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thesis, and Alejandro Sáiz for the IDL programming.

Much help during the work was provided by many people. I would like to

thank Dr. Piyanate Chuychai and Dr. Paisan Tooprakai for discussions and suggestions

about physics, turbulence and computer simulations. I would like to thank my collabo-

rators: Mr. Wirin, Mr. Rakpong, Dr. Watcharawuth, Mr. Pat, and everyone in the Space

Physics and Energetic Particles Lab.

I would like to thank Miss Suchada Kittisrisopit for standing by me.

Finally I would like to thank my family that always supports and takes care

of me.

Achara Seripienlert



Fac. of Grad. Studies, Mahidol Univ. Thesis / iv

TRAPPING BOUNDARIES AND DROPOUTS OF SOLAR ENERGETIC PARTI-

CLES.

ACHARA SERIPIENLERT 4938556 SCPY/D

Ph.D. (PHYSICS)

THESIS ADVISORY COMMITEE : DAVID RUFFOLO, Ph.D. (PHYSICS), MICHAEL
ALLEN, Ph.D. (PHYSICS), TANAKORN OSOTCHAN, Ph.D. (PHYSICS)

ABSTRACT

As seen in recent observations by the Advanced Composition Explorer (ACE),

the intensity of solar energetic particles (SEPs) exhibits sudden, large changes known as

dropouts. These have been explained in terms of turbulence or a flux tube structure in

the solar wind. Computer simulations of a random-phase model of magnetic turbulence

have indicated a spatial association between dropout features and local trapping bound-

aries (LTBs) defined for a two-dimensional (2D) + slab model of turbulence. Previous

observations have shown that dropout features are not strongly associated with sharp

magnetic field changes, as might be expected in the flux tube model. Random-phase

turbulence models do not properly treat sharp changes in the magnetic field, such as

current sheets, and thus cannot be tested in this way. Here we explore the properties of

a more realistic two-dimensional magnetohydrodynamic (2D MHD) turbulence model, in

which current sheets develop and the current and magnetic field have characteristic non-

Gaussian statistical properties. For this model, computer simulations indicate that sharp

particle gradients should frequently be associated with LTBs, sometimes with strong 2D

magnetic fluctuations, and infrequently with current sheets. Thus the 2D MHD + slab

model of turbulent fluctuations includes some realistic features of the flux tube view.

Besides simulations in Cartesian geometry, we also perform simulations of

particle transport using a 2D MHD + slab model in spherical geometry, including particle

focusing. We have discovered collimation of beams of charged particles toward a high

(low) potential for a positive (negative) charge. In the solar wind, this should occur only

for relativistic particles. For future work, we will investigate whether this effect can be

applied to help understand the highest energy SEPs.
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CHAPTER I

INTRODUCTION

1.1 Solar Events

When viewing the solar atmosphere in visible light, one can see dark regions

called sunspots. A sunspot is a dark patch resulting from a localized fall in temperature to

about 4000 K. Most spots have a central dark umbra surrounded by a lighter penumbra.

Sunspots tend to occur in clusters and last about two weeks. Their occurrence is much

more frequent every 11 years (the solar cycle). They also have more intense magnetic

fields than their surroundings. Magnetic loops are magnetic flux tubes rising through

the photosphere. Both ends of the tubes continually move due to the motion of plasma

in the solar atmosphere. When they are moving, they can build up magnetic stress.

When magnetic loops have more stress, they tend to release energy in sudden events.

These processes are called solar activity or solar storms. Solar activity can be classified

as solar flares and coronal mass ejections. A solar flare is a burst at the surface of the

Sun, defined in terms of heating of plasma as observed by enhanced Hα line emission or

soft X-rays. There are two types of solar flares:

• Impulsive flare: A small burst at the solar surface, or a so-called confined

flare. When an impulsive event occurs, we can observe type III and type V radio bursts.

The observed soft X-ray duration is less than one hour. The duration of the Hα event is

a few minutes.

•Gradual flare: A so-called eruptive flare, observed by radio bursts of type

II and IV. The soft X-ray duration is greater than or in the order of one hour. The Hα

event can last for hours. These flares are usually associated with a coronal mass ejection.

Another major type of solar activity is a coronal mass ejection (CME). A
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Figure 1.1: Observation of an impulsive flare event at the Sun. [Image credit: Yohkoh
Soft X-Ray Telescope]

coronal mass ejection is an ejection of a giant blob of plasma from the corona with high

speed (up to about 3, 000 km/s). Gradual flares and the associated coronal mass ejection-

driven shocks are the major sources of acceleration of energetic particles. Examples of

solar events are shown in Figures 1.1 and 1.2.

1.2 Solar Wind

The solar wind is a continuous outward flow of plasma, made up of charged

particles, mostly protons and electrons, from the corona into interplanetary space, in all

directions. The plasma is controlled by the Sun’s magnetic field and is able to escape

from the Sun’s gravitational field because of its high thermal energy. The solar wind

is fully ionized plasma, and its typical temperature is 10,000 K (Meyer-Vernet 2007).

The composition of solar wind is mainly hydrogen (96%) and most of the remainder is

helium. The speed of the solar wind varies with solar latitude and also during the solar

cycle. The typical speed of the solar wind toward Earth is approximately 400 km/s (we

call this slow wind). Fast wind has a speed of 700-800 km/s. During solar minimum,

slow wind is mainly observed between 20◦ N and 20◦ S, and fast wind is mainly at higher

latitudes, as shown in Figure 1.3.
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Figure 1.2: A large coronal mass ejection (CME) on 20 April 1998. A disk blocks the Sun
so that the LASCO instrument can observe the structures of the CME and the corona in
visible light. The white circle represents the size and position of the Sun. [Image credit:
SOHO observatory (NASA/ESA)]

During solar maximum, the solar wind is different, because magnetic fields

at the photosphere (solar surface) are much more complex, leading to complex structures

of magnetic fields at the surface of the Sun, which inhibit fast solar wind.

1.3 Interplanetary Magnetic Field

The solar wind also drags the magnetic field from the Sun into interplanetary

space to become the interplanetary magnetic field (IMF). The magnetic field on the Sun

can be dragged outward with the solar wind because of two reasons (Cravens 1997;

Meyer-Vernet 2007): 1) For the solar wind, the ram pressure, defined as ρv2 where ρ

is density of the solar wind, is much greater than the magnetic pressure. 2) There is a

high magnetic Reynolds number, defined as the ratio between the convective term and

the diffusive term in the magnetic transport equation of MHD (see Section 2.2), i.e.,

(UB/L)/(DBD/L2) = UL/DB, where DB = 1/σµ0 is the magnetic diffusion coefficient.



Achara Seripienlert Introduction / 4

Figure 1.3: Observed solar wind from SOHO during solar minimum. [Image credit:
SOHO]

In the ionized solar wind, the electrical conductivity σ is very high, so magnetic diffusion

can be neglected. Therefore, the magnetic field will be convected by the solar wind.

During solar minimum, the magnetic field in the northern hemisphere on average has

one polarity and the southern hemisphere has the opposite polarity. Figure 1.4 shows a

schematic of the magnetic field during solar minimum.

Since the solar wind is highly turbulent, the magnetic field is turbulent too.

This makes magnetic field lines look irregular as shown in Figure 1.6. The spiral shape

is due to rotation of the Sun.

There is observational evidence of interplanetary fluctuations near Earth that
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Figure 1.4: Structures of magnetic fields of the sun during solar minimum. [Image credit:
Cravens 1997]

include wavevectors parallel and perpendicular to the mean magnetic field. These lead to

a turbulent magnetic field model that we use in this work, the so-called two-component

model. The details of the magnetic field model will be discussed more in Chapter 2.

In the region between the northern magnetic polarity and southern magnetic

polarity of the Sun, a neutral current sheet is formed due to the change in magnetic field.

This structure is also dragged out by the solar wind to become the heliospheric current

sheet (the “ballerina skirt”) as shown in Figure 1.5

A number of studies (Matthaeus et al. 1990; Bieber et al. 1996) have observed

that interplanetary magnetic fluctuations near Earth necessarily include wavevectors

k that are parallel (“slab” fluctuations) and perpendicular (“2D” fluctuations) to the

large-scale field, with less power at oblique wavevectors. It has been proposed that
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Figure 1.5: Warped current sheets. [Image credit: J. R. Jokipii, University of Arizona]

the interaction of counter-propagating fluctuations with a component of k parallel to

the mean field can naturally produce 2D fluctuations at much higher perpendicular k,

leading to a component that can become approximately 2D. MHD simulations have

provided substantial evidence for this (Shebalin et al. 1983; Oughton et al. 1994), and

various models (Montgomery 1982; Higdon 1984; Goldreich & Sridhar 1995) build in this

anisotropy as an assumption.

1.4 Solar Energetic Particles and Dropouts

We refer to the particles that are accelerated by solar storms as solar energetic

particles (SEPs). While the energy is released by magnetic reconnection, the processes

of SEP acceleration are stochastic acceleration and shock acceleration. SEPs can come

to Earth by following the interplanetary magnetic field that is dragged outward from the

Sun by the solar wind.

Recently there were observations of the distribution of SEPs from impulsive
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Figure 1.6: Illustration of plasma and magnetic fields in the inner solar system. Blue
arrows indicate solar wind flow. Green lines are interplanetary magnetic field lines and
the blue line indicates particle motion.

solar flare events by the Advanced Composition Explorer (ACE) (Mazur et al. 2000).

Figure 1.7 shows the energy of all ions observed by the ULEIS instrument over the

nuclear charge range of 1 to 26 (i.e., for elements from H to Fe) versus arrival time

at 1 AU for impulsive events on January 9-10, 1999. Dropouts refer to discontinuous

data where the intensity of SEPs repeatedly disappears and reappears. This observation

indicates that SEPs are confined to filaments in space (Giacalone et al. 2000).

Given that large-scale diffusion of SEPs is quite rapid (McKibben et al. 2001;

McKibben 2005), specific mechanisms are needed to explain sharp particle gradients over

intermediate distance scales. Proposed mechanisms include temporary topological trap-
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Figure 1.7: Energetic particle velocity dispersion and interplanetary magnetic field di-
rection during 1999 January 9-10. (a) H to Fe ion energy versus time; (b) histogram
of ion count rate; (c) magnetic field azimuth direction in geocentric-solar-ecliptic (GSE)
coordinates; (d) GSE magnetic field altitude direction. [Image credit: Mazur et al. 2000]
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Figure 1.8: Illustration of interplanetary magnetic field lines populated with SEPs from
a localized source region near the Sun. The field lines are filamented according to the
small scale topology of solar wind turbulence. [Image credit: Ruffolo et al. 2003]

ping of field lines in “islands” of the 2D turbulence (Ruffolo et al. 2003) and suppressed

diffusive escape where the 2D field is strong or irregular (Chuychai et al. 2005, 2007;

Tooprakai et al. 2007). Over a long distance scale, magnetic field lines can escape their

temporary topological traps and undergo rapid lateral diffusion. Figure 1.8 illustrates

the concept of topological trapping.

1.5 Local Trapping Boundaries and Current Sheets

Naturally the question arises as to the boundary of the “islands” of field line

trapping. Note that the turbulence is homogeneous, and there is no “input” structure;

the “islands” are regions around local maxima and minima of a random 2D potential
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function. In simulation results for random-phase 2D+slab turbulence, Chuychai et al.

(2007) identified LTBs, defined as contours of constant 2D potential where |b2D|2av is

maximized with respect to neighboring contours, as frequently defining sharp changes

in magnetic connection where dropout features would be expected, which in some cases

can be interpreted as boundaries of trapping regions. The LTBs reflect the concept of

temporary trapping along closed 2D orbits, with eventual escape due to slab fluctuations,

as well as the suppression of slab diffusive escape where the 2D field is strong. Chuychai

et al. (2007) showed that in random-phase simulations of turbulent 2D+slab magnetic

fields, LTBs were well associated with dropout features.

On the other hand, random-phase models of turbulence do not contain cur-

rent sheets, i.e., strong, thin current structures, which clearly are present in the interplan-

etary medium. Current sheets, or discontinuous or sharp magnetic features in general,

require that a large number of Fourier modes have coordinated phases to create a jump

that is spatially localized. The correlations required to establish these structures are

generated rapidly by nonlinear turbulence processes (Servidio et al. 2008) that are asso-

ciated with non-Gaussian statistics and intermittency (Wan et al. 2009). Random-phase

models are also unable to explain the observed distributions of strong jumps in various

properties of the solar wind as presented by Borovsky (2008). Chollet and Giacalone

(2008) considered the possibility that current sheets, i.e., sharp changes in the magnetic

field, might indicate the locations of dropout features.

1.6 Motivation and Objectives of This Study

In the present work, we aim to rectify these shortcomings in the turbulence

models by replacing the 2D random-phase field by the output of a 2D MHD simulation.

While computationally time-consuming, a 2D MHD model incorporates the microphysics

of the plasma to produce current sheets and structures resembling flux tubes. In this

way, the concepts of a flux tube view naturally appear in a more physical model of the

turbulent magnetic field. A 2D MHD + slab field with filamentary magnetic connection
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has previously been used in an explanation of “moss” emission in the solar transition

region (Kittinaradorn et al. 2009). Here, we want to use this more realistic model to

identify whether LTBs or current sheets provide better indicators for dropouts.

Another concern is that particle transport along the turbulent interplanetary

magnetic field should include the effects of adiabatic focusing (Roelof 1969; Ruffolo &

Khumlumlert 1995). This process conserves the magnetic moment, i.e., p2
⊥/2mqB ∝

1 − µ2/B = sin2 θ/B, where θ is the pitch angle of the particle, which is defined by

the angle between the momentum of the particle and the magnetic field direction. As

a particle moves to higher magnetic field strength, the pitch angle increases to conserve

the magnetic moment. In the same time, there is also a conservation of kinetic energy

of the particle, which implies that v2 = v2
⊥ + v2

||. This has a consequence: as the pitch

angle increases, v|| will decrease. If it reaches zero, then the particle will turn around

and move back. This is called magnetic mirroring. Therefore, in the present work we

perform particle trajectory simulations in spherical geometry, where focusing is naturally

included. We aim to explore the results of particle trajectory simulations in 2D random-

phase fields and 2D MHD+slab fields.

The objectives of this research are

1. To investigate dropout patterns of particle trajectories in a Cartesian

geometry.

2. To identify local trapping boundaries.

3. To investigate the relationship between local trapping boundaries and

current sheets and their roles in defining dropout patterns.

4. To study the behavior of charged particle motion in a spherical geometry,

comparing 2D MHD and 2D random-phase fields.

Expected benefits

The work will give us a better understanding of dropout patterns and other

particle transport processes in turbulent magnetic fields, which have applications in
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heliospheric physics, space physics, and astrophysics.

1.7 Outline of the Thesis

This thesis is organized as follows: Chapter 1 introduces solar storms, so-

lar energetic particles, dropouts, local trapping boundaries, and current sheets. The

motivation, objectives of study, and expected benefits are also given in this chapter.

Chapter 2 provides the physics of turbulence, magnetohydrodynamics and a literature

review. Chapter 3 describes some existing numerical methods. This chapter introduces

turbulent magnetic field modeling in both Cartesian geometry and spherical geometry,

including how to generate the turbulent magnetic field and also how to find magnetic

field line trajectories and particle trajectories. Chapter 4 presents some new numerical

techniques. Chapter 5 gives the general properties of a 2D MHD field, in comparison

with the random-phase field, and numerical results of simulations in Cartesian geometry

including the role of LTBs for dropout features. Chapter 6 gives the results from numer-

ical simulations in spherical geometry, including the collimation of beams of very high

energy particles. Chapter 7 (the final chapter) provides the conclusions.
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CHAPTER II

THEORETICAL BACKGROUND AND LITERATURE
REVIEW

We briefly described the solar wind and interplanetary magnetic field in

Chapter 1. In this chapter we will discuss their features in more detail. Before going

into details of structures observed in the inner solar system, some basic physics about

the structures is discussed, including turbulence and magnetohydrodynamics (MHD).

2.1 Turbulence

Turbulence is a type of flow that is complex. Turbulence is subset of random-

ness. To determine whether a flow is turbulent, we have to look at the characteristics of

the flow. A flow considered turbulent must have following characteristics (Tennekes &

Lumley 1972):

• Irregularity. Turbulence is generated by random perturbations and instabilities.

Turbulence is subset of randomness which means that turbulence is random but

random motion is not necessarily turbulent. Being random, a deterministic solution

for turbulence is not possible. Statistical properties are used instead.

• Diffusivity. Diffusivity is an important characteristic of turbulence, because the

mixing and transfer rates of heat, momentum and mass increase by this process

(Tennekes & Lumley 1972).

• 3D vorticity fluctuations. Turbulent motion must have vortex stretching, which

results from the random motion of vorticity structures.

• High Reynolds numbers. The Reynolds number is the ratio between the inertial

term and the viscous term in the momentum transfer equation of hydrodynamics
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(HD) or MHD. The Reynolds number is defined by Re = UL/ν, where U is a

velocity scale of the fluid, L is a length scale and ν is the molecular viscosity.

At high Reynolds number, the flow will become unstable and then the instability

causes turbulence.

• Energy input and energy dissipation. Turbulent flow is always dissipative.

Dissipation is comparable with energy transfer in the dissipation range of length

scales. Because turbulence is dissipative, then in the absence of energy input,

turbulence will decay.

• Continuum. Turbulence is a fluid flow phenomenon. Turbulence only occurs over

scale lengths in which particles or molecules flow as a fluid.

We cannot describe turbulent flow in detail with deterministic equations,

so we need statistical descriptions instead. A statistical quantity that is very useful is

variance, because it can be interpreted as energy. The mean fluctuation is not so useful

because typically it equals zero. An important statistical quantity for turbulence is the

correlation function, which tells us the correlation of variables between two different

points in space or time. For example, the correlation length of the magnetic field is

defined by

Rij(x, r) = 〈bi(x)bj(x + r)〉. (2.1)

For homogeneous turbulence, we can write

Rij(x, r) = Rij(r) = 〈bi(0)bj(r)〉. (2.2)

The Fourier transform of the correlation function is the power spectrum,

Pij(k) =
1

(
√

2π)3

∫ ∞

−∞
Rij(r) exp(ik · r)d3r. (2.3)

A power spectrum for a single component, for example Pxx(k), can be inter-

preted in terms of the square of the magnetic field in Fourier space, Pxx = |Bx(k)|2, so

Pxx(k) represents the energy in b2
x per unit k.
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Kolmogorov (1941) was the first to develop a theory in which turbulent flow

has a power spectrum with a spectral slope of −5/3. We call any power spectrum that

has this slope over a range of distance scales a Kolmogorov spectrum. Figure 2.1 shows

a typical power spectrum of a turbulence flow. Note that low k corresponds to a large

distance scale and high k corresponds to a small distance scale.
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Figure 2.1: The spectrum of turbulence from Kolmogorov theory.

The spectrum has three ranges. The energy-containing range is the range of

scales where turbulent energy is input. From here energy is transferred to the inertial

range and then the dissipation range. In the inertial range, the inertial term is much

greater than the dissipation term, i.e., Re À 1. The inertial term causes vortex stretch-

ing. In a steady state, the energy transfer rate per mass is constant over all length scales.

Finally the dissipation range is the range where the dissipative energy loss dominates

the inertial energy transfer. The spectrum shown in Figure 2.1 can explain observations

of the solar wind and also the magnetic field in space, as we will see later in this chapter.



Achara Seripienlert Theoretical Background and Literature Review / 16

2.2 Magnetohydrodynamics

2.2.1 General

Plasma phenomena are typically described in one of two ways: kinetic theory

and magnetohydrodynamics (MHD). Kinetic theory will give us more details but the

equations can be very complicated and difficult to understand or solve. Many phenomena

can be explained well and much more simply using MHD, including various aspects of

the solar wind. Here we will give a short review of MHD equations and MHD waves.

The MHD equations are:

Continuity equation - conservation of mass, can be used in both HD and MHD:

∂ρ

∂t
+∇ · (ρv) = 0. (2.4)

Momentum equation - effect of forces:

ρ
∂v
∂t

+ ρ(v · ∇)v = −∇p + J×B + ρg. (2.5)

Magnetic induction equation

∂B
∂t

= ∇× (v ×B) + DB∇2B. (2.6)

The relation between current and magnetic field is governed by

J = (∇×B)/µ0. (2.7)

This set of equations is not yet complete. In addition, we need a so-called closure relation.

A common closure relation is the polytropic relation:

p/p0 = (ρ/ρ0)γ , (2.8)

where γ is the polytropic index.

Basically, the MHD equations allow us to study 3 types of problems (Goossens

2003):

1. Static equilibrium configurations of plasma.
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2. Stability of a system that is perturbed by a small perturbation. This type problem

concerns unstable motion of plasma that terminates equilibrium.

3. Some types of waves that can occur in a stable magnetic equilibrium configuration.

For this problem, we study stable motions of a plasma until they are damped by

dissipation.

Both 2. and 3. can be studied by using linearized MHD equations. Linearized MHD

equations have limitations, i.e., we cannot study

• nonlinear evolution

• stability with large amplitude perturbation

• damping or excitation of waves.

The conditions for linearized MHD equations are: the plasma properties do not depend

on time, i.e., ∂/∂t = 0, and there is static equilibrium if v = 0. Substituting the

conditions ρ = ρ0 + ρ1,v = v1 and B = B0 + B1 into the MHD equations, where “0”

quantities are constants in time and neglecting higher orders of small “1” quantities, we

will get linearized MHD equations (neglecting magnetic diffusion and the gravitational

potential):

∂ρ1

∂t
+∇ · (ρ0v1) = 0 (2.9)

ρ0
∂v1

∂t
= −dp

dρ
∇ρ1 +

∇×B1

µ0
×B0 +

∇×B0

µ0
×B1 (2.10)

∂B1

∂t
= ∇× (v1 ×B0). (2.11)
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2.2.2 Waves

After we get linearized MHD equations, now we introduce B0 = B0ẑ, let “0”

quantities be constant in space, and assume plane wave solutions,

ρ1 = ρ1 exp[i(k · r− ωt)] (2.12)

v1 = v1 exp[i(k · r− ωt)] (2.13)

B1 = B1 exp[i(k · r− ωt)]. (2.14)

For a given k, there are three possible solutions for ρ1,v1 and B1. These solutions give us

three kinds of MHD waves, namely, ion-acoustic waves, Alfvén waves, and magnetosonic

waves.

• Ion-acoustic waves (sound waves). These waves are for B = 0. Then

the linearized MHD equations are

∂ρ1

∂t
+ ρ0∇ · v1 = 0, (2.15)

ρ0
∂v1

∂t
= −γ

p0

ρ0
∇ρ1. (2.16)

Taking the derivative with respect to time of equation (2.14) and substituting into equa-

tion (2.15), we obtain
∂2ρ1

∂t2
− V 2

s ∇2ρ1 = 0, (2.17)

where Vs =
√

γp0/ρ0 is the speed of sound. Thus we obtain ordinary sound waves.

• Alfvén waves. Let us consider parallel-propagating Alfvén waves. Here

ρ = ρ0, a constant. The linearized MHD equations now include B = B0 + B1, so we

obtain

ρ0
∂v1

∂t
=

1
µ0

(∇×B1)×B0 (2.18)

∂B1

∂t
= ∇× (v1 ×B0). (2.19)

Substituting the plane wave solutions into equations (2.17) and (2.22), and using ∂/∂t →
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−iω,∇ → ik, we get

−ωB1 = k× (v1 ×B0) = (B0 · k)v1 −B0(k · v1) (2.20)

−µ0ρ0ωv1 = (k×B1)×B0 = (B0 · k)B1 − (B1 ·B0)k. (2.21)

A parallel-propagating Alfvén wave has k parallel to B0 and v1 perpendicular to k. Then

equations (2.19) and (2.20) become

−ωB1 = B0kv1 (2.22)

−µ0ρ0ωv1 = B0kB1 − (B1 ·B0)k. (2.23)

The second term of equation (2.22) equals zero since B1 is parallel to v1 and hence

perpendicular to k. Thus B1 ·B0 = 0. Equations (2.21) and (2.22) imply the dispersion

relation ω2 = k2V 2
A, where VA = B0/

√
(µ0ρ0) is the Alfvén speed. A schematic Alfvén

wave is shown in Figure 2.2. The magnetic tension force serves as the restoring force. If

the Alfvén waves propagate with some angle θ to B0, then the dispersion relation will

become

ω2 = k2V 2
a cos2 θ. (2.24)

This is the so-called shear Alfvén wave.

• Magnetosonic waves. This wave mode arises from pressure, combining

both ram pressure and magnetic pressure. The dispersion relation of magnetosonic waves

is

ω2 = V 2
msk

2, (2.25)

where V 2
ms = V 2

A + V 2
s . The phase velocity is

V 2
ph =

1
2

[
(V 2

s + V 2
A)±

√
(V 2

s + V 2
A)2 − 4V 2

s V 2
A cos θ

]
(2.26)

The plus sign is for fast magnetosonic waves and the minus sign is for slow magnetosonic

waves. A schematic magnetosonic wave is shown in Figure 2.3. The wave shown has

θ = 90◦, and is like an ion-acoustic wave in which B 6= 0.
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Figure 2.2: Schematic Alfvén wave.
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Figure 2.3: Schematic magnetosonic wave.

In sum, we conclude that for any k, linearized MHD equations will have

three solutions, giving us Alfvén waves (sometimes when θ 6= 0◦ called shear Alfvén

waves), fast magnetosonic waves, and slow magnetosonic waves. Ion-acoustic waves are

magnetosonic waves that have B = 0.
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2.2.3 Magnetic Reconnection

What is magnetic reconnection?

Recall the induction equation 2.6, which tells us that the magnetic field

changes due to “advection” and “diffusion”. In a turbulent fluid such as the solar wind,

typically the magnetic Reynolds number is high and we can neglect the diffusion term.

Nevertheless, there are some spatial regions where the diffusion term is high. Such a

region is where plasma elements with magnetic fields in opposite directions are coming

toward each other, and the field lines reconnect in a new configuration. Such a region is

called a “neutral sheet”, and the process is called “magnetic reconnection” (Priest 1994).

A schematic of field lines reconnecting is shown in Figure 2.4.

Consequences of magnetic reconnection

1. Magnetic fields change their topology. This will affect particle trajectories because

they are moving along field lines.

2. Magnetic energy is converted to kinetic energy and heat.

3. Large currents will occur, as well as electric fields, and sometimes there are slow

shocks, which can accelerate particles.

Formation of a current sheet: X-type collapse

Suppose we have a magnetic field as follows:

Bx = y, By = x. (2.27)

We will have field lines along x2 − y2 = constant. In this case, magnetic fields are in

pressure balance between the magnetic pressure force (acting toward y = 0) and magnetic

tension force (acting outward) (Priest 1994). The tension force acts so that magnetic

field lines are like rubber bands that resist stretching. If the field is distorted such that

the field lines along x have more curvature, in this case we expect an inward force along

the y axis because the magnetic pressure force is larger than the magnetic tension force.
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Figure 2.4: (a) Field lines with opposite directions moving toward each other. (b) Neutral
region (green shading), where the magnetic diffusion is high and magnetic field lines are
reconnecting. (c) New topology of the magnetic field lines.

We expect an outward force along the x axis because the tension force is higher due

to more curvature of magnetic field lines (shown in Figure 2.5a). When this happens,

at the X-point there will be a current J flowing along the z axis. Then there will be 2

X-points to the left and right of J as shown in Figure 2.5b. Then the 2 X-points will have

current flowing along the z axis again. This process continues until there is a current

sheet between the opposite inward flow (Figure 2.5c). Figure 2.6 shows a simple model of

magnetic reconnection and a current sheet called the Sweet-Parker (Sweet 1958; Parker

1963a) model. Notice that a À b. Another model is called the Petsheck model, in which

the significant difference is the width of a ∼ b. For the Petsheck (Petschek 1964) model,

the rate of magnetic reconnection is faster than in a pure Sweet-Parker model, and there

are slow shock waves at the boundary layers between inflow and outflow.

2.3 Magnetohydrodynamic Turbulence in the Solar Wind

Observations from spacecraft show that the solar wind has both wavelike and

turbulence-like properties. Alfvénic fluctuations are observed from magnetic field and

flow velocity fluctuations. Evidence for turbulence comes from the power law spectra of
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Figure 2.6: Schematic of Sweet-Parker magnetic reconnection.

velocity and magnetic field fluctuations, from which we infer non-linear evolution and an

energy cascade. An example of a power spectrum of observed magnetic field fluctuations

is shown in Figure 2.7. We can infer k from the horizontal axis of the graph by the

relation f = ω/2π = vswk/2π, where vsw is the solar wind speed. To use this relation,

we assume the “frozen-in” approximation. Note that in the inertial range, the slope of

this log− log graph is nearly -5/3, which is characteristic of a Kolmogorov spectrum.

It is believed that MHD can explain the turbulent cascade process of the

solar wind. Matthaeus et al. (1990) constructed a contour plot of the two-dimensional

correlation function of magnetic field fluctuations from 16 months of ISEE 3 magnetome-

ter data as shown in Figure 2.8. This plot suggests that in addition to slab fluctuations

(population parallel to the mean) there should be another population of the solar wind

fluctuations that has wave vectors transverse to both the mean magnetic field and the

fluctuations about the mean. This is the motivation for the so-called two-component

magnetic field model.

For the two-component magnetic field model, or more precisely, the 2D+slab

model, we assume B = B0+b, where b ⊥ B0. For a Cartesian geometry, typically we let

ẑ be the mean field direction. The slab field, by definition, depends on the z coordinate,

while the 2D field depends on x and y coordinates. A schematic of populations of
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Figure 2.7: Power spectrum of magnetic field fluctuations from a 74-minute interval of
0.12-second-averaged Mariner 10 magnetometer data. [Image credit: Goldstein et al.
1995]

fluctuations in the solar wind is shown in Figure 2.9. More details about numerical

simulation will be given in Chapter 3.

2.4 Literature Review

The “dropouts” in solar energetic particles from impulsive solar flares (Mazur

et al. 2000; Gosling et al. 2004), in which the measured particle flux undergoes sudden,

large changes, frequently seeming to disappear and reappear, suggest a filamentary dis-

tribution of magnetic connection to the particle source (Giacalone et al. 2000; Ruffolo

et al. 2003; Zimbardo et al. 2004). One interpretation of the filamentary connection to
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Figure 2.8: Contour plot of the two-dimensional correlation function of solar wind fluc-
tuations as a function of distance parallel and perpendicular to the mean magnetic field
using ISEE 3 magnetometer data. [Image credit: Matthaeus et al. 1990]
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Figure 2.9: Schematic of populations of fluctuations in the solar wind.
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the Sun is that the solar wind comprises “spaghetti” of winding flux tubes separated by

sharp boundaries (Parker 1963b; McCracken & Ness 1966; Bruno et al. 2001; Borovsky

2008). In this view, the flux tube boundaries are taken to be distinct from the well-known

magnetic fluctuations with a turbulent power spectrum (Jokipii & Coleman 1968). From

another point of view, the apparent flux tube structure could be a natural consequence of

the turbulent evolution of magnetic fluctuations in a plasma. Starting from fluctuations

in the magnetic field at the solar wind source, the larger-scale structures evolve more

slowly (Matthaeus et al. 1996), and could survive as “fossil turbulence” at a distance

of 1 AU from the Sun (Giacalone et al. 2006), while smaller-scale structures join a tur-

bulent cascade (Kolmogorov 1941) to even smaller scales where the energy is dissipated

(Coleman 1968; Verma et al. 1995; Leamon et al. 1998; Sahraoui et al. 2009).

Let us further discuss the turbulence point of view: Based on theoretical

results that express the magnetic field line diffusion coefficient in terms of the turbulent

power spectrum (Jokipii & Parker 1968; Matthaeus et al. 1995), it is a reasonable first

step to model turbulent fluctuations by summing over Fourier modes with the appropriate

power spectrum and to simply assign a random phase to each wave mode. Indeed, models

of magnetic turbulence frozen-in from the solar source (Giacalone et al. 2000), with two-

components of slab and 2D fluctuations (Ruffolo et al. 2003; Chuychai et al. 2007), and

with three-dimensional (3D) fluctuations (Zimbardo et al. 2004; Pommois et al. 2005)

have all been able to generate filamentary magnetic connection that explain dropouts.

Ruffolo et al. (2003) proposed a new concept of transport, using the 2D+slab

magnetic field model together with conditional statistics. The 2D field can be written

in terms of a vector potential a(x, y)ẑ. An example of a contour plot of the potential

function a(x, y) is illustrated in Figure 2.10. In the Figure, we identify O-points and

X-points, where O-points are local minima or maxima of the potential function and X-

points are saddle points. The conditional statistics concept is that the magnetic field

lines that started from different locations will exhibit different transport. The field lines
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Figure 2.10: Contour plot of the potential function a(x, y) for a representation of 2D
turbulence, indicating O-points and X-points. [Image credit: Chuychai et al. 2007]

that initially were near O-points experience only slab diffusion, and will be temporarily

trapped in that local island, until they finally escape. In contrast, the field lines that

initially start near X-points will experience normal diffusion, both slab diffusion and 2D

diffusion, so they travel with a greater diffusion rate. This is the concept of temporary

topological trapping.

Another mechanism to explain the sharp gradients in observed dropouts

is suppressed diffusive escape. Chuychai et al. (2005) found that strong a 2D field

can suppressed diffusion. They also calculated suppressed diffusion using quasi-linear

theory. For 2D+slab turbulence, Chuychai et al. (2007) found that the filamentation of
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magnetic connectivity to the source is sharply delineated by local trapping boundaries,

defined as equipotential contours that have a maximum average 2D fluctuation energy

compared with neighbouring contours. Figure 2.11 shows scatter plots of magnetic field

line trajectories in 2D + slab turbulence at various distances z, for initial locations within

a circular region at z = 0, for the same representation of 2D turbulence as in Figure 2.10.

The blue curves are the mathematically defined LTBs. The red shading indicates the

values of |b2D|2 corresponding to the contour plot of a(x, y) in Figure 2.10. The LTBs

reflect the concept of temporary trapping along closed 2D orbits, with eventual escape

due to slab fluctuations, as well as the suppression of slab diffusive escape where the 2D

field is strong.

Another concern is the space filling of the field line trapping regions (Kaghashvili

et al. 2006), because a high space filling could inhibit the transport of particles perpendic-

ular to the mean magnetic field. In the random-phase 2D+slab model, the 2D “islands”

of temporary field line trapping are delineated by LTBs, yielding a moderate space fill-

ing (Chuychai et al. 2007). Field lines in the interstitial “network” can rapidly diffuse

perpendicular to the mean field (Ruffolo et al. 2003). This result is consistent with

observations of SEP from impulsive solar events. Flux-limited surveys, which require

a substantial particle intensity, indicate a narrow distribution for such events in solar

longitude (Reames 1992). This indicates only limited lateral spreading for the bulk of

SEPs, which we attribute to trapping within small-scale topological islands, representing

a “core” region of high particle density (see Figure 1.8). At the same time, observa-

tions of type III radio bursts, which are sensitive to very low particle fluxes, indicate

that SEPs can undergo lateral motion by up to ∼ 90◦ in solar longitude during their

transport from the Sun to Earth orbit (Cane & Erickson 2003). This laterally extended

but less intense “halo” of SEPs corresponds to particles on field lines initially located in

interstitial regions between the 2D islands. Indeed, the absence of these halo SEPs from

the core region is manifested as dropouts.
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Figure 2.11: Scatter plots of magnetic field line trajectories at various distances z. [Image
credit: Chuychai et al. 2007]

In contrast, descriptions of the flux tube viewpoint typically propose space-

filling trapping regions, sometimes with a strict interpretation of field line confinement

in the flux tubes (see Figure 1 and Section 8.1 of Borovsky 2008). Even if one invokes a

“cross-field” diffusion mechanism whereby particles can cross field lines, it is difficult to

reconcile escape that is slow enough to preserve dropout features with the rapid diffusion

of SEPs as inferred from observations over short time scales (Cane & Erickson 2003) and
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long time scales (McKibben et al. 2001; McKibben 2005), as well as the important role

played by perpendicular diffusion in the solar cycle dependent modulation of Galactic

cosmic rays (Parker 1965; Moraal 1976; Cane et al. 1999; Reinecke et al. 2000).

Now the distinctions between the flux tube view and the turbulence view

are sometimes not recognized. For example, in the context of observationally testing

the concepts developed from turbulence models, Chollet & Giacalone (2008) pointed out

that dropout features are not well correlated with sharp magnetic field changes (such

as current sheets). However, that observation actually addresses the flux tube view, in

which trapping within flux tubes is naturally envisioned as delineated by magnetic field

changes, whereas simulations of random-phase turbulence had indicated trapping within

LTBs. In general, the lack of an observed association between dropouts and features of

the magnetic field or current (Mazur et al. 2000; Gosling et al. 2004; Chollet & Giacalone

2008) is problematic for the flux tube view, in which the only surfaces available to trap

plasma and field lines are, by assumption, the flux tube boundaries themselves.

Random-phase turbulence models do not properly treat sharp changes in the

magnetic field, such as current sheets, and thus cannot be tested in this way. In this work,

we explore the properties of a more realistic two-dimensional magnetohydrodynamic (2D

MHD) turbulence model, in which current sheets develop and the current and magnetic

field have characteristic non-Gaussian statistical properties. We find that the 2D MHD

+ slab model of turbulent fluctuations includes some realistic features of the flux tube

view and is consistent with the lack of an observed association between dropouts and

intense magnetic fields or currents.
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CHAPTER III

EXISTING NUMERICAL TECHNIQUES

This chapter explains details of the magnetic field model, how to generate

slab field and 2D field (both 2D random-phase field and 2D MHD field), and how to trace

magnetic field lines and charged particle trajectories in both Cartesian and spherical

geometry. These are existing numerical techniques that I made use of in my work.

3.1 Magnetic Field Model

3.1.1 Cartesian Geometry

In this work, we express the interplanetary magnetic field as

B = B0ẑ + b(x, y, z), (3.1)

where B0ẑ is a constant mean field and b is the transverse fluctuating part, which can

be separated into two components, a “slab” component that depends only on the z

coordinate and a “2D” component that depends only on the x and y coordinates. The

motivation for this two-component model was provided in Section 2.3. Thus b can be

written as

b(x, y, z) = bslab(z) + b2D(x, y). (3.2)

Because ∇ ·B = 0, we have ∇ · b2D = 0 and b2D = ∇× [a(x, y)ẑ] for a scalar potential

function a(x, y). Illustrations of slab and 2D fluctuations are shown in Figs. 3.1 and 3.2,

respectively. If there were only 2D fluctuations, the magnetic field lines would exactly

follow 2D flux surfaces defined by contours of constant potential, but the addition of the

slab component allows field lines to diffuse away from the 2D flux surfaces, yielding a

fully three-dimensional model.

This magnetic field model was motivated by the work of Matthaeus et al.

(1990), who found that the fluctuation power of the solar wind is concentrated at wave
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Figure 3.1: Illustration of slab fluctuations, bslab(z).

vectors nearly perpendicular and parallel to the mean magnetic field (see also Dasso et al.

2005; Weygand et al. 2009). In addition to its use in the study of dropouts, the two-

component model has also provided a useful description of solar wind fluctuations (Bieber

et al. 1996; Saur & Bieber 1999; Osman & Horbury 2007) and the parallel transport of

particles in interplanetary space (Beiber et al. 1994; Shalchi et al. 2008).

3.1.2 Spherical Geometry

Let us first introduce the coordinates that we use for simulations. Figure 3.3

illustrates the coordinates (ϕ,Λ, r), where ϕ is the heliolongitude, Λ is the heliolatitude,

and r is the radial distance from the center of the Sun. The two-component magnetic

field model becomes

B(ϕ,Λ, r) =
B1r

2
1

r2
+

[bslab(r) + b2D(ϕ,Λ)]r2
1

r2
, (3.3)
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y

x

Figure 3.2: An example of contour plot of a 2D potential function a(x, y). Arrows indicate
directions of magnetic fields. Darker shading represents higher values of the potential
function, whereas lighter shading represents lower values of the potential function. Near
a maximum of the potential function, the magnetic field lines will go in the counter-
clockwise direction. On the other hand, near minimum values of the potential function,
the magnetic field lines will go in the clockwise direction.

where B1 = B1r̂, and the slab fluctuation bslab depends on the r coordinate, the radial

distance from the Sun. The other fluctuation, b2D , depends on the lateral ϕ and Λ

coordinates. For the 2D component, we can write b2D(ϕ,Λ) = ∇× [a(ϕ,Λ)r̂], where ar̂

is a vector potential for the 2D component, we call a(ϕ,Λ) the potential function, and

r1 is a reference position, which is set to 1 AU.

3.2 Slab Field Generation

To numerically generate the fluctuating fields, we require a Kolmogorov

power spectrum of turbulence in the inertial region of k-space. For the slab compo-

nent we can write

P slab
xx (kz) = P slab

yy (kz) =
Cslab

[1 + (kzλ)2]5/6
, (3.4)
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Figure 3.3: Coordinates for simulations in spherical geometry.

where Cslab is a normalization constant and λ is the parallel coherence length, set to

0.02 AU. This spectral form yields a Kolmogorov power law, k
−5/3
z , in the inertial range

at higher kz, and is independent of kz in the energy-containing range at lower kz; such

spectra have been found in observations of solar wind fluctuations (Jokipii & Coleman

1968). The magnetic field in the wave vector domain can be written as

bslab
x (kz) =

√
P slab

xx (kz)eiφx(kz), (3.5)

where i is
√−1 and φx is a random phase that is independent for each Fourier mode,

varying from 0 to 2π. For the y-component we use

bslab
y (kz) =

√
P slab

yy (kz)eiφy(kz). (3.6)
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Because of the use of random phases φx and φy this can be called a random-phase field.

Then we use an inverse fast Fourier transform to obtain the fluctuating mag-

netic fields in real space. In our simulations, we set the box length in the z direction

to Lz = 10,000λ, and the number of grid points was Nz = 4,194,304. The field lines

are traced only to a few percent of the simulation box length in order to avoid periodic

effects.

3.3 2D Field Generation

3.3.1 2D Random-Phase Field

The power spectrum of the random-phase 2D potential is

A(k⊥) =
C2D

[1 + (k⊥`⊥)2]7/3
, (3.7)

where A(k⊥) is the power spectrum of a(x, y), defined as the Fourier transform of the

correlation function 〈a(r0)a(r0 + r)〉, C2D is a normalization constant, k⊥ =
√

k2
x + k2

y,

and `⊥ is a perpendicular coherence length, set to 0.1 AU (similar to the value used by

Ruffolo et al. 2003). Note that Pxx(k) = k2
yA(k⊥) and Pyy(k) = k2

xA(k⊥). This leads to

an omnidirectional power spectrum, E(k⊥) = 2πk⊥(Pxx+Pyy), with a Kolmogorov power

law in the inertial range and a k2
⊥-dependence of the modal power spectrum (Pxx+Pyy) in

the energy-containing range as required for homogeneity (Ruffolo et al. 2004; Matthaeus

et al. 2007). The magnetic potential for the 2D component in the wave number domain

is

a(kx, ky) =
√

A(k⊥)eiφ(kx,ky), (3.8)

where φ is a random phase. We derived b2D
x (k) and b2D

y (k), and used the fast Fourier

transform (FFT) algorithm (Press et al. 1992) to perform the inverse Fourier transform

to obtain b2D(x, y) in the spatial domain of box lengths Lx = Ly = 40λ. The numbers of

grid points were Nx = Ny = 1,024. An example of a 2D random-phase potential function

a(x, y) generated in this manner is shown in Figure 3.4a.
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Figure 3.4: (a) Contour plot of a 2D random-phase potential function. (b) Same field
after a 2D MHD procedure.

3.3.2 2D MHD Field

Random-phase models of magnetic fields encode the desired power spectrum,

e.g., for a turbulent plasma, and since the power spectrum is the Fourier transform of the

spatial correlation function, the latter should be correctly treated as well, in the ensemble

average. However, random-phase models have some physical deficiencies, especially in

two or more dimensions. Therefore, for the 2D magnetic field component, we have

developed a procedure for “processing” a random-phase field according to MHD in two

dimensions.

According to MHD, the magnetic pressure depends on b2, so the turbulent

flow will tend to make |b| more uniform. Thus the current j, which depends on ∇× b,

is reduced in most locations, but remains at topological “defects” where b changes in

magnitude and/or direction. This topological structure is a key feature of the flux tube

viewpoint, and the topology requires current cores in the interior and current sheets at

the flux tube boundary (Matthaeus & Lamkin 1986; Greco et al. 2009); these will be

discussed further in Section 5.1. Along the flux tube boundary, the attraction of parallel

current elements should concentrate such currents into narrow regions, such as current
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sheets with magnetic reconnection. Thus the current sheets should be envisioned as not

uniformly spread over the flux tube boundary but rather concentrated at narrow portions

thereof.

A random-phase 2D field assumes independent Fourier modes and therefore

does not incorporate the tendency of |b| to become more uniform and |j| to become more

concentrated, which require that many Fourier modes “conspire” to concentrate changes

in the magnetic field and form coherent current structures in localized regions.

In the solar wind, we expect that an initial fluctuation field, e.g., from the

solar source, should undergo substantial MHD evolution before arriving at Earth. The

dynamical age of the solar wind at Earth orbit can be roughly estimated from

T

Tnl
= Cch

R/U

L/Z
, (3.9)

where T is the solar wind travel time from the Sun, Tnl is a nonlinear scale time, specif-

ically, the eddy turnover time at the outer scale, Cch = 0.5 is a constant to account for

cross-helicity (Alfvénic) effects (see Hossain et al. 1996), R is the distance from the Sun,

U is the solar wind speed, L is the outer scale of the turbulence, and Z is the eddy

velocity at the outer scale. Using R = 1 AU and observations at 1 AU of U = 300 to

600 km s−1, L = 0.01 AU (Weygand et al. 2009), and Z = 20 to 40 km s−1 (see Smith

et al. 2001, for observations of the normal component of Z2), it can be estimated that

the solar wind experiences ∼ 2 to 17 nonlinear scale times on its way to Earth orbit.

Because there is continual energy input (e.g., Matthaeus et al. 1998), the solar wind

turbulence is fully developed at 1 AU, and the power spectrum is observed to be close

to a Kolmogorov form (Jokipii & Coleman 1968).

In the present work we model such turbulent evolution by starting from an

initial random-phase 2D field, which incorporates a turbulent power spectrum. Then a

2D pseudospectral incompressible MHD code (see Wan et al. 2009) is employed to evolve
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the magnetic configuration according to the following equations of evolution,

∂ω

∂t
+ v · ∇ω = b · ∇j + ν∇2ω

∂a

∂t
+ v · ∇a = η∇2a, (3.10)

in terms of the plasma vorticity ω = (∇ × v) · ẑ, plasma velocity v, current j = (∇ ×

b) · ẑ, molecular viscosity ν, and resistivity η. The simulation has a 1,024×1,024 spatial

resolution and a magnetic Reynolds number of 640 at the largest scales. Because 2D

MHD simulations do not include energy input to the turbulence, and use a lower Reynolds

number than solar wind turbulence, their turbulent energy decays more quickly than that

in the solar wind. Here, the simulation is run from t = 0 to Tnl, which is sufficient for

developing nonlinear structures (i.e., phase correlations of Fourier components) but not

so long as to severely distort the power spectrum away from a Kolmogorov form. At

t ∼ Tnl, the decaying turbulence has reached the peak of its dissipation and most closely

resembles steady-driven fully developed turbulence as expected in the solar wind. We

then obtain the 2D MHD potential, magnetic field, and current.

For the 2D field, we map a potential function a0 of two Cartesian coordinates,

x and y, onto the longitude, ϕ, and latitude, Λ = π/2 − θ, respectively, at a reference

radius r0 = 1 AU. In doing so, the only concern is that 2D structures become distorted

(shortened in longitudinal distance) by a factor sin θ = cos Λ; thus the procedure is

accurate for small values of |Λ|.

3.4 Field Line Tracing

3.4.1 Cartesian Geometry

After obtaining the magnetic field at each grid point of the simulation box,

magnetic field line trajectories were found by solving the coupled equations

dx

dz
=

b2D
x (x, y) + bslab

x (z)
B0

,
dy

dz
=

b2D
y (x, y) + bslab

y (z)
B0

(3.11)

to obtain x(z) and y(z). We solve equation (3.11) using a fourth-order Runge-Kutta

method with an adaptive step size (Press et al. 1992). The magnetic field at each
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position is obtained by linear interpolation (slab component) and bilinear interpolation

(2D component). Example of trajectories of field lines in pure slab turbulence are shown

in Figure 3.5, for pure 2D fluctuations in Figure 3.6, and for 2D+slab fluctuations in

Figure 3.7.

Figure 3.5: Example of two trajectories of magnetic field lines in pure slab turbulence.

3.4.2 Spherical Geometry

For spherical geometry, the streamline equation becomes

dr

Br
=

rdΛ
BΛ

=
r cosΛdϕ

Bϕ
, (3.12)
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Figure 3.6: Example of a trajectory of a magnetic field line in pure 2D turbulence.

which can be written in terms of components as

dΛ
dr

=
1
r

BΛ

Br
, (3.13)

dϕ

dr
=

1
r cosΛ

Bϕ

Br
. (3.14)

We also solve equations (3.13) using a fourth-order Runge-Kutta method with adaptive

step size. An example of a trajectory of a magnetic field line in spherical geometry is

shown in Figure 3.8.
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Figure 3.7: Example of two trajectories of magnetic field lines in 2D+slab turbulence.

3.5 Particle Tracing

3.5.1 Cartesian Geometry

For particle trajectories, we solve the Newton-Lorentz equation:

γmv̇ = q(v ×B), (3.15)

where γ = 1/
√

1− v2/c2 is the Lorentz factor, m is the particle mass, v is the particle

velocity, c is the speed of light, and q is the particle charge. In terms of components, eq.
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Figure 3.8: Example of a trajectory of a magnetic field line in spherical geometry.

3.15 can be written as

v̇x =
q

γm
(vyBz −Byvz) (3.16)

v̇y =
q

γm
(vzBx −Bzvx) (3.17)

v̇z =
q

γm
(vxBy −Bxvy). (3.18)

We scale the variables by v∗ = v/c, t∗ = t/τc,B∗ = B/B0, and α = (qB0τc)/(γm). Then

the equations of motion become (see Appendix A)

dv∗x
dt∗

= α(v∗yB
∗
z −B∗

yv∗z) (3.19)

dv∗y
dt∗

= α(v∗zB
∗
x −B∗

zv∗x) (3.20)

dv∗z
dt∗

= α(v∗xB∗
y −B∗

xv∗y). (3.21)
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These equations are solved by using a fourth-order Runge-Kutta method with adaptive

step size. Some results will be shown in Chapter 5.

3.5.2 Spherical Geometry

Starting from the Lagrangian, then we get the Hamiltonian. Then we can

find equations of motion for a particle in spherical geometry as follows (See Appendix

B):

vϕ = r cosΛϕ̇ (3.22)

vΛ = rΛ̇ (3.23)

vr = ṙ (3.24)

v̇ϕ = −vrvϕ

r
+

vΛvϕ

r cot Λ
+

q

γm
(vΛBr −BΛvr) (3.25)

v̇Λ = − v2
ϕ

r cotΛ
− vrvΛ

r
+

q

γm
(vrBϕ − vϕBr) (3.26)

v̇r =
v2
Λ

r
+

v2
ϕ

r
+

q

γm
(vϕBΛ − vΛBϕ). (3.27)

These equations are also solved by using a fourth-order Runge-Kutta method with adap-

tive step size. The results will be shown in Chapter 6.
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CHAPTER IV

NEW NUMERICAL SIMULATION TECHNIQUES

In this chapter, we present three new numerical techniques. The first two

are useful for testing the particle trajectory code. The third concerns how to find LTBs.
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Figure 4.1: Components of Λ̂ in spherical geometry.
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4.1 Test with a Uniform Magnetic Field in the x Direction

The best way to test a computer simulation code, and our proper use of the

code, is to perform simulations for a simple case for which we already know the answer.

In this case, we want to know whether every component of our equations of motion is

treated properly, e.g., only a radial field cannot satisfy this purpose because some of

the components are equal to zero. Hence we select a magnetic field that has all three

components in spherical geometry. For this technique, we trace particle trajectories in

spherical geometry for a magnetic field that is equivalent to a uniform field in the x

direction. We can find the magnetic field by noting that the spherical geometry that we

use has the following unit vectors:

ϕ̂ = − sinϕx̂ + cosϕŷ, (4.1)

Λ̂ = − sinΛ cosϕx̂− sinΛ sinϕŷ + cosΛẑ, (4.2)

r̂ = cos Λ cosϕx̂ + cosΛ sinϕŷ + sin Λẑ, (4.3)

where Λ̂ can be found as in Figure 4.1. We can find the magnetic field in spherical

(a) (b)

Figure 4.2: Test particles of 1 GeV in (a) spherical geometry and transforming to (b)
Cartesian coordinates.
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Figure 4.3: Trajectories of particles in the y-z plane vs. time. The gyromotions are circles
(shown in grey color) moving clockwise with time.

coordinates from

B0x̂ = B0[(x̂ · ϕ̂)ϕ̂ + (x̂ · Λ̂)Λ̂ + (x̂ · r̂)r̂] (4.4)

= B0[− sinϕϕ̂− sinΛ cosϕΛ̂ + cos Λ cosϕr̂]. (4.5)

We traced particles of energy 1 GeV. The results are shown in Figs. 4.2 and 4.3. The

gyro-radius of these particles is about 0.007684-0.007689 AU, compared with the gyro-

radius from theory, 0.007558 AU. From these results, we can conclude that our particle

code is working properly for all components.

4.2 Test with a Radial Field

We use this technique to test whether we use the correct value of the magnetic

field. Only looking at the trajectories or scatter plots cannot tell us that we used the
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correct value for the magnetic field. For example, a proton will gyrate clockwise along a

uniform magnetic field despite of the weakness or strongness of the field. Therefore, to

make sure that we have used the correct value of the magnetic field, we have to measure

other physical quantities, in this case the gyroradius and gyrofrequency.

For this technique, we traced proton trajectories in a radial field and de-

termined the gyroradius and the gyrofrequency of the protons. We can compare the

gyroradius R from 1) graphs of results at 1.0 AU, 2) the expected formula R = v⊥/ω

using values output by the simulation program, where v⊥ = v sin θ and θ is the pitch

angle, which is the angle between the velocity of the particle and magnetic field, and

3) the value expected based on input values at 0.1 AU. Similarly, we compare values of

the gyrofrequency, which should be given by ω = qB/γm. Figures 4.4 - 4.7 show plots

of ϕ and Λ vs. time. Gyro-radii and gyro-frequencies from theory and the simulations

are shown for protons of energy 1 MeV, 10 MeV, 100 MeV, and 1 GeV in Tables 4.1

and 4.2, respectively. We can calculate the gyrofrequency from the graphs by fitting

crests (troughs) with 2nd-order polynomials to find the maxima (minima). Then the

time difference between two maxima or minima is the period T . Then we can find the

gyrofrequency from ω = 2π/T . The gyroradius is also determined from the graphs. In

order to calculate the gyroradius from the formula based on simulation values, we first

calculate the pitch angle of the particle from θ = arccos(v · B)/(|v||B|). Then we find

the gyroradius by the definition given. We use the gyroradius in terms of angle because

of two reasons: first, we perform the simulations in angular coordinates and second, the

angular gyroradius is expected to be equal at all distances r. From the results, with lit-

tle difference between the various values, we can conclude that we have used the correct

value of the magnetic field.
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Figure 4.4: Upper panel shows ϕ versus time and lower panel shows Λ versus time from
simulations of 1 MeV protons.
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Figure 4.5: Upper panel shows ϕ versus time and lower panel shows Λ versus time from
simulations of 10 MeV protons.
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Figure 4.6: Upper panel shows ϕ versus time and lower panel shows Λ versus time from
simulations of 100 MeV protons.
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Figure 4.7: Upper panel shows ϕ versus time and lower panel shows Λ versus time from
simulations of 1 GeV protons.

Table 4.1: Gyro-radius of protons at various energies for initial input and also for B = 5
nT (at r = 1.0 AU) from theory, simulations and from graphs.

Energy Pitch angle Gyro-radius, Gyro-radius, Gyro-radius,
(MeV) at 0.1 AU at 0.1 AU at 1.0 AU, at 1.0 AU,

(rad) (rad) simulations (rad) graphs (rad)
1 0.29383 5.5939 ×10−6 5.5966 ×10−6 5.5932 ×10−6

10 0.39025 2.3301 ×10−5 2.3301 ×10−5 2.3281 ×10−5

100 1.0337 1.7034 ×10−5 1.7034 ×10−4 1.7022 ×10−4

1000 0.95532 6.1763 ×10−4 6.1763 ×10−4 6.1713 ×10−4
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4.3 Finding LTBs

LTBs are contours of constant potential a in the x-y plane whose average 2D

fluctuation energy is maximized with respect to neighboring contours, i.e.,

Maximize : |b2D|2av =
1
L

∮
|b2D(x, y)|2d`, (4.6)

where |b2D| is the local strength of the 2D magnetic field, d` follows an equipotential

contour, and L is the length of the contour. While any flux surface can cause topological

trapping, LTBs possess a local maximum in |b2D|2av, which is related to the suppression of

slab diffusion, so they define flux surfaces that field lines cross with particular difficulty.

As such, they are likely to coincide with sharp gradients in the density of field lines

connected to the source, i.e., dropout features. LTBs were indeed found to play this role

in simulations using random-phase 2D+slab magnetic fields (Chuychai et al. 2007). The

present work examines whether they still serve as good indicators of dropout features

when using more physically realistic 2D MHD fields, or whether intense field regions or

current sheets provide better indicators.

We find LTBs by the following procedure. We begin with the results of the

2D MHD procedure for the magnetic potential a(x, y) at each 1024×1024 grid points,

and trace contours of constant potential. We consider square cells between grid points,

and the cell boundaries are lines between neighboring grid points. Values of a are stepped

upward or downward from zero with a constant spacing of 0.05 in units of B0λ. For a

given value of a, the tracing of equipotential contours uses linear interpolation along the

cell boundary to find where contours exit and enter each 2D cell. For simplicity, contour

segments within a cell are taken to be straight lines. When there are two entrance points

and two exit points for the same cell, the pairing of entrance and exit points is based

on the values of a at the four surrounding grid points, in a manner consistent with

bilinear interpolation of a within the cell. Segments in adjacent cells are then linked to

form closed contours. (When identifying the boundaries of the simulation region with

periodic boundary conditions, there are no open contours.)
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For each contour, the integration in equation (4.6) is approximated by sum-

ming over segments within cells, taking the integral along each segment to be represented

by |b2D|2 at the segment center times the segment length. We plot |b2D|2av for each con-

tour line, and visually compare these values between neighboring contours. Contours

that have a maximal value compared with neighboring contours are identified as LTBs.
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CHAPTER V

LOCAL TRAPPING BOUNDARIES IN A 2D MHD +
SLAB FIELD

Observations of the interplanetary medium, and in particular the solar wind

and magnetic fields evolving from their solar source, have revealed a complex spatial

and temporal structure in plasma and magnetic properties. In addition to large-scale

discontinuities such as corotating interaction regions, coronal mass ejections, and their

associated shocks, as well as magnetic sector boundaries, there is also strong evidence

for small-scale structure and filamentary connection to the Sun. Such evidence includes

strong tails in statistical distributions of changes in magnetic field direction and plasma

properties (e.g., Bruno et al. 2001; Borovsky 2008; Li 2008; Greco et al. 2009). In

addition, particularly useful probes of magnetic connection are solar energetic particles

(SEPs) from impulsive solar flares. Such flares occur as discrete events and inject particles

from a small region of the solar surface (Reames et al. 1990), and SEPs of energies . 10

MeV follow magnetic field lines quite closely, so the particles serve as excellent tracers

of magnetic connection from a localized particle source at the Sun.

Previous computer simulations that traced turbulent magnetic field lines

as described above have found sharp gradients in the density of field lines connected

to the source as a function of x and y (Ruffolo et al. 2003; Zimbardo et al. 2004).

The proposed physical mechanisms are (1) temporary topological trapping along flux

surfaces of constant 2D potential a(x, y), with eventual diffusive escape due to the slab

fluctuations (Ruffolo et al. 2003), and (2) suppressed diffusive escape where the 2D field

is strong (Chuychai et al. 2005). Combining the two ideas leads to the concept of local

trapping boundaries (LTBs), i.e., 2D flux surfaces where the 2D field is particularly

strong (Chuychai et al. 2007).
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In the present work, we aim to rectify shortcomings in the turbulence models

by using the output of 2D MHD simulation in place of 2D random-phase fields. With

a 2D MHD model, microphysics of the plasma can be produced, i.e., current sheets and

structures resembling flux tubes. Kittinaradorn et al. (2009) has used a 2D MHD +

slab field with filamentary magnetic connection to explain “moss” emission in the solar

transition region. Here, we examine the general properties of the 2D MHD field, in

comparison with the random-phase field, and trace magnetic field lines in a 2D MHD

+ slab field in order to examine the expected dropout features of SEPs from impulsive

solar flares. We find that dropout features, i.e., sharp changes in magnetic connection to

a localized source, are frequently associated with LTBs, are sometimes associated with

strong 2D magnetic fluctuations, and are only infrequently associated with current sheets.

Thus a more realistic model of turbulent fluctuations can incorporate some attractive

features of the flux tube view and is consistent with the lack of an observed association

between dropouts and intense magnetic fields or currents.

5.1 Characteristics of the 2D MHD Field

Figure 5.1 shows an example of the effects of the 2D MHD procedure. Fig-

ure 5.1(a) shows contours of equal potential a(x, y) for a 2D random-phase field. When

adding the mean field B0ẑ, the combined magnetic field twists along flux surfaces defined

by the contours of constant a. This 2D random-phase field was used as the initial config-

uration for a 2D MHD procedure, and Figure 5.1(b) shows the equipotential contours for

the resulting 2D MHD field. While the larger-scale turbulent features remain similar, the

most obvious difference is that the random-phase contours are more irregular. These are

smoothed in the 2D MHD field because irregularities in magnetic pressure are relieved

by the fluid flow, tending to produce a smoother field magnitude |b|. This is consistent

with previous findings that MHD turbulence leads to the formation of many flux tubes,

which relax locally at every stage of evolution while interacting with one another at their

boundaries (Servidio et al. 2008). A related effect is that for this 2D MHD field, the
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spacing between contours, which indicates |b|, is more uniform in many places.

Nevertheless, some variations in b2 remain in the 2D MHD model, as shown

in Figure 5.1(c). Note the tendency of regions with strong b2 to be somewhat aligned with

the equipotential contours. This is not particular to the 2D MHD procedure, but is rather

related to the solenoidal property ∇ · b = 0, or in Fourier space, k · b = 0. Variations in

the field are also indicated by the current j. For the 2D MHD field, as discussed earlier,

the current can be highly concentrated in narrow current cores and current sheets (Figure

5.1(d)). We will discuss these in more detail shortly. A comparison of the power spectra

of the 2D random-phase and 2D MHD models is presented in Figure 5.2. Here we plot

the omnidirectional power spectra, E(k⊥), as estimated from |b2D
x |2 + |b2D

y |2 summed

over Fourier modes in all directions with k⊥ near the value of interest. Both spectra

are normalized to the same energy 〈b2〉2D, which is the integral of the power spectrum,

and magnetic fields are expressed in units of B0. By construction, the 2D random phase

model has a power spectrum that rises with k⊥ in the energy-containing range (at low

k⊥) and obeys the Kolmogorov law E ∝ k−5/3 in an inertial range at higher k⊥. The

rollover at and above k⊥ ≈ 4000 is an artifact of the limited extent of the FFT grid

in some directions in k-space. The 2D MHD spectrum is steeper at high k⊥ than the

2D random-phase spectrum. This occurs because during the 2D MHD procedure, the

turbulent cascade proceeds faster for higher k⊥. Since the 2D MHD simulation is run

for a fixed time duration, only the high-k⊥ portion of the spectrum is eroded by the

turbulent cascade. Because of the overall normalization, the 2D MHD spectrum at low

k⊥ becomes higher than the 2D random-phase spectrum. Figure 5.3 shows surface plots

of various quantities for the 2D random-phase and 2D MHD models; the vertical scales

are for magnetic fields in units of B0 and lengths in units of λ. In the 2D random-phase

models, many wave modes are superimposed with appropriate amplitudes but random

phases. This leads to random, irregular structures. It is seen that the magnetic potential,

a(x, y), is much smoother in the 2D MHD model, because of the tendency of magnetic
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Figure 5.1: A 2D component of magnetic turbulence can be defined in terms of an
irregular potential function a(x, y), whose curl is b2D. We compare contours of constant
potential, i.e., magnetic flux surfaces, for (a) a 2D random-phase field, in which a is a
random function with a turbulent power spectrum, and (b) the same field after a 2D
MHD procedure. A darker shading indicates a higher value of a. For the 2D MHD field,
the contours of constant potential are superimposed with coloring to indicate (c) b2 and
(d) j2, for a current j = ∇× b. The 2D MHD field is a more physically realistic model,
reproducing aspects of the flux tube viewpoint, but with the current concentrated in
narrow current sheets. The present work examines the level of association between b2 or
j2 and sharp changes in field line connection over a distance of 1 AU, which relates to
dropouts (sharp density changes) in solar energetic particles as observed near Earth.

pressure to smooth variations in b2. Similarly, the 2D MHD magnetic energy b2 is seen

to typically vary less sharply (over longer distance scales) than the 2D random-phase

magnetic energy.

Variations in the magnetic field can be expressed in terms of the current,

j = ∇ × b, which for the 2D fields is exactly along the z-direction, so we will simply
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Figure 5.2: Omnidirectional power spectra of 2D random-phase and 2D MHD turbulent
magnetic field models, normalized to the same total energy. After the fixed-time 2D
MHD procedure, the high-wavenumber portion of the spectrum has been eroded by the
turbulent cascade, which affects the overall normalization.

use j to refer to the z-component. The 2D MHD procedure follows the scalar magnetic

potential a in Fourier space, and the current density is computed algebraically in k

space. For the 2D random-phase field we infer the current in the spatial domain by finite

differencing, which we call jFD.

For comparison purposes, Figures 5.3(e) and 5.3(f) show jFD in real space,

for both fields. In most locations, the current is greatly reduced in the 2D MHD model,

because of the tendency to smooth variations in the field magnitude. This is related to

rapid relaxation and suppression of nonlinearity (Servidio et al. 2008). However, inso-
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Figure 5.3: Comparison of quantities pertaining to two models of 2D magnetic turbu-
lence, 2D random-phase (left panels) and 2D MHD (right panels): (a)-(b) Magnetic
potential, a. (c)-(d) Magnetic energy, b2. (e)-(f) j2

FD, where the current j2D is deter-
mined from finite differencing of b. In the more physical 2D MHD model, a is smoother,
b varies more gradually, and j is concentrated in narrow current sheets.

far as the 2D MHD procedure is not continued long enough for all magnetic fields to

reconnect and change topology completely, strong persistent current features are gener-

ated associated with islands and at certain topological defects. These can be identified

as current cores or current sheets (see Figure 2 of Kittinaradorn et al. 2009; see also

Greco et al. 2009). Current cores are found at O-points, i.e., maxima or minima in the

potential, where the magnetic field goes to zero; this is a topological defect where the



Achara Seripienlert Local Trapping Boundaries in a 2D MHD + Slab Field / 62

magnetic pressure b2 cannot be uniform. In the flux tube view, current cores are at the

centers of flux tubes. Current sheets are typically found at X-points, i.e., saddle points

in the potential, where the field again goes to zero. In particular, when two regions of

plasma with oppositely directed magnetic fields flow toward each other, the magnetic

field lines can reconnect in a thin boundary region (Sweet 1958; Parker 1963a; Petschek

1964). Such sharp, localized changes in b correspond to the strongest currents in the 2D

MHD model, dominating the visual features in Figures 5.1(d) and 5.3(f).

Note that a view of distinct, independent flux tubes with sharp boundaries

would seem to require a sharp change in b and a strong current j all around the flux

tube boundaries. However, in our 2D MHD results, the current sheets are found to be

quite localized, encompassing only a small fraction of a flux surface (see Figure 5.1(d)),

which is physically reasonable given the attraction of parallel current structures. This is

also a feature of modern models and simulations of magnetic reconnection (Priest et al.

2000). In the 2D MHD model, one could say that neighboring flux tube structures are

coordinated to arrange a concentration of current in current sheets of limited extent,

which to some extent contradicts the view of independent flux tubes with sharp bound-

aries. Furthermore, if the boundary of a “flux tube” is defined as a flux surface that

includes a current sheet, one can have concentric flux tube boundaries, and boundaries

that along most of their surface have no sharp field gradients.

The results shown in Figure 5.3 are consistent with the scenario described

by Matthaeus & Montgomery (1980). 2D MHD exhibits a dual cascade of magnetic

excitation to larger scales (lower wavenumbers) and current density to smaller-scale,

coherent structures (at higher wavenumbers). Such phase coherence of Fourier modes

cannot be obtained in random-phase models.

It is interesting to quantitatively confirm that the 2D random-phase and 2D

MHD models have different statistical distributions of quantities related to the magnetic

field. For the simulated distributions of magnetic potential, magnetic field, and current,
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Table 5.1: Moments of various quantities for magnetic field models

Model Quantity 4th momenta 6th momentb

Slab random-phase bx 3.02 15.43
by 2.95 14.36

2D random-phase a 3.04 14.51
bx 3.06 15.94
by 2.93 13.98
jFD

c 3.01 15.18
2D MHD a 3.04 14.50

bx 2.76 12.37
by 2.67 11.02
jFD

c 7.65 331.28
j 6.80 242.05

aNormalized to second moment squared, e.g., 〈b4
x〉/(〈b2

x〉)2. The value would be 3 for a Gaussian
distribution. Italics indicate values significantly different from 3.

bNormalized to second moment cubed, e.g., 〈b6
x〉/(〈b2

x〉)3. The value would be 15 for a Gaussian distri-
bution. Italics indicate values significantly different from 15.

cFD indicates finite differencing.

we have determined the fourth moment (kurtosis) and, as a check, the sixth moment

as well (Table 5.1). The fourth moment is divided by the variance squared to yield a

dimensionless quantity, which would be 3 for a Gaussian distribution. Similarly, the sixth

moment is divided by the variance cubed, which would be 15 for a Gaussian distribution.

For a distribution with weaker tails than a Gaussian, the normalized fourth and sixth

moments would be lower than 3 and 15, respectively, and for a distribution with stronger

tails they would be higher. The uncertainty of our determination can be estimated

by comparing values for bx and by for all models. These should be the same because

the models are axisymmetric. From these we estimate uncertainties of about 0.08 and

1.19 for the fourth and sixth moments, respectively. In Table 5.1, for the slab and 2D

random-phase fields, all the quantities have fourth and sixth moments that are consistent

with Gaussian values. This is perhaps not surprising because random-phase quantities

represent the superposition of a large number of independent Fourier modes, so the

resulting quantity should have a Gaussian distribution by the central limit theorem.

On the other hand, some quantities in the 2D MHD model are significantly different
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from Gaussian values. The distribution of potential values is still consistent with a

Gaussian distribution, perhaps because the main effect of the 2D MHD procedure on

a is to smooth small-scale irregularities. However, the magnetic fields have fourth and

sixth moments that are significantly lower than Gaussian values, apparently due to the

physical process that the magnetic pressure becomes more uniform on small scales. The

currents are the most non-Gaussian. There is a reduction of the current in most places

but strong concentration in current sheets leads to strongly enhanced non-Gaussian tails

in the distribution (see also Wan et al. 2009). While the current j derived from Fourier

modes has lower moments than that derived from finite differencing of the field, both

have moments that are much higher than Gaussian values. The non-Gaussian 2D MHD

distributions of bx, by, and j arise from MHD and can be understood physically, so these

are taken to be more physically reasonable than the Gaussian distributions of random-

phase fields.

Here we have characterized the physically attractive features of the 2D MHD

model, and in particular how it incorporates elements of the flux tube view. Next, we

review the mechanisms that have been identified as underlying dropout features, and

consider whether the physically realistic features of 2D MHD simulations should actually

affect to those mechanisms.

5.2 Reasons for Dropout Features

If one accepts that SEP dropout features are associated with the filamenta-

tion of magnetic connection to the particle source (Mazur et al. 2000; Giacalone et al.

2000), then the next question is why such filamentation occurs with sharp boundaries,

given that field line diffusion over 1 AU is expected to lead to a substantial spread in

magnetic connection (Ruffolo et al. 2003, 2004).

One specific mechanism, developed in the context of the 2D+slab magnetic

field model, is topological trapping of field lines along flux surfaces of constant 2D po-

tential a(x, y), with eventual diffusive escape due to the slab fluctuations (Ruffolo et al.
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2003). In essence the mean field and 2D field are viewed as the main determinants of

field line motion, along such 2D flux surfaces, with slab fluctuations as a perturbation;

this approach is justified by the minor (15 to 20%) contribution of slab fluctuations to

the total fluctuation energy (Beiber et al. 1994; Bieber et al. 1996).

An additional mechanism is the suppression of diffusive escape when the 2D

field is strong or irregular (Chuychai et al. 2005, 2007). This mechanism has also been

demonstrated for particle orbits (Tooprakai et al. 2007). However, the demonstrations

of both mechanisms for turbulent fields have so far employed random-phase simulations.

While it is clearly more realistic to use 2D MHD fields in place of 2D random-

phase fields, it is not clear whether this will actually influence the mechanisms for dropout

features. In the flux tube view, it has been proposed that field lines are confined within

small-scale flux tubes (Borovsky 2008) (which is indeed largely the case for large-scale

flux ropes, e.g., in magnetic clouds). However, in our 2D MHD simulation results, flux

tube-like structures are found to have weak variations in magnetic fields across most of

their “boundaries.” Topological trapping applies to any flux surface, and it is not clear

that flux surfaces that contain current sheets over narrow portions should trap field lines

more effectively.

According to Chuychai et al. (2007), the flux surfaces that trap field lines

most effectively are those with high 2D magnetic energy, a key factor in the suppression

of slab diffusive escape, i.e., the LTBs. (The other key factor, the irregularity of the

2D equipotential contour, is not considered in the definition of LTBs, and is indeed less

important when using a 2D MHD model where such irregularity is greatly reduced; see

Figure 5.1.) The LTBs are not necessary found at boundaries of flux tube-like structures.

While it is physically more realistic to use a 2D MHD model that allows for current sheets,

it is not clear that the current sheets should play a major role in field line trapping, as

has been expected in the flux tube view (see also Chollet & Giacalone 2008).
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5.3 Associations with Dropout Features

The observed lack of a strong association between magnetic field changes

(such as current sheets) and dropout features has been expressed as a criticism of ex-

planations of dropouts in terms of turbulence (Chollet & Giacalone 2008), though it

actually poses more of a challenge to the flux tube viewpoint. Previous turbulence mod-

els expected dropout features to occur along LTBs, which encapsulate the two identified

mechanisms for field line trapping, but those models did not allow for strong current

sheets are not able to directly address such observations. We note that Mazur et al.

(2000) reported a general lack of an association with magnetic or plasma signatures.

This can be taken to rule out a strong association between the magnetic field intensity

and dropout features, and in the present work we examine whether turbulence models

predict such an association. Our simulation results for a 2D MHD model, which does

allow for current sheets, are shown in Figure 5.4. Given the mean magnetic field along ẑ

and two-component 2D+slab magnetic turbulence, we have traced 10,000 magnetic field

lines from initial locations within a circle of radius 0.1 AU. The scatter plots in Figure

5.4 show (x, y) locations of the same field lines after tracing them for a distance z of

1.0 AU. We also traced trajectories for protons of various energies. Up to ∼ 1 GeV, the

maps of where particle and field line trajectories intersect z = 1 AU are very similar as

shown in Figure 5.5. (Note that observations of dropouts have typically been for particles

below ∼ 1 MeV/nucleon.) Thus we conclude that the locus of field line trajectories is a

good proxy for where the SEPs will travel on their way out from the source. The sharp

gradients in the density of points in Figure 5.4 are locations where a spacecraft traversed

by solar wind with such a magnetic structure would observe dropouts. In Figure 5.4(a),

the scatter plot of field line locations is superimposed with contours of equal potential

a(x, y) as in Figure 5.1(b), for a regular spacing in a. It is clear that the boundaries

of field line connectivity are related to the equipotential contours, i.e., 2D flux surfaces.

This is evidence for topological trapping (Ruffolo et al. 2003). Though “islands” or flux
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Figure 5.4: For a mean magnetic field along ẑ and two-component magnetic turbulence,
we trace 10,000 magnetic field lines from initial locations within a circle of radius 0.1
AU. These scatter plots show (x, y) locations of field lines after a distance z of 1.0
AU, superimposed with indications of (a) contours of constant potential a(x, y) at equal
intervals ∆a (b) local trapping boundaries (LTBs; contours) (green), (c) b2 (red), and (d)
j2 (blue). Sharp gradients in magnetic connection to the source, i.e., dropout features,
are seen to be associated frequently with LTBs, sometimes with large b2, and infrequently
with current sheets.

tube-like structures are clearly seen, from this plot alone, it is not clear what determines

the location of dropout features. In several locations, they are clearly not associated with

the visual “boundary” of a flux rope [e.g., at the coordinates (0.34,0.43), (0.40,0.50), and

(0.47,0.39)].

Figure 5.4(b) superimposes the scatter plot with LTBs, particular flux sur-

faces where |b2D|2av has a maximum for the 2D component (see Eq. [4.6]). In numerous

locations (including the specific locations mentioned above), the LTBs correctly identify

which flux surfaces serve as boundaries in field line connectivity. Physically, these flux
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Figure 5.5: Scatter plots of magnetic field lines and particle trajectories in 2D MHD+slab
turbulence at z = 1.0 AU.

surfaces are particularly difficult for field lines to penetrate because of the suppression of

slab diffusion across contours where the 2D field is strong (Chuychai et al. 2005, 2007).

In many cases, field lines from the initial source region remain present (or absent) on

both sides of an LTB, so not all locations along LTBs are associated with dropouts.

Likewise, not all sharp boundaries in field line connectivity are associated with LTBs

(they can also be associated with the boundary of the initial source region, as deformed

by the mapping to 1 AU), but on the whole there is a reasonably good association.

Note that LTBs are often concentric, and thus do not serve as proper bound-

aries of islands or flux tubes. They are quite specific to field line connectivity and related



Fac. of Grad. Studies, Mahidol Univ. Ph.D. (Physics) / 69

phenomena such as dropouts. They are not space-filling, in the sense that some field

lines can travel out from the injection region without having to cross an LTB. This is an

important requirement for consistency with the high rate of diffusion observed over long

time scales (Kaghashvili et al. 2006).

We also examine whether the simulation results indicate an association with

strong turbulent magnetic fields. Such an association has not been obvious in observa-

tions (Mazur et al. 2000). Here we specifically examine an association with |b2D|2 (Figure

5.4(c)). In the simulation results, there is a degree of association, notably near the coor-

dinates (0.34,0.43), but it is substantially weaker than the association with LTBs. The

reason is that topological trapping naturally occurs along an entire flux surface, whereas

only some portions of an LTB have high 2D fields. In spacecraft observations, variations

in the 2D field strength are not readily isolated from other magnetic field fluctuations.

Thus a moderate degree of association between dropout features and |b2D|2 may be dif-

ficult to observe in the interplanetary medium, where there are independently varying

slab fluctuations, and the mean field itself varies over large scales.

Finally, Figure 5.4(d) shows that dropout features are typically not associ-

ated with the current sheets in this model. Thus the observed lack of association between

dropouts and current sheets or sharp magnetic field changes should not be construed as

in conflict with turbulence models.

It is perhaps vexing that the physical mechanisms for field line trapping result

in a better association with LTBs, which are mathematical constructs and difficult to

identify in magnetic field observations along a one-dimensional spacecraft trajectory,

than with current sheets, which are relatively easy to identify. However, nature is not

obliged to provide easy diagnostics.
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CHAPTER VI

COLLIMATION OF PARTICLE TRAJECTORIES IN
SPHERICAL GEOMETRY

In this chapter, we report on our results from tracing particle trajectories

in spherical geometry. We first simulated protons of low energy, and then of higher

energy. We found that for low energy particles, we can observe the dropout phenomenon

as in Cartesian geometry. For higher energy particles, we found something interesting,

the “collimation effect.” We perform computer simulations to confirm the theory of

collimation in 3 cases: particles of 10 GeV moving in a single 2D island, particles of

10 GeV moving in pure 2D turbulence, and finally magnetic field lines and particles of

various energies moving in 2D MHD + slab turbulence.

6.1 Low-Energy Particle Trajectories and Dropouts

In this section, we perform computer simulations tracing particle trajectories

of 1 MeV, 10 MeV and 1 GeV. The results are shown in Figure 6.8. For comparison,

we also trace magnetic field lines. Both particles and magnetic field lines were initially

uniformly distributed in a circle of radius 10 degrees. All particles began at r0 = 0.05 AU

as measured from the center of the Sun. The ratio of the root-mean-squared fluctuating

field b to B0 was 0.5.

From the results, we can conclude that SEPs of energy less than 1 GeV follow

field lines very closely, so “dropout” patterns can be modeled by field line tracing just

as well as particle tracing.
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Figure 6.1: Scatter plots of magnetic field trajectories and proton trajectories for various
energies at 1 AU. The upper left panel is a scatter plot of magnetic field lines. The upper
right panel is for 1 MeV protons. The bottom left panel is for 10 MeV protons and the
bottom right panel is for 1 GeV protons.

6.2 Collimation of Particle Beams in a Gaussian Flux Rope

6.2.1 Simulations

We demonstrate the collimation effect by performing computer simulations

for a simple case, i.e., a charged particle moving in a Gaussian flux rope. In this scenario,

a positive potential function can be written in the form:

a =
r1

r
A0 exp

(
−1− cos∆

σ2

)
, (6.1)

where ∆ is the angular distance which can be written in general as

cos∆ = cos(ϕ− ϕ0) cos Λ cos Λ0 + sin Λ sinΛ0. (6.2)
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Figure 6.2: Surface plot of a positive 2D Gaussian potential function.

Note that the vector potential is a = ar̂. In our case ϕ0 = Λ0 = 0, hence eq. (6.2)

becomes

cos∆ = cosϕ cosΛ. (6.3)

Taking the curl of eq. (6.1), we will get the magnetic field

b2D
ϕ = −r1

r2

A0 cosϕ sinΛ
σ2

exp
(
−1− cos∆

σ2

)
(6.4)

b2D
Λ =

r1

r2

A0 sinϕ

σ2
exp

(
−1− cos∆

σ2

)
. (6.5)

Now consider (b2D)2,

(b2D)2 =
[
r1

r2

A0

σ2
exp

(
−1− cos∆

σ2

)]2

(sin2 ϕ + cos2 ϕ sin2 Λ)

=
[
r1

r2

A0

σ2
exp

(
−1− cos∆

σ2

)]2

[(1− cos2 ϕ) + cos2 ϕ(1− cos2 Λ)]

=
[
r1

r2

A0

σ2
exp

(
−1− cos∆

σ2

)]2

(1− cos2 ϕ cos2 Λ)

=
[
r1

r2

A0

σ2
exp

(
−1− cos∆

σ2

)]2

(1− cos2 ∆), (6.6)
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Figure 6.3: Field line trapping in a positive 2D Gaussian magnetic island + slab turbu-
lence. [Image Credit: Chuychai et al. 2007]

hence

b2D =
r1

r2

A0 sin∆
σ2

exp
(
−1− cos∆

σ2

)
, (6.7)

We can find b2D
max from eq. (6.7):

db2D

d∆

∣∣∣∣
∆max

= 0 = cos ∆max exp
(

cos∆max − 1
σ2

)
− sin2 ∆max

σ2
exp

(
cos∆max − 1

σ2

)

(6.8)

then

sin2 ∆max = σ2 cos∆max

1− cos2 ∆max = σ2 cos∆max

cos2 ∆max + σ2 cos∆max − 1 = 0. (6.9)

Therefore

b2D
max =

r1

r2

A0

σ

√
cos∆max exp

(
−1− cos∆max

σ2

)
. (6.10)
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Figure 6.4: Scatter plots of 10 GeV proton trajectories at various distances in a positive
2D Gaussian island. The upper left panel shows initial positions of particles at r = 0.1
AU. The next panel is for particles at r = 0.5 AU. The bottom left panel is for particles
at r = 1.0 AU and the last panel is for particles at r = 2.0 AU.

Equation (6.9) has two roots:

cos∆max = −σ2

2
±

√
1 +

σ4

4
. (6.11)

We choose the positive root because cos∆ has values between -1 and 1 and the negative

root is outside that range. Then we find A0 by our choice of normalization of b2D
max,

b2D
max = 0.5Br, (6.12)

where

Br =
B0r

2
1

r2
. (6.13)
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Then

A0 = 0.5
σ√

cos∆max

B0r
2

r1
exp

(
1− cos ∆max

σ2

)
. (6.14)

In the simulations, we use σ = 5 degrees and r1 = 1.0 AU. We simulated

5,000 protons of energy 10 GeV. The particles were initially uniformly distributed in a

circle of radius 10 degrees. The results are shown in Figure 6.4. From the Figure, it is

seen that these positively charged particles are drawn toward the high potential region.

This effect depends on the strength of the magnetic field and energy of particles. We

find that for lower energy particles, the effect is weaker.

Figure 6.5: Surface plot of a negative 2D Gaussian potential function.

We also examine another extreme case, e.g., for a low potential function with

A0 → −A0. The magnetic field of this case is:

b2D
ϕ =

r1

r2

A0 cosϕ sinΛ
σ2

exp
(
−1− cos ∆

σ2

)
(6.15)

b2D
Λ = −r1

r2

A0 sinϕ

σ2
exp

(
−1− cos∆

σ2

)
. (6.16)
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Figure 6.6: Scatter plots of 10 GeV proton trajectories at various distances in a negative
2D Gaussian island. The upper left panel shows initial positions of particles at r = 0.1
AU. The next panel is for particles at r = 0.5 AU. The bottom left panel is for particles
at r = 1.0 AU and the last panel is for particles at r = 2.0 AU.

We also use the same initial condition as in the previous simulation. The

results are shown in Figure 6.6. These positive particles move away from the low poten-

tial.

6.2.2 Theory

There are two main physical reasons for the attraction of positive particles

to high-potential O-points: the curvature drift and gradient drift. Let us consider the
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β

K

B

Figure 6.7: Definitions of K and β for a conical flux rope.

curvature drift first. The curvature of a curve can be defined by

K =
Rc

R2
c

, (6.17)

where Rc is the radius of curvature and Rc points from the center of curvature to the

point of interest. The curvature drift is given by (Krittinatham 2009)

vc =
mv2

||
qB2

Rc ×B
R2

c

=
mv2

||
qB2

K×B. (6.18)

Let us further envision a particle moving with speed v|| along B̂, using the guiding center

approximation.

Let us model a conical “flux rope” or “island” of the 2D topology. For

convenience, let us define a spherical coordinate system so the polar axis passes through

the O-point. Let us also assume azimuthal symmetry, so there is no dependence on ϕ.

Let the magnetic field be

B = B0
r2
0

r2
r̂ + b(θ, r)ϕ̂. (6.19)

We define an aspect angle β:

tanβ =
b(θ, r)

B0r2
0/r2

. (6.20)

Figure 6.7 illustrates β and K for a conical flux rope. A way to calculate K is to consider

acceleration perpendicular to the velocity of a hypothetical particle moving exactly along
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B with constant speed v||,

a⊥ =
v2
||

Rc
,

1
Rc

=
a⊥
v2
||

, (6.21)

where a⊥ is inward. Therefore, K can be written as

K = −a⊥
v2
||

. (6.22)

We assume that v|| is fixed, so v̇|| is perpendicular to B. Substituting a⊥ = v̇|| into eq.

(6.22), we get

K = − v̇||
v2
||
. (6.23)

In order to find v|| and v̇||, we first write v|| in spherical coordinates:

v|| = v||(cosβr̂ + sinβϕ̂). (6.24)

Then v|| can be written in terms of Cartesian coordinates as:

v|| = v||(cosβ sin θ cosϕx̂ + cosβ sin θ sinϕŷ

+ cosβ cos θẑ − sinβ sinϕx̂ + sinβ cosϕŷ). (6.25)

The field line lies along a cone of constant θ, but ϕ and β can change when moving along

the field line. Then

v̇||
v||

= ϕ̇[cosβ sin θ(− sinϕx̂ + cosϕŷ)− sinβ(cosϕx̂ + sin ϕŷ)]

+ β̇[− sinβ sin θ(cosϕx̂ + sinϕŷ)− sinβ cos θẑ

+ cosβ(− sinϕx̂ + cosϕŷ)], (6.26)

or in terms of spherical coordinates,

v̇||
v||

= ϕ̇[cosβ sin θϕ̂− sinβ(sin θr̂ + cos θθ̂)] + β̇[− sinβr̂ + cosβϕ̂] (6.27)

Note that r sin θϕ̇ = vϕ = v|| sinβ. Replacing ϕ̇ = v|| sinβ/(r sin θ), and noting that

β̇ = v|| cosββ′ where β′ ≡ ∂β/∂r we have

K = − sinβ

r sin θ

(
cosβ sin θϕ̂− sinβ cos θθ̂ − sinβ sin θr̂

)
+cosββ′ [sinβr̂ − cosβϕ̂] (6.28)
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The magnetic field can be written in terms of β as

B
B

= sin βϕ̂ + cosβr̂. (6.29)

Then the θ-component of K×B/B is

(
K× B

B

)

θ

= −sinβ

r
− cosββ′ (6.30)

Finally, the curvature drift along θ̂ is

vc,θ = −
mv2

||
qB

(
sinβ

r
+ cos ββ′

)
. (6.31)

Note that in our simulations, b ∝ r−2, so from eq. (6.20) β is constant with r and

β′ = 0. Thus the drift is inward for β > 0, or a positive Gaussian. Another approach for

estimating the curvature drift (a Hamiltonian approach) can be found in Appendix C.

Now we consider the gradient drift. The gradient drift is given by (Kritti-

natham 2009)

vg =
mv2

⊥
2qB

B× ~∇B

B2
(6.32)

For the θ-component, we have

vg,θ =
mv2

⊥
2qB

sinβ

B

∂B

∂r
, (6.33)

where B = B0 sec β, then finally we have

vg,θ =
mv2

⊥
qB

sinβ

(
−1

r
+

tanβ

2
β′

)
(6.34)

for the gradient drift velocity. In our simulations, β′ = 0, and this is same as the result

for the curvature drift, except v2
|| → v2

⊥.

6.3 Simulation of Collimation of Particle Beams by 2D Turbulent Struc-
ture

6.3.1 Pure 2D Turbulence

We now consider the more complicated situation of particles in pure 2D

turbulence. In this case, the 2D structure is composed of islands of many sizes rather
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than a single island. Also the topology of islands is irregular. We generate the potential of

pure 2D random-phase turbulence by methods explained in Chapter 3. After generation

of the potential we then traced the motion of protons. In this case, we simulated 5,000

protons of energy 10 GeV. The results are shown in Figure 6.8. The particles were

initially uniformly distributed in a circle of radius 10 degrees. All particles began at r0

= 0.05 AU as measured from the center of the Sun. The ratio of the root-mean-squared

fluctuating field b to B0 is 1.

Figure 6.8: Scatter plots of 10 GeV proton trajectories at various distances. The upper
left panel is a contour plot of the vector potential. Darker color indicates higher potential
values and lighter color indicates lower potential values. The next panel is for particles
at r = 0.25 AU. The bottom left panel is for particles at 0.5 AU. The last panel is for
particles at 1.0 AU.

From the results, we can see that particles are dramatically drawn toward
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high potential and drifted away from low potential.

6.3.2 2D MHD + Slab Turbulence

Finally, we consider the most complicated situation, particles in 2D MHD +

slab turbulence. We start with 5,000 magnetic field lines and protons in a circle of radius

10 degrees. Proton energies were 10 MeV, 3 GeV, and 10 GeV. Both magnetic field lines

and particles started at r0 = 0.05 AU as measured from the center of the Sun. The ratio

of slab energy to 2D energy is 20:80 and ratio of the root-mean-squared fluctuating field

b to B0 is 0.5. The results of simulations are shown in Figure 6.9.

Figure 6.9: Scatter plots of magnetic field trajectories and proton trajectories for various
energies at 2 AU. The upper left panel is a scatter plot of magnetic field lines. The upper
right panel is for 10 MeV protons. The bottom left panel is for 3 GeV protons and the
bottom right panel is for 10 GeV protons.
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The magnetic field lines are spread out to both high and low potential regions.

Protons of 10 MeV tightly follow the field lines, so the scatter plot looks similar to that

for field lines. For protons of 3 GeV, there can be some accumulation at high potential.

Protons of 10 GeV form collimated beams at potential maxima. In this case, we observed

a lower collimation effect than for pure 2D turbulence, because particles can diffuse out

from the island due to slab turbulence.
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CHAPTER VII

CONCLUSIONS

Recent theoretical progress to explain SEP dropouts has identified mecha-

nisms for sharp changes in field line connection from a source to an observing region at

a distance of 1 AU, in the context of random-phase turbulence models. A viewpoint in-

volving “spaghetti” of independent flux tubes has also been proposed to explain various

discontinuities in solar wind plasma properties.

Here we improve a random-phase turbulence model by using a 2D MHD pro-

cedure. The 2D MHD model contains narrow current sheets and structures reminiscent

of flux tubes, with non-Gaussian statistics for b and j. To the extent that flux tubes

can be defined, they are not independent but rather coordinated with their neighbors to

avoid strong changes in magnetic field along their boundaries, except at current sheets

of narrow extent.

Our simulations indicate that magnetic field line trajectories to 1 AU serve as

good proxies for arrival locations of protons up to 1 GeV in energy. Thus sharp changes

in magnetic connection to a localized source are a proxy for SEP dropout features. We

identified LTBs as 2D flux surfaces with maximal |b2D|2av compared with neighboring

flux surfaces. Our simulation results indicate that dropout features are frequently asso-

ciated with LTBs, sometimes associated with strong 2D magnetic fluctuations, and only

infrequently associated with current sheets. The mechanisms identified in the context of

random-phase two-component fields can still explain dropout features with the 2D MHD

model. In sum, we have developed a more realistic model of turbulent fluctuations in

the solar wind, including current sheets, which is consistent with the poor association

observed between dropout features and intense magnetic fields or currents.

Simulations in spherical geometry give us an interesting result: a “collima-
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tion” effect. This is a process in which positively charged particles are shepherded to

form beams along 2D potential maxima. The process is caused by curvature and gradi-

ent drifts. This should occur for relativistic SEP ions. Such particles are driven away

from potential minima. We have demonstrated the effect of collimation in three cases: a

single 2D Gaussian island, pure 2D turbulence and 2D+slab turbulence. We found that

for protons of energy ≥ 3 GeV, the collimation effect can be observed. For future work,

we will investigate whether this effect can be applied to understand observations of the

highest energy SEPs.
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APPENDIX A

NON-DIMENSIONALIZATION

The motion of a charged particle in a uniform magnetic field is governed by

the Newton-Lorentz equation, which is

dv
dt

=
q

γm
v ×B. (A.1)

In terms of components, we have

dvx

dt
=

q

γm
(vyBz −Byvz) (A.2)

dvy

dt
=

q

γm
(vzBx −Bzvx) (A.3)

dvz

dt
=

q

γm
(vxBx −Bxvy). (A.4)

We normalized these equations by the speed of light c, the mean magnetic field B0, and

the slab bendover scale λ. In order to do that we use dimensionless variables:

v∗ =
v
c
, (A.5)

B∗ =
B
B0

, (A.6)

t∗ =
t

τc
, (A.7)

where τc = λ/c. Substituting eqs. (A.5) - (A.7) into (A.2) - (A.4), we get

dv∗x
dt∗

=
qB0τc

γm

(
v∗yB

∗
z −B∗

yv∗z
)
, (A.8)

dv∗y
dt∗

=
qB0τc

γm
(v∗zB

∗
x −B∗

zv∗x) , (A.9)

dv∗z
dt∗

=
qB0τc

γm

(
v∗xB∗

y −B∗
xv∗y

)
. (A.10)

We introduce α = qB0τc/(γm), and then eqs. (A.8) - (A.10) become

dv∗x
dt∗

= α(v∗yB
∗
z −B∗

yv∗z), (A.11)

dv∗y
dt∗

= α(v∗zB
∗
x −B∗

zv∗x), (A.12)

dv∗z
dt∗

= α(v∗xB∗
y −B∗

xv∗y). (A.13)
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This method can be used both in Cartesian and spherical geometry.
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APPENDIX B

DERIVATION OF EQUATIONS OF PARTICLE
MOTION IN SPHERICAL GEOMETRY

In terms of our preferred coordinates (ϕ,Λ, r), the Lagrangian for a charged

particle in a static magnetic field is (Ruffolo 2002)

L =
m

2
(ṙ2 + r2Λ̇2 + r2 cos2 Λϕ̇2) + qṙAr + qrΛ̇AΛ + qr cosΛϕ̇Aϕ. (B.1)

We find pi ≡ ∂L/∂q̇i:

pϕ =
∂L
∂ϕ̇

= mr2 cos2 Λϕ̇ + qr cosΛAϕ (B.2)

pΛ =
∂L
∂Λ̇

= mr2Λ̇ + qrAΛ (B.3)

pr =
∂L
∂ṙ

= mṙ + qAr. (B.4)

Then ϕ̇, Λ̇, and ṙ are

ϕ̇ =
pϕ − qr cosΛAϕ

mr2 cos2 Λ
(B.5)

Λ̇ =
pΛ − qrAΛ

mr2
(B.6)

ṙ =
pr − qAr

m
. (B.7)

The Hamiltonian, H ≡ ∑
piq̇i − L, is

H =
(pr − qAr)2

2m
+

(pΛ − qrAΛ)2

2mr2
+

(pϕ − qr cosΛAϕ)2

2mr2 cos2 Λ
, (B.8)
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where A depends on the position. Then Hamilton’s equations are

ṗϕ = −∂H

∂ϕ
=

(pr − qAr)
m

(
q
∂Ar

∂ϕ

)
+

(pΛ − qrAΛ)
mr

(
q
∂AΛ

∂ϕ

)

+
(pϕ − qr cosΛAϕ)

mr cosΛ

(
q
∂Aϕ

∂ϕ

)
(B.9)

ṗΛ = −∂H

∂Λ
=

(pr − qAr)
m

(
q
∂Ar

∂Λ

)
+

(pΛ − qrAΛ)
mr2

(
qr

∂AΛ

∂Λ

)

+
(pϕ − qr cosΛAϕ)

mr2 cos2 Λ

(
−qr sin ΛAϕ + qr cosΛ

∂Aϕ

∂Λ

)

− (pϕ − qr cosΛAϕ)2

(mr2 cos2 Λ)2
(mr2 cosΛ sin Λ) (B.10)

ṗr = −∂H

∂r
=

(pr − qAr)
m

(
q
∂Ar

∂r

)
+

(pΛ − qrAΛ)
mr2

(
qAΛ + qr

∂AΛ

∂r

)

+ mr
(pΛ − qrAΛ)2

(mr2)2

+
(pϕ − qr cosΛAϕ)

mr2 cos2 Λ

(
q cosΛAϕ + q cosΛr

∂Aϕ

∂r

)

+
(pϕ − qr cosΛAϕ)2

mr3 cos2 Λ
(B.11)

ϕ̇ =
∂H

∂pϕ
=

pϕ − qr cosΛAϕ

mr2 cos2 Λ
(B.12)

Λ̇ =
∂H

∂pΛ
=

pΛ − qrAΛ

mr2
(B.13)

ṙ =
∂H

∂pr
=

pr − qAr

m
. (B.14)

Recall that the velocity components are defined by

vϕ = r cosΛϕ̇ (B.15)

vΛ = rΛ̇ (B.16)

vr = ṙ. (B.17)

Writing (B.2) - (B.4) in terms of vi,

pϕ = mr cosΛvϕ + qr cosΛAϕ (B.18)

pΛ = mrvΛ + qrAΛ (B.19)

pr = mvr + qAr. (B.20)
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Then taking derivatives with respect to time we get

ṗϕ = m(cosΛvrvϕ − sinΛvΛvϕ + r cosΛv̇ϕ)

+ q

[
cosΛvrAϕ − sinΛvΛAϕ + r cosΛ

(
ṙ
∂Aϕ

∂r
+ Λ̇

∂Aϕ

∂Λ
+ ϕ̇

∂Aϕ

∂ϕ

)]
(B.21)

ṗΛ = mvrvΛ + mrv̇Λ + qvrAΛ + qr

(
ṙ
∂AΛ

∂r
+ Λ̇

∂AΛ

∂Λ
+ ϕ̇

∂AΛ

∂ϕ

)
(B.22)

ṗr = mv̇r + q

(
ṙ
∂Ar

∂r
+ Λ̇

∂Ar

∂Λ
+ ϕ̇

∂Ar

∂ϕ

)
(B.23)

We can find the magnetic field from taking the curl of the vector potential A,

∇×A =
1

r2 cos Λ

(
∂Ar

∂Λ
− ∂(rAr)

∂r

)
r cosΛϕ̂,

+
1

r2 cos Λ

(
∂(r cosΛAϕ)

∂r
− ∂Ar

∂Ar

)
rΛ̂,

+
1

r2 cos Λ

(
∂(rAΛ)

∂ϕ
− ∂(r cosΛAϕ)

∂Λ

)
r̂, (B.24)

or in terms of components,

Bϕ =
1
r

(
∂Ar

∂Λ
− ∂(rAΛ)

∂r

)
=

1
r

∂Ar

∂Λ
− AΛ

r
− ∂AΛ

∂r
, (B.25)

BΛ =
1
r

(
∂(rAϕ)

∂r
− 1

cosΛ
∂Ar

∂ϕ

)
=

Aϕ

r
+

∂Aϕ

∂r
− 1

r cosΛ
∂Ar

∂ϕ
, (B.26)

Br =
1

r cosΛ

(
∂AΛ

∂ϕ
− ∂(cosΛAϕ)

∂Λ

)
=

1
r cosΛ

∂AΛ

∂ϕ
+

sinΛAϕ

r cosΛ
− 1

r

∂Aϕ

∂Λ
.(B.27)

Equating eqs. (B.9) - (B.11) with eqs. (B.21) - (B.23), using (B.25) - (B.27) and rewriting

in terms of v̇i, we will get

vr

(
q
∂Ar

∂ϕ

)
+ vΛ

(
q
∂AΛ

∂ϕ

)
+ vϕ

(
q
∂Aϕ

∂ϕ

)
= m(cosΛvrvϕ − sinΛvΛvϕ + r cosΛv̇ϕ)

+ q cos ΛvrAϕ − q sinΛvΛAϕ + qr cosΛvr
∂Aϕ

∂r

+ q cos ΛvΛ
∂Aϕ

∂Λ
+ qvϕ

∂Aϕ

∂ϕ

r cosΛv̇ϕ = vr

(
q

m

∂Ar

∂ϕ

)
+ vΛ

(
q

m

∂AΛ

∂ϕ

)
− q

m
cosΛvrAϕ +

q

m
sinΛvΛAϕ

− q

m
r cos Λvr

∂Aϕ

∂r
− q

m
cosΛvΛ

∂Aϕ

∂Λ
− cosΛvrvϕ + sinΛvΛvϕ
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v̇ϕ =
q

m

[
vr

(
1

r cosΛ
∂Ar

∂ϕ
− Aϕ

r
− ∂Aϕ

∂r

)
+ vΛ

(
1

r cosΛ
∂AΛ

∂ϕ
+

sinΛAϕ

r cosΛ
− 1

r

∂Aϕ

∂Λ

)]

− vrvϕ

r
+

vΛvϕ

r cotΛ

v̇ϕ = −vrvϕ

r
+

vΛvϕ

r cotΛ
+

q

m
(vΛBr −BΛvr) (B.28)

vr

(
q
∂Ar

∂Λ

)
+ vΛ

(
q
∂AΛ

∂Λ

)
+ vϕ

(
−q

sinΛ
cosΛ

Aϕ + q
∂Aϕ

∂Λ

)
− v2

ϕm
sinΛ
cosΛ

= mvrvΛ + mrv̇Λ + qvrAΛ + qrvr
∂AΛ

∂r
+ qvΛ

∂AΛ

∂Λ
+ q

vϕ

cosΛ
∂AΛ

∂ϕ

v̇Λ =
vr

r

(
q

m

∂Ar

∂Λ

)
+ vϕ

(
− q

m

sinΛ
r cos Λ

Aϕ +
q

m

1
r

∂Aϕ

∂Λ

)
− v2

ϕ sinΛ
r cosΛ

− vrvΛ

r
− q

m
vr

AΛ

r
− q

m
vr

∂AΛ

∂r
− q

m

vϕ

r cosΛ
∂AΛ

∂ϕ

=
q

m

[
vr

(
1
r

∂Ar

∂Λ
− AΛ

r
− ∂AΛ

∂r

)
+ vϕ

(
− sinΛ

r cosΛ
Aϕ +

1
r

∂Aϕ

∂Λ
− 1

r cosΛ
∂AΛ

∂ϕ

)]

− v2
ϕ

r cotΛ
− vrvΛ

r

v̇Λ = − v2
ϕ

r cotΛ
− vrvΛ

r
+

q

m
(vrBϕ − vϕBr) (B.29)

vr

(
q
∂Ar

∂r

)
+

vΛ

r

(
qAΛ + qr

∂AΛ

∂r

)
+ m

v2
Λ

r
+ m

v2
ϕ

r
+

vϕ

r cosΛ

(
q cosΛAϕ + q cos Λr

∂Aϕ

∂r

)

= mv̇r + qvr
∂Ar

∂r
+ q

vΛ

r

∂Ar

∂Λ
+ q

vϕ

r cosΛ
∂Ar

∂ϕ

v̇r =
q

m

[
vΛ

(
AΛ

r
+

∂AΛ

∂r
− 1

r

∂Ar

∂Λ

)
+ vϕ

(
Aϕ

r
+

∂Aϕ

∂r
− 1

r cosΛ
∂Aϕ

∂r

)]

+
v2
Λ

r
+

v2
ϕ

r

v̇r =
v2
Λ

r
+

v2
ϕ

r
+

q

m
(vϕBΛ − vΛBϕ). (B.30)

We take special relativity into account by converting m to γm:

v̇ϕ = −vrvϕ

r
+

vΛvϕ

r cot Λ
+

q

γm
(vΛBr −BΛvr) (B.31)

v̇Λ = − v2
ϕ

r cotΛ
− vrvΛ

r
+

q

γm
(vrBϕ − vϕBr) (B.32)

v̇r =
v2
Λ

r
+

v2
ϕ

r
+

q

γm
(vϕBΛ − vΛBϕ). (B.33)
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In the program, we solve eqs. (B.31) - (B.33) and the following forms of eqs. (B.15) -

(B.17).

ϕ̇ =
vϕ

r cosΛ
(B.34)

Λ̇ =
vΛ

r
(B.35)

ṙ = vr. (B.36)
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APPENDIX C

CURVATURE DRIFT IN A CONICAL FLUX ROPE:
HAMILTONIAN APPROACH

Suppose a charged particle moves in a conical flux rope. We will set up B and

A for twist along conical flux surfaces. As in Section 6.1.2, we use spherical coordinates

with θ = 0 along the central axis of the conical flux rope. Here we use a Hamiltonian

approach to derive the same result for the curvature drift as in Section 6.1.2.

For (B0r
2
0/r2)r̂, we use A along ϕ̂:

1
r sin θ

(
∂(sin θAϕ)

∂θ

)
= Br =

B0r
2
0

r2

∂(sin θAϕ)
∂θ

=
B0r

2
0

r
sin θ

− sin θAϕ =
B0r

2
0

r
cos θ

Aϕ = −B0r
2
0 cot θ

r
. (C.1)

Then we add twist along conical flux surfaces, bϕ(θ, r), using Ar(θ, r).

Recalling the Hamiltonian for a charged particle moving in a magnetic field,

eq. (B.8), we obtain

H =
(pr − qAr)2

2m
+

(pθ − qrAθ)2

2mr2
+

(pϕ − qr sin θAϕ)2

2mr2 sin2 θ
. (C.2)

In this case, our Hamiltonian becomes

H =
[pr − qAr(θ, r)]2

2m
+

p2
θ

2mr2
+

(pϕ + qB0r
2
0 cos θ)2

2mr2 sin2 θ
. (C.3)
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The Hamilton equations are

ṙ =
∂H

∂pr
=

pr − qAr

m
(C.4)

θ̇ =
∂H

∂pθ
=

pθ

mr2
(C.5)

ϕ̇ =
∂H

∂pϕ
=

pϕ + qB0r
2
0 cos θ

mr2 sin2 θ
(C.6)

ṗr = −∂H

∂r
= q

∂Ar

∂r

[pr − qAr(θ, r)]
m

+
p2

θ

mr3
+

(pϕ + qB0r
2
0 sin θ)2

mr3 sin2 θ
(C.7)

ṗθ = −∂H

∂θ
= q

∂Ar(θ, r)
∂θ

[pr − qAr(θ, r)]
m

+
qB0r

2
0(pϕ + qB0r

2
0 cos θ)

mr2 sin θ

+
cos θ(pϕ + qB0r

2
0 cos θ)2

mr2 sin3 θ
(C.8)

ṗϕ = −∂H

∂ϕ
= 0. (C.9)

Considering eq. (C.6), we can write

pϕ = mr2 sin2 θϕ̇− q cos θB0r
2
0. (C.10)

We also have

r sin θϕ̇ = vϕ = v|| sinβ. (C.11)

Using eq. (C.11), then eq. (C.10) can be written as

pϕ = constant = mr sin θv|| sinβ − q cos θB0r
2
0. (C.12)

Taking the time derivative of eq. (C.12), assuming as in section 6.1.2 that v|| is constant,

ṗϕ = mṙ sin θv|| sinβ + mr cos θθ̇v|| sinβ

+ mr sin θv|| cosββ̇ + q sin θθ̇B0r
2
0

= 0. (C.13)

Comparing the two terms with θ̇, and noting that B0r
2
0 = Brr

2, we have

q sin θB0r
2
0

mr cos θv|| sinβ
=

γv

v||

r

RL

tan θ

sinβ
, (C.14)

where RL is the gyroradius along the axis of the conical flux rope, for B = Brr̂. We

assume r À RL, so the second term with θ̇ in eq. (C.13) dominates over the first. We
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use ṙ = v|| cosβ and β̇ = v|| cosββ′. Then eq. (C.13) becomes

q sin θθ̇Brr
2 = −mv2

|| cosβ sin θ sinβ −mr sin θv2
|| cos2 ββ′ (C.15)

We can write θ̇ at the r of interest, using r0 = r and Br = B cosβ, as

θ̇ = −
mv2

||(sinβ + r cosββ′)

qBr2
. (C.16)

Then vθ can be written as

vθ = rθ̇ = −
mv2

||(sinβ + r cosββ′)

qBr
, (C.17)

which is same as the curvature drift calculated in Section 6.1.2.



Fac. of Grad. Studies, Mahidol Univ. Ph.D. (Physics) / 103

BIOGRAPHY

NAME Ms. Achara Seripienlert

DATE OF BIRTH 26th August 1981

PLACE OF BIRTH Bangkok, Thailand

INSTITUTIONS ATTENDED Thammasat University, 1999–2002

Bachelor of Science (Physics)

Mahidol University, 2003–2006

Master of Science (Physics)

Mahidol University, 2006–Present

Doctor of Philosophy (Physics)

HOME ADDRESS 293 Bangkok-Nonthaburi Road, Bangsue

Bangkok 10800 Thailand

E-MAIL achara.seri@gmail.com




