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ABSTRACT 

 This thesis aims to study various censored data techniques for effective 
prediction of nasopharyngeal carcinoma (NPC) recurrence. Clinical data and time to 
recurrence of NPC patients were collected from Ramathibodi Hospital, Thailand. 
Recurrence factors were then selected by univariate and multivariate analysis. The 
results showed that only 9 factors related to the NPC recurrence. They were N stage, 
smoking, alcohol, family history of cancer, neck fibrosis, IgG, IgA, radiation dose, and 
KPS. These factors were used in predictive model development. In the study, three 
ANN based censored data techniques are mainly investigated. They are Street, 
PLANN, and our proposed technique. The results showed that our proposed technique 
provided the highest predictive performances compared with the other two techniques 
and Cox regression model. All ANN based techniques outperformed the Cox model. 
Hosmer-Lemeshow goodness-of-fit test was then applied. The results showed that the 
chi-square statistic for all models was less than 15.51. This means that every model 
fitted well.  
 Survival curves for each predictive model were then generated and 
compared. The results showed that the curve of the Cox model was obviously different 
from the others. This is confirmed by the log-rank test in which only the Cox model is 
significantly different from the Kaplan-Meier model. With the proposed technique, 
four main problems existing in the previous censored data techniques can be handled. 
The problems include scalability, generation of a non-monotonic survival curve, 
specification of unknown recurrence status, and data replication problems. 
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จมูกอยางมีประสิทธิภาพ 
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บทคัดยอ 
 งานวิจัยนี้ไดศึกษาเทคนิคในการแกปญหาขอมูลขาดหายเพื่อใชในการทํานายการ
กลับมาเปนซ้ําของผูปวยโรคมะเร็งชองคอหลังโพรงจมูก ซ่ึงขอมูลทางคลินิกและเวลาถูกเก็บ
รวบรวมมาจากโรงพยาบาลรามาธิบดี ประเทศไทย โดยตัวแปรเหลานี้จะถูกเลือกใหเหลือเพียงตัว
แปรที่สําคัญดวยวิธีการวิเคราะหตัวแปรเดี่ยว (Univariate analysis) และการวิเคราะหตัวแปรเชิงพหุ 
(Multivariate analysis) ผลจากการวิเคราะหทําใหเหลือตัวแปรที่สําคัญ 9 ตัวไดแก N stage, ประวัติ
การสูบบุหร่ี, ประวัติการดื่มสุรา, ประวัติการเปนมะเร็งในครอบครัว, การปรากฏของพังผืดบริเวณ
คอหลังการฉายรังสี, IgG, IgA, ปริมาณรังสีรักษาและ KPS  งานวิจัยนี้ไดทําการทดลองเปรียบเทียบ
ประสิทธิภาพการพยากรณของโมเดลพยากรณดวยเครือขายระบบประสาทเทียมสามรูปแบบ ไดแก
โมเดลพยากรณของ Street โมเดลพยากรณของ PLANN และโมเดลการพยากรณที่เสนอขึ้นมาใหม 
ซ่ึงผลการศึกษาพบวาโมเดลพยากรณที่เสนอขึ้นมาใหมใหประสิทธิภาพการทํานายที่ดีกวาโมเดล
พยากรณอื่นๆ รวมทั้งดีกวาการใชโมเดล Cox regression ซ่ึงเปนโมเดลทางสถิติ และในการทดลอง
ยังพบวาการพยากรณของเครือขายระบบประสาทเทียมทั้งสามรูปแบบมีประสิทธิภาพสูงกวาโมเดล 
Cox regression เมื่อทดสอบความสมบูรณของโมเดลดวยคาไคสแควรจาก Hosmer-Lemeshow 

พบวาทุกโมเดลใหคาไคสแควรนอยกวา 15.51 ซ่ึงแปลวาทุกโมเดลมีความเหมาะสม 
 ในการทดสอบประสิทธิภาพของโมเดลเชิงกลุมโดยการพลอตกราฟการรอดชีวิตทีไ่ด
จากแตละวิธี พบวากราฟของ Cox โมเดลใหการทํานายที่แตกตางจากกราฟการรอดชีวิตของขอมูล
จริง และเมื่อทดสอบความแตกตางดวย Log-rank พบวา Cox โมเดลใหการทํานายเชิงกลุมที่แตกตาง
จาก Kaplan-Meier อยางมีนัยสําคัญทางสถิติ จากงานวิจัยนี้พบวาเทคนิคที่นําเสนอสามารถแกไข 4 
ปญหาที่มักเกดิขึ้นในวิธีการแกปญหาขอมลูขาดหายในอดีต โดยปญหาทั้ง 4 ไดแกปญหาในการ 
Scalable ของโมเดล, ปญหาเสนโคงการรอดชีวิตที่ไมลดลงตามเวลา, ปญหาขอมูลขาดหายและ
ปญหาการ Replication ของขอมูล 
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CHAPTER I 

INTRODUCTION 

 

  

1.1  Problem Statement 
 Nasopharyngeal carcinoma (NPC) is frequently discovered in Thailand, 

China, Hong Kong, and Taiwan. Though it is in the hidden location; nasopharynx, 

NPC is curable when detected early. After a treatment, each patient must be followed 

up regularly because it can redevelop. Early detection of the recurring cancer can 

reduce patient mortality and costs. For low-risk patients, however, frequent 

examination may be excessive and increase unnecessary expenses. Prediction of NPC 

recurrence for each patient is thus required in which follow-up time can be set 

appropriately. In addition, hospital resources, time and cost can be effectively 

managed.  

 Survival analysis has been extensively used to predict the presence of 

redeveloping cancer. In the analysis, Kaplan-Meier and Cox proportionally hazard 

model are mainly employed [1]-[2]. The Kaplan-Meier technique can only predict the 

recurring cancer in a group manner. This is different from the Cox model in which 

individual prediction can perform. However, for the Cox regression analysis, strong 

assumption with the proportional hazard ratio exists. ANN based prediction technique 

is proposed to overcome those limitations [3]-[4]. It has been shown that time to 

cancer recurrence was efficiently predicted for each patient [4]. In the prediction, 

relevant clinical data and recurring time must be collected. Due to various reasons, 

after a treatment, some patients may withdraw from the follow-up before the end of 

the study. Some of the other patients may not have redeveloping cancer within the 

study period. For those cases, the recurring time cannot be correctly specified. When 

the missing information is time to an event of interest, the missing data is called the 

censored data. In general, there are 3 types of censored data, i.e. types I – III [5]. Type 

I censoring arises when the cancer does not redevelop during the study period. For 

type II censoring, it occurs when patients withdraw from the follow-up before the 
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study ends. When the collected data set contains both type I and type II censoring 

observations, the missing data are called type III censoring. Though ANN based 

predictive model is effective, censored data cannot be directly utilized.  

ANN based on censored data technique can be categorized into 3 types. 

There are single-point [6], multiple-point [7] and time-coded models [4,8], as 

explained in chapter II. For the single-point model, a neural network which predicts 

the presence or absence of cancer recurrence within a specific time point is generated. 

For prediction of several time points, multiple models must be used. Scalability 

problem thus arises. This is different from the multiple-point model in which the 

number of outputs is equal to the number of time points of interest. Type II censoring 

data cannot be used in this model because the status of cancer recurrence after the 

censoring time cannot be correctly specified. Street [7] assigns survival probabilities 

from the Kaplan-Meier model to the unknown statuses. Though previously proposed 

models provide efficient prediction, generated survival probabilities are not 

monotonically decreasing with time. Monotonically decreasing survival curve is 

necessary in the survival analysis because it truly represents the actual survival 

phenomena. For the time-coded model, it is purposed by Ravdin [4]. Time is used as 

an additional input of the neural network. A single output represents survival status at 

a given time (0 is being alive, 1 is death). Since time is used as an input, each data is 

replicated until the most recent follow-up time. This technique suffers from the size of 

the training data which will grow enormously when the number of records is large. 

Overtraining problem may arise. Biganzoli [8] proposes PLANN model which is 

based on Ravdin’s technique. Hazard rate is used as the target in order to guarantee 

monotonically decreasing survival curve. However, the data replication problem still 

exists. 

 From the previous studies, censoring data techniques encounter with four 

main problems, i.e., scalability problem, unknown statuses for type II censoring data 

when used with the multiple-point model, non-monotonic survival curve, and data 

replication problem. This thesis introduces a new censored data technique that can 

handle those problems simultaneously. The proposed model is based on the multiple-

point model. Hazard rate is used as a target in order to provide monotonically 

decreasing survival curve as in the PLANN model. 
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1.2 Thesis Objectives 
 1.2.1 To investigate performances of previously proposed censored data in 

tackling the following problems: (1) Monotonic survival curve, (2) replication 

problem, (3) type II censoring data, and (4) scalability. 

 1.2.2 To develop a new censored data technique that can handle all above 

problems simultaneously. 

 1.2.3 To compare performances of the proposed technique with the 

previous ones in prediction of nasopharyngeal carcinoma recurrence problem. 

 

 

1.3 Thesis Scope 
 This thesis will examine performances of previously proposed censored 

data techniques in prediction of nasopharyngeal carcinoma recurrence. A new 

technique that can handle 4 important issues is proposed. The issues compose of (1) 

monotonic survival curve, (2) replication problem, (3) type II censoring data, and (4) 

scalable problem. 

 

 

1.4  Expected Results 
 Outcome of this thesis is to gain a new censored data technique that can 

tackle 4 problems existing in the previously proposed techniques.  The problems 

include scalability problem, type II censoring data, non-monotonic survival curve, and 

replication problem. The predictive model generated from the proposed technique can 

provide monotonic survival curve and use type II censoring data. It can scale well in a 

more complicated problem and do not possess replication problem. 
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CHAPTER II 

LITERATURE REVIEWS 

 

 

2.1  Nasopharyngeal Carcinoma  
Nasopharyngeal carcinoma (NPC) is one of head and neck cancers 

frequently discovered in Southeast Asia including China, Hong Kong, and Thailand 

etc. In 2005, it is in the sixth place of common male cancers and approximately 5% of 

all cancers found in Thailand [9].  

NPC arises when the epithelium cells of the nasopharynx are out-of-

control or grow in the abnormal way. Normally, NPC is difficult to early detect 

because it appears in the hidden location – nasopharynx. Anatomy of nasopharynx 

[10] is illustrated in Figure 2.1. The nasopharyngeal cavity is a cuboidal structure 

covered by mucociliary columnar epithelium. The posterior and superior borders are 

formed by bone structure of the basiocciput, basisphenoid, and the first two cervical 

vertebrae. The inferior and anterior boundaries are the upper surface of soft palate and 

the posterior choanae respectively. The lateral walls are connected with Torus tubarii 

and Rosenmuller’s fossa which is the most common NPC site. 

 

 
Figure 2.1 Anatomy of nasopharynx  
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 Diagnosis of this cancer is based on clinical examination and histological 

confirmation. Both computed tomography (CT) and magnetic resonance imaging 

(MRI) are generally used to detect local and regional extension of the tumor which is 

important in the cancer staging. MRI provides better information about extension and 

intracranial involvement than CT scan. To investigate the bone invasion, however, CT 

scan is more suitable [10,11]. 

 Nasopharynx is difficult to access. In addition, it is close to blood vessels 

and nerves. Surgery is thus rarely performed. Radiotherapy and chemotherapy are 

normally applied. Because this cancer can recur, after a treatment, the patient must be 

followed up for checking the cancer recurrence continually.    

 

 

2.2 Prognostic Factors of NPC Development 
 From the literature survey, the following factors have been reported that 

they related to NPC development. 

1. Age [12,13]: In general, NPC patients can be categorized into two 

different groups according to their incident rate. The first group is the 

bimodal age distribution. It is found in countries that have low to medium 

incident rates. The age distribution is composed of two peaks belonging to 

late childhood (aged 10-20 years) and patients aged between 55 and 65 

years. The second group is the plateau age distribution. It is found in 

countries that have high incident rates such as China [9]. 

2. Sex: NPC is discovered in male more than female with the ratio of 2-

3:1[13]. 

3. Cancer genetics: People with a family history of NPC have higher risk of 

cancer development [9]. 

4. Nationality: Chinese people who live in Southeast Asia and Eskimo have 

higher risk of NPC [9]. 

5. Epstein-Barr virus (EBV): Nasopharyngeal cancer cells usually contain 

EBV. It is thus one of the suspicious recurrence factors [9, 13]. 
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6. TNM staging: Many studies reported that TNM stage associated with 

nasopharyngeal carcinoma recurrence [12 to 15].  According to AJCC 

system, TNM stage can be defined as follows. 

T Stage: 

T1 Tumor confined to the nasopharynx 

T2 Tumor extends to soft tissue of oropharynx and/or nasal fossa 

  T2a Without parapharyngeal extension 

  T2b With parapharyngeal extension 

T3 Tumor invades bone structures and/or paranasal sinuses 

T4 Tumor with intracranial extension and/or involvement of the cranial 

nerves, infra- temporal fossa, hypopharynx, orbit 

 

 N Stage: 

NX Regional lymph nodes cannot be assessed 

N0 No regional lymph nodes metastasis 

N1 Unilateral metastasis in lymph node (s), 6 cm or less in greatest 

dimension, above the clavicular fossa 

N2 Bilateral metastasis in lymph none (s), 6 cm or less in greatest 

dimension, above the clavicular fossa 

N3 Metastasis in a lymph node (s)  

  N3a Greater than 6 cm in dimension 

  N3d In the supraclavicular fossa 

 

M Stage: 

MX Present of distant metastasis cannot be assessed 

M0 No distant metastasis 

M1 Distant metastasis present 

 

7. Cancer Stages: NPC stages can be determined from tumor size (T), 

regional lymph node involvement (N), and distant metastasis (M). Many 

research projects found that the cancer stages related to developing of NPC 

[12,13,15]. In this thesis, AJCC system will be used for NPC staging. With 
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this system, there exist 4 cancer stages, i.e., stage I to stage IV. Patients 

with the stage IV have the highest severity. Each stage can be determined 

from 

Stage 0:    Tis N0 M0 

Stage I:     T1 N0 Mo 

Stage II:   T2 N0 M0 

Stage III:  T3 N0, T1-3 N1, M0 

Stage IV:  T4 N0-1 M0 or Any T N2-3 M0 or Any T any N M1 

8. Histological cell type: From Thongchai [9], there are 3 cell types of NPC. 

They are well- differentiated, poor-differentiated, and undifferentiated 

carcinoma. From the review of Hwang J et al [16], undifferentiated 

carcinoma type provided higher recurrence rate than the others within 5-

year study period. 

9. Duration time: Duration in days, between date that the first symptom is 

observed and date that a patient is firstly diagnosed with NPC, related to 

NPC development [13]. 

10. Treatment type: with or without chemotherapy also related to NPC 

recurrence [12]. 

11. Dose of radiation: Dose of radiotherapy measured in Gy is a recurrence 

factor [12]. 

12. IgG and IgA quantity: Serum VCA/IgA titers before treatment is the 

prognostic factors of NPC development [12].  

13. Hemoglobin quantity: HUA Yijun et al [12] reviewed that hemoglobin 

concentration before and after treatments (g/L) were also prognostic 

factors of NPC development.  

14. Other suspicious factors from specialist physicians: Alcohol, smoking, 

neck fibrosis, and Karnofsky Performance Scale index (KPS) are 

suspicious factors of NPC recurrence. 
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2.3 Censored and Uncensored Data 
Clinical data and time to recurrence are used for generating a predictive 

model. When these data are collected, censored data may be found. The censored data 

is one type of incomplete data in that the time to an event of interest is not known 

exactly. Here, the event is NPC recurrence. Therefore, the censored data focusing in 

this thesis are the data that their time to recurrence cannot be specified correctly. This 

may arise from various reasons, such as withdrawing from a treatment, death, or no 

cancer recurrence within the study period. On the contrary, if the recurring time can be 

measured, such data are called the “uncensored data”. Since the time to recurrence is 

not known precisely, the censored data cannot be used directly in the prediction 

particularly when machine learning approaches are used for developing predictive 

models. Removing all censored data from the analysis may reduce the data size 

drastically. The residual data may be inadequate for providing accurate predictive 

models. Moreover, some deleted censored data may contain relevant information, 

excluding them from the analysis can cause biased results. Effective use of censored 

data is important in the prediction of cancer recurrence in which it can improve the 

prediction performances. 

 In general, there are 3 types of censored data, i.e., type I – type III [5]. 

Type I censoring arises when patients do not have redeveloping cancer within the 

study period. For type II censoring, it occurs when the patients withdraw from the 

follow-up before the study ends. When the collected data contain both type I and type 

II censoring observations, all censored data are alternatively called type III censoring. 

Examples of censored data and uncensored data can be shown in Figure 2.2. 
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Figure 2.2 Types of censored data 
 

 From the figure, there are six NPC patients. The study period is set at 5 

years. The time of entry to the study is presented by ‘  ’ . The ‘X’ symbol represents 

cancer recurrence status. Within this study periods, patients A and B suffer with 

cancer recurrence. Their recurrence times are 4 and 2 years respectively. These records 

are examples of uncensored data. Patients C, D, and E are censored data with the 

censoring times of 5, 2.5, and 4 years respectively. Record of patients C is type I 

censoring while type II censoring data arise with patients D and E. These types of 

censored data are examples of right censored. Right censored data is defined as the 

data that exact survival time becomes incomplete at the right side of the study period. 

Left censored data, on the contrary, can occur when the survival time becomes 

incomplete at the left side. It may arise from the patient is referred from another 

hospital. His exact entry time point cannot be known. In Figure 2.2, patient F is an 

example of left censored data. This thesis will only focus on right censored data.  
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2.4  Survival Analysis: Statistical Approach 
Survival analysis is a statistical technique in which time to an event of 

interest, so called survival time, is the output of the analysis. The time can be in terms 

of years, months, weeks, or days. For the event, it can be the death, relapse of a 

disease etc. In survival analysis, any event of interest is usually called “failure”. In this 

thesis, the failure is NPC recurrence. 

Prior to describe the survival analysis, related terminology is presented in 

the next subsection. 

 
 2.4.1 Survival Function 

 Survival function, )(tS : It may be called as survival probability or 

survivorship function. It is the probability that an individual survives longer than a 

specific time t and can be represented as 

 )()( tthanlongersurvivesindividualanPtS 

 )()( tTPtS       (2.1) 

 where T denoted the survival time. 

 Theoretically, )(tS  is a monotonically decreasing function over time t. At 

0t , the probability of survival is assumed to be 1. The probability approaches to 

zero when the time goes infinity.   If there are no censored observations, the survival 

probability is estimated from the proportion of patients surviving longer than t [17].  

  
patientsofnumbertotal

tthanlongersurvivingpatientsofnumbertS 


)(  (2.2)  

An example of )(tS


 calculation is presented in Example 1. 

 In addition, )(tS


 can be calculated by the nonparametric approach, called 

Kaplan-Meier method.  It can be used regardless the presence of censored data.  

 

 2.4.2 Kaplan-Meier method 

 For this method, the survival probability can be determined from 

   tppppkS 


...)( 321    (2.3) 
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 where 
jtp   is the proportion of patients surviving at least time jt . The 

survival probability calculated from this method involves the product of terms 
jtp  . 

 Example 2.1 shows calculation of the survival probability using Kaplan-

Meier model.   

  

Example 2.1 Calculation of survival probability using Kaplan-Meier model 

 In this example, two groups of NPC patients who receive different treatments 

are used in the study. The first group is treated by chemotherapy while the second 

group uses a combination of chemotherapy and radiotherapy. Survival time of each 

patient is presented in Table 2.1. 

 

Table 2.1 Survival times for two groups of NPC patients  

Group1 Chemotherapy Group2 Chemotherapy and radiotherapy  

1,1,1,1,1,1.5,1.5,2,2,2,2.5,2.7,2.7,2,7, 

2.7,3.4,3.4,3.4,3.4,3.6,3.6 

1, 1, 1, 1.5, 2, 2.5, 2.7, 3.4,  3.6,  

1+, 1.6+, 2+, 2.2+, 2.8+, 2.9+, 3.1+, 3.7+, 

4.1+, 4.1+, 4.5+, 4.6+ 
Note: + represents censored case 

  

From Table 2.1, there is no censored data in the group 1. This is different from 

group 2 in which twelve patients withdraw or they are lost to follow before the end of 

study. Table 2.2 shows the survival probability determined from the Kaplan Meier 

model. In Table 2.2, t   presents the survival times in ascending order. n  is the number 

of relapse-free patients before time t . m  is the number of patients who have cancer 

recurrence at time t.  q  is the number of patients who withdraw from the study at time 

t. )(tS


presents survival probability at the time t.  
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Table 2.2 The example to calculation the survival function using Kaplan-Meier. 

t  

Group 1 Group 2 
1Gn  1Gm  1Gq  1)( GtS



 2Gn  2Gm  2Gq  2)( GtS


 
0 21 0 0 1 21 0 0 1 
1 21 5 0 0.762 21 3 1 0.857 

1.5 16 2 0 0.667 17 1 1 0.807 
2 14 3 0 0.524 15 1 2 0.753 

2.5 11 1 0 0.476 12 1 0 0.690 
2.7 10 4 0 0.286 11 1 3 0.627 
3.4 6 4 0 0.095 7 1 0 0.538 
3.6 2 2 0 0.000 6 1 5 0.448 

 

 As seen in Table 2.2, the survival probability of group 1 at time t = 1.5 

years is determined from Eq. (2.3) as 667.0
16
14

21
161)5.1( 1 


GS . It is the product of 

the proportion terms. For group 2, the survival probability is 

807.0
17
16

21
181)5.1( 2 


GS  at time t = 1.5 years.  For both groups, the proportion of 

recurrence-free patients at time t = 0 is 1. This means every patient is relapse-free at 

the beginning of the study. However, the proportion of recurrence-free patients at least 

time t = 1 is different for both group. For group 1, there exist 5 relapsed patients from 

21 patients who do not have cancer recurrence before this time. Therefore, the 

proportion of recurrence-free patients at least time t = 1 is 
21
16 . For group 2, the 

proportion is 
21
18  because there are only 3 relapsed patients. At this time, 1 patient 

withdraws from the study. Therefore, after time t = 1, only 17 patients exists in the 

study. At time t = 1.5, there is 1 relapsed patient. The proportion of recurrence-free 

patients at time t = 1.5 is thus equal to 
17
16 . After determining survival probability, 

survival curve can be generated as shown in Figure 2.3. 
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  Figure 2.3 Survival curves for groups 1 and 2.  

  

 As seen in the figure, group 2 has higher recurrence-free probabilities. 

Therefore, combination of treatments can reduce cancer recurrence for this example. 

 

 2.4.3 Hazard Function 

 Hazard function, )(th : Hazard function or hazard rate [17] is the 

conditional probability that the failure occurs within the interval ),( ttt   given that it 

does not occur before time t [17]. 

      

 
t

tttP
th

t 





),(intervaltimethewithinfailsindividualan
lim)(

0
 (2.4) 

 

 Equation (2.4) presents a hazard function which can be estimated from 

 

width)lt)(intervaatsurvivingpatientsof(number
ttimeatbeginingintervaltheinfailingpatientsofnumberthe)( 



th  (2.5) 
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 An example of hazard function calculation can be presented in Table 2.3. 

In this example, the data from example 1 are employed to estimate the hazard 

function. The estimated hazard is plotted as shown in Figure 2.4. In general Hazard 

function can also be derived from the survival function as given by 

 

    





1

0
)(1)(

t

i

ithtS    (2.6) 

 

Table 2.3 An example of hazard function calculation 

t  

Group 1 Group 2 
1Gn  1Gm  1Gq  1)( Gth



 2Gn  2Gm  2Gq  2)( Gth


 
0 21 0 0 0.000 21 0 0 0.000 
1 21 5 0 0.238 21 3 1 0.143 

1.5 16 2 0 0.125 17 1 1 0.059 
2 14 3 0 0.214 15 1 2 0.067 

2.5 11 1 0 0.091 12 1 0 0.083 
2.7 10 4 0 0.400 11 1 3 0.091 
3.4 6 4 0 0.667 7 1 0 0.143 
3.6 2 2 0 1.000 6 1 5 0.167 

 

 The estimated hazard functions, )(th


, of both groups are computed from 

Eq. (2.5). For example, at the time 1.5 years, the hazard function is  

059.0
117

1)5.1( 





h  for group 2. The corresponding survival function is estimated 

from Eq.(2.6) as 807.0)059.01()143.01()01()5.1( 


S . After the hazard 

functions are determined. They can be plotted as shown in Figure 2.4. 
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Figure 2.4 The hazard functions for groups1 and 2 

  

 From Figure 2.4, patients who received only chemotherapy have higher 

hazard rates than patients who were treated with both chemotherapy and radiotherapy. 

 

 2.4.4 Cumulative Hazard 

  Cumulative hazard, )(tH : It is the cumulative sum of hazard rate and it 

is a probability of failure at time t given that the patient survives until time t [17]. 

Cumulative hazard can be determined from 

   
t

dxxhtH
0

)()(  .  (2.7) 

 

 )(tH , )(th  can be determined from )(tS by 

   )(log)( tStH e    (2.8) 

   )(log)( tS
dt
dth e    (2.9) 
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 2.4.5 Cox Proportional Hazard Regression Model  

 Normally, Kaplan-Meier and Cox proportional hazard models are 

employed to estimate survival function. KM model describes the overall survival 

function for a group of patients. Cox model, on the contrary, can predict survival 

probability for an individual patient. In the Cox model, survival function is estimated 

based on a set of given covariates, ],,[ 21 XXX  . 

 The hazard function of an individual given a set of covariates X at a 

specific time t, ),( Xth  can be approximated from 

   


 

p

i
ii X

ethXth 1)(),( 0



   (2.10) 

where )(0 th  is the baseline hazard function. i   is the ith  coefficient and iX  is the ith 

covariate. Though Cox model is widely used in survival analysis, it has strong 

assumption with the proportional hazard ratio. 

 
 

2.5  Artificial Neural Network (ANN) 
 ANN is a computational model that simulates human brain’s function. It 

can approximate a function that expresses relation of training input-output pairs 

through a learning process. In this thesis, multilayer perceptron (MLP) which is one of 

artificial neural networks is focused. The architecture of MLP with single hidden layer 

and multiple outputs is presented in Figure 2.5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.5 Multilayer perceptron with single hidden layer 
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 From Figure 2.5, ANN model consists of three layers, i.e., input-layer, 

hidden-layer, and output layer. k
ix is the ith input variable of patient k, and k

oy  is the 

corresponding output. The neural networks model will estimate the output by learning 

process that consists of two processes, forward and backward passes. 

 For the forward pass, the neuronal signals are computed from: 

     



I

i

k
iihh xwz

0
   (2.11) 

     )(
0

h

H

h
hoo zwz 



     (2.12) 

 

 where hz  and oz  are the induced local fields of hidden nodes and output 

nodes respectively. ihw    and how  represent weights between input to hidden layer and 

hidden to output layer respectively. h is the number of hidden nodes and o is the 

number of output nodes.    is the transfer function. In this thesis, the sigmoid function 

is used as the transfer function for both hidden and output layers. It can be presented 

as in Equation 2.13.  

)(1
1)( ue

u 
   .  (2.13) 

 

 The neuronal output
k

oy


 can be estimated from 

)( o
k
o zy 


    .  (2.14) 
 

 For the backward pass, the quadratic function error is formed as given by  

 


 




K

k

O

o

k
o

k
o yyE

1 1

2)(
2
1   .  (2.15) 

 

 Weight updating equations are derived from the error gradient as presented 

in Equations 2.16 to 2.19.  The weight updating equations are expressed as in 

Equations 2.20 to 2.21. 
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

  )(1     (2.20) 
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


  )(1     (2.21) 

  

 where   and   are the learning rate and momentum term respectively.  

 The applications of ANN techniques for predictive model are summarized 

as follow. 

 ANN has been used in classification, regression or prediction problems. 

For cancer management, Cruz et al. [18] described that ANN could be used for 

predictions of cancer susceptibility, cancer recurrence, and cancer survivability.  

 M.D. Laurentiis et al. [19] simulated dataset which consisted of complex 

variables, and censored data. They predicted outcome of these dependent variables 

using three different ANN models, i.e., time coded model, single-time point model, 

and multiple time-coding model. The results were compared with that of Cox and 

logistic regression models. ANN provided better prediction than the statistical 

methods in terms of ROC and global chi square. The time-coded model was superior 

to the other techniques.  

 J.M. Jerez et al. [20] compared the predictive performances between ANN 

and Cox model in the prediction of breast cancer relapse. ANN selected relevant 

prognostic factors which correlated with that of Cox model. The results showed that 

ANN with time as an additional input could provide better prediction than the Cox 

model. 
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 Kareem et al. [13] compared two types of ANNs, i.e., multilayer 

perceptron and recurrent network in survival prediction of NPC. The prognostic 

variables included age, sex, race, dialect, date of firstly observed symptoms, cancer 

type, biopsy, diagnosis, symptoms, tumor extent, nerve involvement, distant 

metastasis, WHO type, TNM classification, and cancer stage. The performances of 

both models were not significantly different. 

 Baker et al. [21] reviewed soft computing techniques for cancer prognosis. 

The techniques include ANN, Genetic Algorithms and Fuzzy logic. ANN had been 

used for prediction in breast, ovary, bladder, and prostate cancers  

 H. Yijun et al. [12] used support vector machine (SVM) technique to 

predict 5 year survival status of NPC. Twenty five variables initially were selected for 

the prediction. The relevant factors were extracted from the use of logistic regression 

model. The selected factors were then used in the predictive model development. The 

performances were compared with the model with full factors. Their performances 

were not different in terms of accuracy, sensitivity, and specificity.  

 R.N.G. Naguib et al. [22] utilize the Radial Basis Function (RBF) neural 

network to predict the recurrence of oesophago-gastric junction cancer at 12, 18 and 

24 months. Two predictive models were developed and compared. Input variables of 

first model consisted of pre-operative data. For the second model, its input variables 

composed of both pre- and post- operative data. The results showed that performances 

of both models were not different. The paper concluded that using only pre-operative 

information could generate reliable predictive model. 

 Jones et al. [23] studied survival prediction of laryngeal squamous 

carcinoma. ANN, Cox, and Kaplan-Meier were used in the predictive model 

development. Each input variable was separated into low risk and high risk groups and 

exploited in the prediction. Kaplan-Meier curves were plotted to represent survival 

probability. ANN could generate better predictive model than Cox model when age 

and N stage were separately used as the input of the model. In addition, ANN could 

efficiently handle a complex interaction existing between input variables.   

 M. Theeuwen et al. [24] used Boltzman perceptron to analyze survival of 

ovarian cancer. Predictive performances were compared with that of the Cox model. 

ANN performed slightly better than another model. 
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 R. Mofidi et al. [25] compared ANN with Union International Contra 

Cancrum (UICC) TNM classification in the prediction of 1 and 3 years survival for 

oesophagus- and oesophago-gastric junction (OG junction) cancer. ANN was 

significantly better than TNM classification for both 1 and 3 years predictive models. 

They presented that ANN had become a valuable tool in oesophargeal carcinoma 

management. 

 

 

2.6 Censored Data Techniques: ANN based approaches  
Censored data can be directly used in survival analysis based on statistical 

approaches. However, they suffer from various limitations. Kaplan-Meier model can 

provide prediction only in a group manner. Cox regression model, on the other hand, 

can predict individually. However, linear relationship among prognostic factors is 

assumed. Moreover, proportional hazard assumption exists. Though ANN based 

approaches do not suffer from those assumptions, censored data cannot be used 

directly. Some modifications are required. From the previous research, various ANN 

based approaches for survival analysis had been proposed. They are 

 

2.6.1 Single point model 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.6 Single-point model 

 

 For the single-point model, a neural network which predicts the 

presence or absence of cancer recurrence within a specific time point is generated. For 

 
 
 

 
 
 

 
 
 

k
oy  

k
i

k

k

k

x

x
x

x

3

2

1

 

ihw             how  
 

Input layer     Hidden layer     Output layer 
           (i)                    (h)                     (o) 



Fac. of Grad. Studies, Mahidol Univ.                                 M.Eng. (Biomedical Engineering) / 21 
 

prediction of several time points, multiple models must be used. Scalability problem 

thus arises. Censored data could be directly used in the single point model.  

Mofidi R. el al [25] used the single-point model for cancer survival 

prediction at 1 and 3 years. The model can use all types of censored data. However, 

multiple models were created for prediction in various time points. The technique thus 

suffered from multiple model generation. 

Kumdee et al [26] studied the prediction of nasopharyngeal carcinoma 

recurrence using five single-point models for 5-year prediction. Type II censoring data 

were excluded for their analysis. Though deletion method was simple, biased analysis 

might be arisen. 

 

2.6.2 Multiple-point model  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.7 Multiple-point model 
 

 For multiple-point model, the number of outputs is equal to the number of 

time points of interest as shown in Figure 2.7. Type II censoring data cannot be used in 

this model directly because the status of cancer recurrence after the censoring time 

cannot be correctly specified. Imputation technique can be used for estimating 

unknown targets. However, the survival probability generated by this model may not 

be monotonically decreasing function.  
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2.6.3 Time-coded model 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.8 Time-coded model 
  

This model is purposed by Ravdin [4]. Time is used as one of the input 

variables. A single output represents survival status at a specified time point (0 is 

alive, 1 is death). Since time is used as an input, survival status at a time point must be 

provided. For example, in 5-year survival analysis, input of type I censoring 

observation is in the form of [data, time]. Its target is set as 0 for each time.  For type 

II censoring records, the data are reproduced and fed into the network until their 

censoring time. This technique suffers from the size of a training data which will grow 

enormously when the number of records is large. Overtraining problem may arise. In 

addition, non-monotonic survival function may be generated.  

 

2.6.4 PLANN 

Biganzoli [8] propose PLANN technique. It is based on time-coded model. 

For this technique, time is used as an additional input to an artificial neural network. 

Hazard rate is used as the target in order to guarantee monotonically decreasing 

survival curve. A single output represents conditional failure probability ranging from 

0 and 1. Initially the study period is divided into several time intervals such as [1 2 3 4 

5] for 5-year study period. Inputs to the network compose of all prognostic factors and 

a time interval. The output is a probability that an individual will have cancer 

recurrence at a given time, conditioned on disease-free up to that time. As an example, 

there are i-1 prognostic factors, ],,[ 11
k
i

k xx  . Inputs vectors for 5-year study period are 
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]1,,,[ 11
k
i

k xx  , ]2,,,[ 11
k
i

k xx  ,…, ]5,,,[ 11
k
i

k xx  . Targets of these inputs vectors are 0, 0, 0, 0, 0 

respectively when the observation is type I censoring. For a patient having the 

redeveloping cancer at 2.5 years, its input vectors are ]1,,,[ 11
k
i

k xx  , ]2,,,[ 11
k
i

k xx  , 

]3,,,[ 11
k
i

k xx  . The corresponding targets are 0, 0, and 1 respectively. For a type II 

censoring data, the input vectors and their targets are given until the censoring time. 

PLANN model can be shown in Figure 2.8.  

From the figure, the model composes of 3 layers, i.e., input, hidden, and 

output layers. Logistic function is used as an activation function for both hidden and 

output layers. The cost function being minimized *E is formed from cross-entropy 

error function cE  including weight decay term as shown in Equation 2.22.  

 
 2* wEE c    ,   (2.22) 

 

 where the cross entropy is defined from 
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 where K represents the number of training records before data replication, 

lk is the number of time intervals. kld  is target of the kth patient at an lth time interval. 

  is the regularization parameter ranging between 0.01 - 0.1 [8]. w  can be either 

weight between input and hidden layers, ihw , or weight between hidden and output 

layers, how .  

 Quasi-Newton algorithm which is the second order optimization method is 

used for training. Weight update equations are derived from  
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 where   is the learning rate and H represents the approximated inverse 

Hessian matrix. Since output of the PLANN model represents the hazard rate, survival 
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probabilities generated are always monotonically decreasing with time, as shown in 

Equation 2.6. However, the data replication problem still exists. In addition, 

overtraining problem may arise. Therefore, generalization capability may be lacked.  

 

2.6.5 Street 

Street [7] proposed a technique based on the multiple time-point model as 

shown in Figure 2.7. Inputs to the model are all relevant prognostic factors. The 

outputs ranging from 0 and 1 represent probabilities of disease-free at different time 

points. Multilayer perceptron with backpropagation training is used to provide 

mapping between inputs and outputs. The cost function is formed from quadratic error 

function. Momentum term is added to enhance predictive performance. 

For uncensored data, targets can be simply set. For example, the target 

vector of a patient having cancer recurrence at 3.5 years from 5-year study period is [1 

1 1 0 0]. For one who does not have the redeveloping cancer within the study period, 

the target is set as [1 1 1 1 1]. For type II censoring data, actual recurrence-free status 

after the censoring time cannot be correctly provided. In this case, survival 

probabilities from the Kaplan-Meier model are used in the imputation. As an example, 

a target vector of a patient who withdraws from the follow-up at 3.5 years is [1 1 1 0.8 

0.7] where 0.8 and 0.7 represent the survival probabilities from the Kaplan-Meier 

model. Though this model can utilize all censored data in the analysis, survival 

probabilities generated may not be monotonically decreasing with time.   

 

 2.6.6 Other Censored Data Techniques 

 Faraggi et al. [27] used outputs of neural networks as coefficients of Cox 

proportional hazard model. This method had advantages over the classical 

proportional hazard model. Though it provided monotonically decreasing survival 

curve, and could handle interaction among variables, proportional hazard assumption 

existed.  

 Lapuerta et al. [28] developed multiple neural networks to predict the 

survival probability at various time points. Single model served the prediction at a 

time point. For type II censoring data, unknown target after the censoring time was 

estimated from output of the neural network. The technique was superior to the Cox 
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proportional hazard model in terms of accuracy. However, it could not provide 

monotonically decreasing survival curve. Since many neural networks were generated, 

scalability property was deteriorated.  

 From the previous research, there are many censored data techniques. 

Their characteristics and abilities can be summarized in Table 2.4. In general, there are 

four main problems that the censored data techniques may encounter. They are 

scalability problem in the single point model, non-monotonic survival curve 

generation problem, unknown recurrence status specification problem in the multiple-

point model, data replication problem in the time-coded model. This thesis proposes 

new censored data technique that can handle all problems simultaneously. The 

proposed technique combines Street and Biganzoli methods. Multiple-point model is 

used. Hazard rate is used as a target for unknown recurrence status after the censoring 

time. This can provide monotonically decreasing survival curve. 

 

Table 2.4 Characteristics of censored data techniques: ANN based methods 
Methods Multiple 

NN 
Single 
Output 

Censored 
type II 

Replication 
problem 

Monotonic 
survival curve 

Scalable 
property 

Mofidi R. Y Y Y N N N 
Street. N N Y N N Y 
Ravdin. N Y Y Y N N 
Biganzoli N N Y N Y Y 
Lapuerta. Y N Y N N N 
Faraggi. N Y Y Y Y Y 
Note : N=No, Y=Yes 
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CHAPTER III 

METHODOLOGY 

 

 
 In this chapter, research methodology is summarized. It can be presented 

in Figure 3.1. 

 

 
Figure 3.1 Research methodology 

 

 

3.1  Data Collection 
 Clinical data and time to recurrence of NPC patients are collected from 

Ramathibodi Hospital, Thailand. This research has been approved by the ethics 

committee of Mahidol University. This research is an extended study from 

Preprocessing 
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Prognostic factor selection 
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Comparison 
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Ritthipravat [29] in which several prognostic factors are added. The factors analyzed 

in this thesis include  1) patient’s age, 2) duration from the date that the first symptom 

is observed to the date that the patient is diagnosed as having NPC, 3) IgG quantity, 4) 

IgA quantity, 5) dose of radiation, 6) patient’s sex, 7-9) TNM staging, 10) cancer 

stage, 11) cell type, 12) present of chemotherapy, 13) presence of neck fibrosis, 14) 

alcohol history, 15) smoking history, 16) hemoglobin quantity before a treatment, 17) 

family history, and 18) Karnofsky Performance Scale index (KPS). The factors 1 to 13 

are gained from Ritthipravat [29]. The additional factors obtain from specialist doctor 

suggestion are in 14 to 18. 

 

 

3.2  Preprocessing 
 3.2.1 Data Representation 

 The qualitative data, such as sex (male, female), tumor stages (stage1 to 

stage 4), smoking history (yes, no) are converted into numerical value.  

 

 3.2.2 Missing Value  

 Missing data are imputed by expectation maximization (EM) technique. 

Kumdee et al [26] used the EM imputation technique for completing NPC data. EM 

imputation technique provided highest predictive performance when compared with 

mean imputation, K-nearest neighbor and deletion techniques.  

 

 

3.3  Prognostic Factor Selection 
 The prognostic factors are selected by univariate and multivariate analysis 

[30].  

 

 3.3.1 Univariate Analysis 

 The univariate analysis is employed to select related recurrence factors. Its 

analysis independently considers each variable in the data set. The categorical 

variables are tested by Kaplan-Meier survival curve and the p-value from log-rank 

test. Cox proportional hazard model and the p-value from partial likelihood ratio test 
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are used for continuous variable. In the analysis, the factors that have p-value less than 

0.25 are considered to relate with NPC recurrence.  

 

 3.3.2 Multivariate Analysis 

 The multivariate analysis analyzes relevant recurrence factors by 

controlling other factors. Cox proportional hazard model and the purposeful selection 

of covariates with backward selection technique are used in the analysis. This method 

is composed of 3 steps. Initially, all factors are considered in the Cox proportional 

hazard model. The factor that has p-value above 0.05 from the Wald test is removed 

from the model. The p-value from the partial likelihood ratio test indicates whether the 

removed factor is relevant to the model. If the p-value is above 0.05, that factor can be 

removed. Before discarding the factor, coefficients of new model should not be 

changed more than 20%. Otherwise, the factor cannot be removed.  

 

 

3.4  Normalization 
 The normalization is to scale each variable into the similar range in order 

to reduce the biasing problem. For ANN models developed in this thesis, all input 

variables are normalized by the use of standardization technique.  

 

 

3.5  Predictive Models 
 Three predictive models based on multilayer perceptrons with 

backpropagation training are mainly investigated. They are presented as follows. 

 

 3.5.1 Street Model [7] 

Street’s technique is based on the multiple-point model. For type II 

censoring data, unknown recurrence statuses are imputed by survival probabilities 

from the Kaplan-Meier model. Quadratic error is the cost function used for deriving 

weight updating equations. Momentum term is added to enhance the predictive 

performances. Though this model provides efficient prediction, generated survival 

probabilities are not monotonically decreasing with time.  
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 3.5.2 PLANN Model [8] 

PLANN technique is based on the time-coded model. Hazard rate is used 

as the target in order to guarantee monotonically decreasing of the survival curve. For 

this technique, cross-entropy error adding with the weight decay term is used as the 

cost function. Quasi-Newton algorithm is used for deriving weight updating equation. 

Since output of PLANN model represents the hazard rate, survival probabilities 

generated are always monotonically decreasing with time. However, this model suffers 

from data replication. It can cause high computational expenses. In addition, 

overtraining problem may arise leading to the lack of generalization capability. 

 

 3.5.3 Our Purposed Model 

 From limitations of both Street and PLANN models, this thesis introduces 

a new censored data technique that combines their advantages. It is based on the 

multiple-point model similar to Street’s technique. The target is set as conditional 

failure probability in order to guarantee monotonically decreasing survival curve in a 

similar manner to PLANN. In case of type I censoring observations, the target vector 

is simply set as [0 0 0 0 0] for 5-year study period. For type II censoring, unknown 

targets are assigned with conditional failure probability or hazard rate. For example, 

the target vector of a patient who withdraws from the follow up at 3.5 years is set as [0 

0 0 0.1 0.7] where 0.1 and 0.7 are hazard rates at years 4 and 5 respectively. The 

hazard rates are computed from the training data set. In the similar manner, the target 

vector of a patient who has cancer recurrence after 4 years is set as [0 0 0 1 0.7]. 

Quadratic error function is used as the cost function. Gradient descent is employed in 

minimization. Momentum term is added to enhance learning capability. 

 After training, survival probability at time t can be determined from 

Equation 2.6. Monotonically decreasing of S(t) can be guaranteed since the hazard rate 

is a positive value ranging from 0 and 1. 

 In the experiments, model parameters of Street, PLANN and our technique 

are varied in order to gain the best predictive performances. Hidden nodes are adjusted 

from 1-20 nodes. Learning rate is set as 0.001,0.01,0.05,0.1,0.5. Regularization 

parameter in PLANN model is varied from 0.001,0.01,0.05,0.1. Finally, the 
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momentum term is set at 0.01,0.05,0.1,0.5,0.7. The number of epochs for learning is 

set at 150,000.  

 

 

3.6  Validation 
 The completed data are separated into two groups, 80% for model 

generation and 20% for model validation. Ten-fold cross validation is used for 

searching the optimal parameter. 

 

 

3.7 Comparison  
 Performances of each predictive model are evaluated from  

 3.7.1 Model discrimination: Area under the receiver operator characteristic 

curve (AUC) is used for evaluating model discrimination. The receiver operator 

characteristic curve, basically, is a plot of sensitivity versus 1-specificity. AUC is 1 

representing a perfect model and 0.5 representing an unreliable case. 

 3.7.2 Model calibration: Chi-square statistic from Hosmer-Lemeshow 

goodness-of-fit test is used for model calibration. If it is below 15.51 corresponding to 

the p-value > 0.05, the model is fit. 

 3.7.3 Percent of non-monotonic prediction: It is determined from  

 

     100
patientsallofnumber

curvesurvivalllymonotonicanonhaswhopatientsofnumber       (3.1) 

 

 3.7.4 Survival curve comparison: Survival curves are plotted and 

compared with the Log-rank test. This comparison represents predictive performance 

of an entire group of patients. Statistical difference between the generated survival 

curve of a model and the Kaplan-meier survival curve is investigated by the log-rank 

test. If the p-value is above 0.05, it represents these curves are not significantly 

different. 
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CHAPTER IV 

RESULTS 

 

 

4.1   Data 
 After the data collection process, there existed 495 records for the analysis. 

348 records were censoring cases (70.30%) and the other 147 (29.70%) cases were 

uncensored data. The censored cases occurred from either the patients withdrew from 

the follow-up or they did not have recurring cancer within the 5-year study period. The 

numbers of patients who had cancer recurrence or withdrew from the study in each 

year are summarized in Table 4.1.  

 

Table 4.1The number of patients who have recurrence and lost to follow in each year 

Number of Patients 
Year periods 

Total 
[0-1) [1-2) [2-3) [3-4) [4-5] >5 

Recurrence 65 31 16 6 7 22 147 

Lost to follow / withdrawn 51 48 23 18 19 189 348 

Total 116 79 39 24 26 211 495 

 
 From Table 4.1, the number of uncensored and censored observations 

varied with time.  

 From the survival analysis, cancer recurrence of all patients can be 

presented in Table 4.2. 

 

Table 4.2 The overall cancer recurrence  

 
Time at risk Incidence 

rate 
No. of all 
subject 

No. of 
recurrence 

Survival time 
25% 50% 75% 

Total 1518.725 0.082306 495 125 2.852778         . . 
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 From Table 4.2, the total number of patients who had cancer recurrence is 

125 persons. Time at risk, time obtained from the summation of both censoring times 

or recurrence times of all patients, is 1518.725 years. The incident rate is 0.0823 

persons per year. Within 2.852778 years, 25% of all patients had redeveloping cancer. 

This is called 25% survival time. The median survival time exceeded the 5-year study 

period. Survival curve of overall patients is shown in Figure 4.1. 
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Figure 4.1 Kaplan-Meier survival curve  

 

 The Kaplan-Meier survival curve shown in Figure 4.1 is compared with 

the curves generated from censored data techniques.  

 

 

4.2   Preprocessing 
 All categorical factors are encoded into numerical values. Ranging, coding 

and detail of each variable are presented in Table 4.3. 

Table 4.3 Description of prognostic factors  
Factors Range/Coding Descriptions 

Sex 0 : Male 
1 : Female 

Patient’s sex 
 

T Stage 
(AJCC1997) 
  
  
  

1 : Stage T1 Tumor confined to the nasopharynx 
2 : Stage T2 Tumor extends to soft tissue of oropharynx 

and/or nasal fossa 
3 : Stage T3 Tumor invades bony structures and/or 

paranasal sinuses 
4 : Stage T4 Tumor with intracranial extension and/or 

involvement of the cranial nerves, infra- 
temporal fossa, hypopharynx, orbit 
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Factors Range/Coding Descriptions 

N Stage 
(AJCC1997) 
 
  
  
  

0 : Stage N0 No regional lymph nodes metastasis 
1 : Stage N1 Unilateral metastasis in lymph node (s), 6 

cm or less in greatest dimension, above the 
clavicular fossa 

2 : Stage N2 Bilateral metastasis in lymph none (s), 6 

cm or less in greatest dimension, above the 
clavicular fossa 

3 : Stage N3 Metastasis in a lymph node (s) 
M Stage 0 : Stage M0 No distant metastasis 

(AJCC1997) 1 : Stage M1 Distant metastasis present 
 2 : Stage Mx Present of distant metastasis cannot be 

assessed 

Staging 1 : Stage1 T1 N0 Mo 
(AJCC1997) 2 : Stage2 T2 N0 M0 
 3 : Stage3 T3 N0, T1-3 N1, M0 
 
 
 

4 : Stage4 
 
 

T4 N0-1 M0, 
Any T N2-3 M0, 
Any T any N M1 

Cell Type 
 

1 : Type1 Well differentiate: Squamous cell 
carcinoma (SCC) 

 2 : Type2 Poor differentiate: Non-keratinized 
carcinoma 

 3 : Type3 Undifferentiated carcinoma 
 4 : Type other Other cell type 
Chemotherapy 0 : No 

1 : Yes 
Presence of chemotherapy 

Neck fibrosis 0 : No 
1 : Yes 

Presence of neck fibrosis after 
radiotherapy 

Smoke 0 : No 
1 : Yes 

Smoking history 

Alcohol 0 : No 
1 : Yes 

Drinking alcohol history 

Family 0 : No 
1 : Yes 

Family history of having Cancer 

Age 10-84 Age (year) at diagnostic date of NPC 
Duration time 0-3600 Time interval (day) between first symptom 

time until time to conclusion that patient is 
NPC at Ear Nose Throat (ENT) 
department. 

IgG 10-2560 Epstein-Barr Virus (EBV) antibody titer 
type IgG  (Immunoglobulin G) 

IgA 10-640 Epstein-Barr Virus (EBV) antibody titer 
type IgA  (Immunoglobulin A) 

Dose of radiation 0-8000 Dose of radiation at NPC area (cGy) 
KPS 60-100 Karnofsky performance Scale Index (KPS) 
Hb 6.3-17 Hemoglobin quantity before treatment 

(g/dl) 
Status 0 

1 
Disease free  
Recurrence 
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4.3 Prognostic Factor Selection 
 4.3.1 Univariate analysis: the p-values from log-rank test and partial 

likelihood ratio test are presented in Tables 4.4 to 4.5. 

Table 4.4 Categorical variable  

Factors 
25%  

Survival Times 
Time at risk 

(person-times) 
Incident 
rate*100 

Event 
observed p-value 

Sex         0.4575 
Male 2.3972 930.6056 8.70401 314   
Female 3.6139 588.1194 7.48147 181   
T       0.4815 
T1 2.9472 256.1528 7.41745 74   
T2 4.8750 436.7139 6.86949 141   
T3 2.9417 424.9917 8.47075 128   
T4 1.5833 400.8667 9.97838 152   
N         0.0189 
N0 . 365.6083 4.64978 101   
N1 2.8528 310.8083 7.07832 93   
N2 2.8417 614.0833 9.44497 215   
N3 1.4278 228.2250 12.26859 86   
M       0.9125 
M0 2.8444 1382.0917 8.24837 440   
M1 0.6889 24.0889 12.45387 22   
Mx 4.9083 112.5444 7.1083 33   
Staging         0.0069 
1 . 77.2917 2.5876 19   
2 . 149.8944 4.66995 41   
3 . 325.9083 4.90936 85   
4 1.8056 965.6306 10.35593 350   
Cell Type       0.3266 
1 . 73.5806 2.71811 22   
2 2.8528 953.2278 7.97291 290   
3 2.3194 472.2944 9.73969 176   
4 . 19.6222 5.09626 7   
Chemotherapy         0.0335 
No . 344.1306 4.93999 90   
Yes 2.3972 1174.5944 9.19466 405   
Neck fibrosis       0.4023 
No 2.8528 96.3444 11.41737 47   
Yes 2.8444 1422.3806 8.01473 448   
Smoke         0.031 
No 4.7750 872.1306 6.76504 263   
Yes 1.8056 646.5944 10.20733 232   
Alcohol       0.1228 
No 4.3472 839.8000 7.14456 256   
Yes 2.0333 678.9250 9.57396 239   
Family history         0.0503 
No 2.9472 1352.9306 7.6131 432   
Yes 2.6056 / 4.9083 165.7944 13.26944 63   
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Table 4.5 Continuous variables 

Variables Coefficient 95%CI p-value 
Age 0.0077726 -0.0063497 0.0218949 0.2787 
Duration time 0.000055 -0.0005778 0.0006878 0.8672 
IgG 0.0022772 0.0017341 0.0028202 0.0000 
IgA 0.0027632 0.0004047 0.0051216 0.0453 
Dose of radiation -0.0003071 -0.0005532 -0.000061 0.0316 
KPS  -0.0604818 -0.0888349 -0.0321287 0.0001 
Hb  -0.0692452 -0.1836242 0.0451338 0.2370 

 

  Tables 4.4 and 4.5 show that N stage, staging, presence of chemotherapy, 

smoking, alcohol, family history, IgG quantity, IgA quantity, dose of radiation, KPS, 

and hemoglobin before treatment are important factors and relate to NPC recurrence 

(p-value <0.25).  However, staging is excluded from the model because it relates to 

TNM staging. Neck fibrosis is included to the model because the medical doctor 

suggests that it should be one of the relevant factors. The factors from this step are 

used in multivariate analysis. 

 

 4.3.2 Multivariate analysis: prognostic factors from multivariate analysis 

are presented in Table 4.6.  

 

Table 4.6 Prognostic factors from multivariate analysis. 

Variables Coef. Std. Err. z P>z [95% Conf. Interval] 
N1 0.377089 0.32537 1.16 0.2460 -0.26063 1.014802 
N2 0.404927 0.284287 1.42 0.1540 -0.15226 0.962119 
N3 0.684283 0.31682 2.16 0.0310 0.063327 1.30524 
Smoke 0.383921 0.348085 1.1 0.2700 -0.29831 1.066156 
Alcohol -0.10319 0.338781 -0.3 0.7610 -0.76719 0.560807 
Family history 0.393148 0.242281 1.62 0.1050 -0.08171 0.86801 
Neck fibrosis -0.22074 0.345411 -0.64 0.5230 -0.89773 0.456252 
IgG 0.002211 0.000305 7.24 0.0000 0.001612 0.002809 
IgA 0.000609 0.001378 0.44 0.6590 -0.00209 0.003309 
Dose of radiation -0.00021 0.000136 -1.58 0.1150 -0.00048 0.000052 
KPS  -0.04783 0.015211 -3.14 0.0020 -0.07764 -0.01802 

 

 The relevant factors obtained from multivariate analysis are N3 stage, IgG, 

and KPS. These factors have the p-value below 0.05. Other factors do not relate to 

NPC recurrence but they cannot remove from the model because reduction of 

coefficients was greater than 20% 
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4.4  Predictive Performances 
 Tables 4.7 summarizes the model parameters of the best model after 

testing with the testing set.   

Table 4.7 Best parameters of each technique 

Techniques Hd* Lr* Mo* Rg* 

Our technique 1 0.1 0.1 - 
PLANN 1 0.1 - 0.01 
Street 2 0.01 0.7 - 

*Hd = The number of hidden node, Lr = Learning rate,  
  Mo = Momentum,  Rg = Regularization parameter 
 
Average AUCs from 10 fold cross validation are presented in Table 4.8. 
 
Table 4.8 AUC of average test set 

Time Our study PLANN Street 
1 year 0.7816 0.743 0.8092 
2 year 0.7902 0.7932 0.8057 
3 year 0.7991 0.7926 0.813 
4 year 0.8163 0.8418 0.8324 
5 year 0.8474 0.8858 0.8534 
Average 0.8069 0.8113 0.8227 

 

 From Table 4.8, Street model provided highest average AUC in every time 

period. Independent sample t-test was applied. The results showed that they were not 

statistically different as presented in Table 4.9. 

 

Table 4.9 P-value from independent sample t-test  

PLANN Street 
Our study 0.877 0.315 
Street 0.677 
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Table 4.10 AUC of the validation set 

Time Our 
Technique 

PLANN Street Cox 

1 year 0.7899 0.7294 0.7244 0.6655 

2 year 0.7356 0.6978 0.6972 0.6667 
3 year 0.7421 0.7064 0.7191 0.7116 
4 year 0.7454 0.6933 0.7338 0.6681 
5 year 0.761 0.7225 0.7491 0.7134 
Average 0.7548 0.7099 0.7247 0.683 

  

 From Table 4.10, our proposed technique provided the best predictive 

performances (average AUC was 0.7548). All ANN based techniques outperformed 

the Cox model. Independent sample t-test was also employed. The results are 

summarized in Table 4.11. 

 

Table 4.11 P-value from independent sample t-test for validation set 

Techniques Our 
Technique 

PLANN Street 

PLANN 0.006* - - 

Street 0.049* 0.216 - 
Cox 0.002* 0.104 0.023* 

*p-value < 0.05 

 The results showed that average AUC of our proposed technique was 

significantly higher than the other techniques.  

 For model calibration, chi-square from Hosmer-Lemeshow goodness-of-fit 

test was used. All models have chi-square lessen than 15.51 as shown in Table 4.12. 

 

Table 4.12 Hosmer-Lemeshow goodness-of-fit test of validation set 

Time Our study PLANN Street Cox 
1 year 11.01 5.59 8.44 7.08 
2 year 13.28 10.88 6.67 8.68 
3 year 7.46 12.43 1.51 10.91 
4 year 6.92 8.66 9.95 9.74 
5 year 9.3 9.45 12.49 10.11 
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 In the experiments, every model had 0% non-monotonically survival 

probability decreasing. Survival curve of all models are plotted versus Kaplan-Meier 

survival curve as presented in Figure 4.2.  
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Figure 4.2 Survival curve of all models 

 

 From Figure 4.3, Cox model was obviously different from Kaplan-Meier 

survival curve. This was different from the curve of Street and PLANN models. The 

log-rank test showed that our proposed technique, PLANN, and Street provided the 

survival curves similar to that of Kaplan-Meier model as shown in Table 4.13. 

  

Table 4.13 P-value from log-rank test  

Our study PLANN Street Cox 
0.2518 0.1458 0.6883 0* 

*p-value < 0.05 

 

 From Table 4.13, survival curve of Cox model was significantly different 

from the Kaplan-Meier model. 
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CHAPTER V 

DISCUSSION 

 

 
 After univariate and multivariate analysis were applied for the factor 

selection, recurrence factors were N stage, family history, dose of radiation, smoking, 

alcohol, neck fibrosis, IgG quantity, IgA quantity, and KPS. Some of these factors, i.e. 

N stage, family history, and dose of radiation, support the previous studies in which 

they related to NPC development [15], [9], [12]. Though the other factors do not have 

any supporting medical report, the statistical analysis indicated that they related to 

NPC recurrence. The selected recurrence factors were used for generating the 

predictive models. In this thesis, four censored techniques are investigated. They are 

Street, PLANN, Cox model, and our purposed technique. The experimental results 

showed that average AUC of Street was slightly higher than PLANN and our purposed 

technique when testing with the test set as seen in Table 4.8. However, they were not 

statistically different when testing with the independent sample t-test as presented in 

Table 4.9. When the validation set was applied, average AUC of our proposed 

technique was highest. This means that the proposed technique can provide accurate 

prediction with unseen inputs. Due to the fact that the numbers of patients who have 

cancer recurrence and who withdrew from the study were different in each year as 

presented in Table 4.1, the developed predictive models might be less reliable for the 

later years. 

For the model calibration, all predictive models had chi-square statistic 

less than 15.51 as seen in Table 4.12. This indicates that every model fitted well with 

the patients’ data. 

For survival curve comparison, all survival curves are plotted as shown in 

Figure 4.2. Cox model was obviously different from the others. This is confirmed by 

the log-rank test. Cox model is only significantly different from the Kaplan-Meier 

curve. This presents that linear relationship among data cannot be assumed.  
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 The last issue is related to monotonically decreasing survival curve. All 

curves provided zero percent of non-monotonic prediction. This is not surprised for 

our proposed technique, PLANN, and Cox model because these techniques guaranteed 

monotonically decreasing survival curves. However, for the Street technique, 

monotonic survival curve may occur from handling censored data. With this 

technique, unknown targets of censored data were imputed by survival probabilities 

derived from Kaplan-Meier model. In the study, there exist a large number of censored 

data (70.30%) within the study period. The imputed targets which are monotonically 

decreasing values over time thus influence the predictive model to generate monotonic 

survival curve.  

From the experiments, the investigated censored data techniques possess 

different advantages and disadvantages. PLANN uses time information as one of the 

input variables. Therefore, each data must be replicated before training. This requires 

high computational resources and time. In addition, the overtraining problem may 

arise. PLANN, however, guarantees monotonically decreasing survival curve. This is 

different from Street technique. Street technique uses multiple-point model. Therefore, 

only single model is sufficient for predicting several time points.  

Cox proportional hazard model suffers from various limitations such as 

linear relationship among data and proportional hazard rates. However, this technique 

is generally used in medical prognosis.  

Our purposed technique does not suffer from the replication problem. It 

can only use a single model for predicting various time points. Therefore, it is scalable 

well in a more complicated problem. In addition, it can guarantee monotonic survival 

curve generation and can efficiently handle unknown recurrence statuses when type II 

censoring data are observed. These reasons confirm that the proposed technique 

outperforms the other censored data techniques.  
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CHAPTER VI 

CONCLUSION 

 

 
 New censored data technique is proposed in this thesis. It is applied to the 

prediction of nasopharyngeal carcinoma recurrence. The data were collected from 

Ramathibodi Hospital, Thailand. All missing data were imputed by EM imputation. 

Univariate and multivariate analysis were used for selecting recurrence factors. Four 

censored data techniques, i.e., PLANN, Street, our purposed technique, and Cox 

proportional hazard regression techniques were applied. In model development, the 

data were separated into two groups (80% for model generation and 20% for model 

validation). For ANN techniques, ten-fold cross validation is applied for searching the 

best training parameters. Our purposed technique combines advantages of PLANN 

and Street techniques. The technique is based on multiple-point model similar to Street 

leading to less computational expenses. Data replication is not required as in PLANN 

model. Overtraining problem can be relieved. Conditional failure probabilities are 

used for unknown targets as in PLANN. By doing so, survival probabilities generated 

are guaranteed to be monotonically decreasing with time. Experimental results showed 

that our proposed technique can handle four main problems, i.e., scalability problem in 

the single point model, non-monotonic survival curve generation problem, unknown 

recurrence status specification problem in the multiple-point model, data replication 

problem in the time-coded model. Additionally, our technique provides the highest 

predictive performances in terms of model discrimination, model calibration.  
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