations. The same level of accuracy in solutions is therefore

obtained. To avoid redundancy, the responses from MHDRB are omitted.

The contour maps of actual CPU time and memory are shown in Figure

6.10 and their relative values in Figure 6.11. The CPU time for MHDRB is much

less than for MHD, and the memory used is almost the same. At 8 × 9 and 6 × 18

partitionings, MHDRB uses about 20% less CPU time than FDWD. The minimum

memory is obtained at 8 × 9 partitioning. This indicates that MHDRB is superior to

FDWD.

In contrast to HD and MHD, the plot of time steps in MHDRB, as shown

in Figure 6.12, shows a less steep curve of forming and factorizing the interface Schur

complement (triangles) for large numbers of sub-domains. Forming and factorizing

the interface Schur complement and solving for the intersections (diamonds) become

comparable at larger numbers of sub-domains. This is a result of fully decomposing the

interface Schur complement. LU factorization of Fii (circles), solving for the interfaces

(squares) and the interiors (stars) are similar to what was described in Section 4.4.2.
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(a) (b)

Figure 6.10: (a) Actual CPU time and (b) memory used by MHDRB to solve 120× 360
model at various numbers of sub-domains.

(a) (b)

Figure 6.11: (a) Relative CPU time and (b) memory maps corresponding to Figures
6.10a and 6.10b, respectively.

6.4 Summary

Because of its block pattern, the interface Schur complement is fully de-

composed by repeatedly applying the combination of red-black coloring and the Schur

complement to the diagonal blocks of SHH (SHH,ii) and the matrix S′V V . The factor-

ization of them could be computed through a series of smaller systems instead. The

computational time and memory are then reduced, because the null matrices in SHH,ii

and S′V V are no longer included. This is similar to MHD but at different scale. MHD

excludes the null block matrices, while MHDRB excludes the null sub-block matrices,

which are at the finer scale. In addition to the memory requirement, the second modi-

fication is superior to FDWD in terms of CPU time.

The efficiency on larger problems and pre-selecting the optimal numbers of

sub-domains of the developed domain decomposition technique will be further discussed
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Figure 6.12: Overall time of MHDRB (topmost solid line) consists of five steps: LU
factorization of Fii (circles), forming and factorizing interface Schur complement S
(triangles), solving for the intersections (diamonds), solving for the interfaces (squares)
and solving the interiors sub-problems for interiors (stars).

in the next chapter.



Tawat Rung-Arunwan Potential of developed domain decomposition techniques / 78

CHAPTER VII

POTENTIAL OF DEVELOPED DOMAIN

DECOMPOSITION TECHNIQUES

Starting from the hierarchical domain decomposition, a modification was

made so that the developed method is superior to solving the whole domain, as demon-

strated in Chapters 4, 5 and 6. In this chapter, to demonstrate that the developed

method has the potential to solve the large problems, the numerical efficiency will be

determined as a function of the number of unknowns. The results of applying the three

domain decomposition solvers, HD, MHD and MHDRB, are also compared. Finally,

the strategy of choosing the numbers of sub-domains that provide the optimal compu-

tational time or memory is presented.

7.1 Solving larger problems

To show the potential of the domain decomposition solvers for solving large

problems, the size of computational domain is varied. The same model, two-block model,

was used and it was discretized into three different meshes: 80 × 240, 120 × 360 and

160×480. Their numbers of unknowns are shown in Table 7.1. Each mesh uses a different

combination of numbers of sub-domains PZ × PY . All three domain decomposition

solvers, HD, MHD and MHDRB, are then applied to solve the problems.

Mesh Mesh size
Number of
unknowns

PZ PY

Mesh 1 80× 240 18,881 2, 4, 8, 10 and 16 2, 5, 10, 15 and 24
Mesh 2 120× 360 42,721 2, 4, 6, 8 and 12 2, 4, 9, 18 and 24
Mesh 3 160× 480 76,161 2, 4, 8, 10 and 16 2, 4, 8, 10, 16 and 24

Table 7.1: The two-block model discretized into three different meshes: 80× 240, 120×
360 and 160× 480. PZ and PY are the numbers of sub-domains in z- and y-directions
specific to each mesh.

Table 7.2 shows CPU times and memory usages for three meshes from

FDWD and the three domain decomposition solvers, HD, MHD and MHDRB. As shown
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Mesh Solver Time (seconds) Memory (MByte)
Mesh 1 FDWD 1.12 68.9

HD 2.74 at 4× 5 31.1 at 4× 2
MHD 1.44 at 4× 10 23.0 at 4× 5

MHDRB 0.98 at 8× 10 18.3 at 8× 5
Mesh 2 FDWD 5.59 234.0

HD 12.45 at 4× 4 91.6 at 4× 4
MHD 5.63 at 6× 9 64.6 at 6× 4

MHDRB 4.37 at 8× 9 51.0 at 8× 9
Mesh 3 FDWD 15.46 556.7

HD 35.45 at 4× 4 200.4 at 4× 4
MHD 15.38 at 8× 8 136.5 at 8× 8

MHDRB 10.88 at 8× 16 102.7 at 10× 8

Table 7.2: Computational loads from FDWD, HD, MHD and MHDRB. The minimum
CPU time and memory consumption from domain decomposition solvers is provided at
different partitioning PZ × PY .

in the previous section, MHDRB is superior to FDWD at the proper numbers of sub-

domains, while HD and MHD are not. Note that the partitioned models that provide

the minimum CPU time and minimum memory slightly differ in the number of sub-

domains. Next, the relative CPU time and memory of each solver are calculated and

then plotted as a function of the number of unknowns, as shown in Figure 7.1.

MHD greatly reduces the CPU times compared to HD, while the reduction

of CPU time due to MHDRB is smaller. Moreover, MHDRB is superior to FDWD

for all problem sizes. However, none of the three solvers show a significant difference

in memory requirements, as shown in Figure 7.1b. This might be because no global

matrix is declared when the model is decomposed. Thus, the memory saved by the

modifications become very small compared to the diminished global matrix. The design

curves, the optimal number of sub-domains plotted as a function of number of unknowns,

for minimum time and memory are shown in Figure 7.2.

When the problem size is larger, all three domain decomposition solvers

show higher numerical efficiency, less CPU time and memory usage. MHDRB makes a

saving of up to 80% on memory usage and uses 30% less CPU time. This indicates the

potential of MHDRB for solving large problems, particularly three-dimensional prob-

lems, on the decomposed domain.
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(a)

(b)

Figure 7.1: (a) Relative CPU time and (b) relative memory from HD (circles) MHD
(squares) and MHDRB (stars) at three different numbers of unknonws.
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(a)

(b)

Figure 7.2: The design curves for (a) minimum CPU time and (b) minimum memory
from HD (circles) MHD (squares) and MHDRB (stars).
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7.2 Numerical efficiency comparison of three domain de-
composition solvers

Applying HD, MHD and MHDRB results in a changing pattern of relative

CPU time and memory usage, as shown in Figures 7.3, 7.4 and 7.5, respectively. The

contour maps in Figure 7.4 are the same as in Figures 4.19, 5.7 and 6.11. The interesting

regions in the CPU time map are labeled with letters. The corresponding regions in the

memory map are labeled with primed letters.

From Figure 7.4a, the minimized zone M1 of HD is limited to the small

numbers of sub-domains. So they are located near the bottom left of the graph. In

addition, the minimized zone is quite small.

At small numbers of sub-domains the interiors are large, but the interfaces

are small. Therefore, the size of the interface Schur complement S is small. However,

the high computational loads in Region A are mostly caused by forming the interface

Schur complement because the definition of the interface Schur complement, equation

(4.24), requires multiplication with D and its transpose, the contribution from interior

to interfaces and its reciprocal, and their sizes depend on both the numbers of interiors

and interfaces. Beyond this region, the computational loads tend to go higher at the

top right corner, Region B. This is because of the increasing number of interfaces which

is consistent with the red zone in Figure 4.17b.

When MHD is applied, the minimized zone M2 is slightly shifted away from

the left because the Region B in Figure 7.4a, which depends on the interfaces, is less

severe. This indicates that the huge computational load due to the interface Schur

complement S is reduced. However, the trend of increasing CPU time and memory in

Region E of Figure 7.4b is proportional to the vertical interfaces, and increases as the

number of sub-domains in the y-direction increases (see Figure 5.5b). This is due to the

reduction of the interface Schur complement system S to the reduced interface system

S′V V , which corresponds to the vertical interfaces only. As with Region A in Figure

7.4a, Region C is caused by the large size of the sub-domains, but is relatively higher

than Region A. The relative CPU times become larger because the overall times of

MHD are less than those of HD.

The minimized zone M3 of MHDRB is further away because the reduced

interface system S′V V is broken into many smaller sub-matrices. Region E, which con-

strains the minimized zone M2 in MHD (Figure 7.4b), is then diminished. Regions F ,

G and H then become higher relative to MHD.

The corresponding minimized zones, M ′1, M ′2 andM ′3, and the corresponding

regions, A′, B′, C ′, D′, E′, F ′, G′ and H ′, in the relative memory map behave in similar

way, but are in slightly different positions.
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(a)

(b)

(c)

Figure 7.3: The maps of relative CPU time (left) and relative memory (right) obtained
from using (a) HD, (b) MHD and (c) MHDRB to solve a model with an 80× 240 grid.
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Figure 7.4: The maps of relative CPU time (left) and relative memory (right) obtained
from using (a) HD, (b) MHD and (c) MHDRB to solve a model with a 120× 360 grid.
They are the same as Figures 4.19, 5.7 and 6.11. Labels represent the minimized zones,
M1, M2 and M3, and the zone with high computational loads, A to H. The zones, A′

to H ′ and M ′1, M ′2 and M ′3, on the relative memory maps correspond to those on the
relative time maps.
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(a)

(b)

(c)

Figure 7.5: The maps of relative CPU time (left) and relative memory (right) obtained
from using (a) HD, (b) MHD and (c) MHDRB to solve a model with a 160× 480 grid.
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7.3 Pre-selection of the optimal number of sub-domains

The important question in applying domain decomposition is what is the

suitable number of sub-domains? This is because the wrong number of sub-domains

leads to an imbalance between the numbers of interior nodes and interfaces. Too many

sub-domains results in increasing interface problems, while too few would increase the

size of the interior sub-problems.

In this thesis, the strategy of choosing the proper numbers of sub-domains

is provided by the maps of relative time and memory. These maps show the changing

in computational load, as a function of the numbers of sub-domains. The important

feature observed from these maps is the regions of minimized computational time which

are located close to these of memory, as shown in Figures 7.3, 7.4 and 7.5. This might be

because the number of interiors interfaces and intersections are justified so that solving

and storing interior sub-problems Fii and the reduced systems, S and H′, are relatively

fast and have a lower memory requirement. In addition, the number of sub-domains in

the z- and y-directions also control the block pattern of the interface Schur complement,

which is a crucial point in applying the combination of red-black coloring and the Schur

complement.

In contrast to the CPU time map, the memory map can be generated prior

to actual calculations. The agreement between CPU time and memory usage has led

to the strategy of pre-selecting the number of sub-domains in the z- and y-directions.

To avoid a trial and error approach, the number of sub-domains should first be chosen

from the region of minimized memory and then varied around it. This will provide the

chance of CPU time better than by solving the whole domain.
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CHAPTER VIII

CONCLUSIONS

The domain decomposition method was developed to solve two-dimensional

magnetotelluric forward problems formulated with a finite difference approach. In con-

trast to iterative solvers, solving the resulting system of equations with direct solvers is

desirable because they provide a theoretical guarantee of accuracy in solution and the

ability to solve multiple right-hand-side problems. In addition, they are not sensitive to

ill-conditioned systems, which occurred when the models become geologically complex

and large, particularly in the case of three-dimensional problems. In MT, the long period

problems also result in ill-conditioned systems. However, the direct solvers might be

impractical because of memory limitation. The natural option is therefore to break the

computational domain into many smaller sub-domains. Consequently, applying direct

solvers becomes reasonable.

To benefit from employing the finite different approach, hierarchical domain

decomposition (HD) was chosen. The unknowns are classified into three types: interior,

interface and intersection. The system of equations is then solved through many smaller

interior sub-systems and two reduced systems of interfaces and intersections. However,

using HD is not faster than using direct solvers but its memory consumption is greatly

reduced. Another two modifications are therefore applied.

The first modification (MHD) separates the interfaces into horizontal and

vertical interfaces. This breaks the interface Schur complement system and then solves

through a series of smaller systems and one reduced system. The problem size of

the reduced system is approximately half that of the interface system. The second

modification (MHDRB) is to repeatedly apply the combination of red-black coloring

and the Schur complement to those smaller systems and the reduced interface system.

Both modifications exclude null matrices from being stored and calculated. Better

numerical efficiency is then gained.

The accuracy of the developed method was verified by comparing both TE

and TM responses with those from solving the whole domain on synthetic and inverted

models at various frequencies. The responses from the developed domain decomposition

method had the same level of accuracy as solving the whole domain because they solve

the same system of equations. This validates the developed domain decomposition

method.
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The efficiency of the developed method was tested by varying the model

size and the number of sub-domains. The parameters used to evaluate the efficiency are

CPU time and memory compared to those obtained from solving the whole domain.

On the decomposed domain, the memory requirement is substantially di-

minished because the global matrix is not used. The computational time is less than

that for solving the whole domain when both modifications are applied. However, all

three domain decomposition solvers have higher efficiency when the size of computa-

tional domain increases. On the largest model tested, MHDRB used 80% less memory

and was 30% faster. The developed domain decomposition method was thus proven to

be efficient. It also shows the potential of using direct solvers to solve larger problems,

especially in three-dimensional cases.

In addition, the strategy of choosing the optimal number of sub-domains

was also presented. Because the minimized zone of time map is consistent with that of

the memory map, which can be generated prior to the actual calculation, the optimal

numbers of sub-domains can be pre-selected from the region that provides minimum

memory. Hence a trial and error approach for choosing the suitable numbers of sub-

domains could be avoided.
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