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DESIGN AND CONSTRUCTION OF A RESPIRATORY MOTION PHANTOM 
FOR TESTING THE TARGETING ACCURACY OF THE CYBERKNIFE SYSTEM 
WITH THE SYNCHRONY® RESPIRATORY TRACKING SYSTEM 
 
CHIRASAK KHAMFONGKHRUEA 5036373 RAMP/M 
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THESIS ADVISORY COMMITTEE:  PUANGPEN TANGBOONDUANGJIT, Ph.D., 
PORNPAN YONGVITHISATID, M.Sc., CHIRAPHA TANNANONTA, M.Sc.  

 

ABSTRACT 
Tumor moving due to respiration during the radiation treatment process is 

difficult to manage. Without management for respiratory motion, the critical organs may 
receive a high radiation dose with decreasing target dose. Synchrony® respiratory tracking of 
the Cyberknife system provides the unique possibility to do real-time patient and tumor 
motion tracking.  

An in-house respiratory motion phantom was designed and constructed for testing 
the targeting accuracy of the Synchrony® system. To simulate target and skin respiratory 
motions, an in-house respiratory motion phantom (17 × 45 × 15 cm3) made of acrylic was 
created. Inside the phantom, there were two parts; the mechanical part is composed of a cam 
and a slash cut pipe driven by a gear motor with 12 VDC to move the tumor and skin motion 
platform. The electrical part consists of AC to DC switching connected to an adjustable 
voltage regulator for supplying the gear motor. The amplitude and respiratory rate of the 
phantom were calibrated and evaluated using the Varian Real-Time Position Management 
(RPM) system. Then the phantom was used to test the targeting accuracy of the Synchrony® 
system by varying the amplitude of skin motion, respiratory rate, and tumor motion distance.  

The phantom can be moved along the superior-inferior (SI) directions (tumor 
motion) with the distances of 15, 25, and 35 mm and moved along the anterior-posterior (AP) 
direction (skin motion) from 0 to 15 mm. The respiratory rates can be varied from 0 to 30 
cycles/min. The maximum SD of amplitude and the respiratory rate in the phantom were 0.22 
mm and 0.089 sec/cycle, respectively. The targeting error of the Synchrony® system is less 
than 1.0 mm. The skin motion amplitude, respiratory rate, and tumor distance don’t affect the 
targeting accuracy of the system. 

 

KEY WORDS: CYBERKNIFE/ SYNCHRONY RESPIRATORY TRACKING SYSTEM/  
   RESPIRATOTY MOTION PHANTOM/ TARGETING ACCURACY  
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การออกแบบและประดิษฐหุนจําลองการหายใจสําหรับทดสอบความถูกตองของเปาหมายของ
เทคนิคการติดตามการหายใจซินโครนีในครื่องฉายรังสีศัลยกรรมทั่วรางกายชนิดไซเบอรไนฟ 
DESIGN AND CONSTRUCTION OF A RESPIRATORY MOTION PHANTOM FOR 
TESTING THE TARGETING ACCURACY OF THE CYBERKNIFE SYSTEM WITH THE 
SYNCHRONY® RESPIRATORY TRACKING SYSTEM 
 

จีรศักดิ์ คําฟองเครือ         5036373 RAMP/M 
 

วท.ม. (ฟสิกสการแพทย) 
 

คณะกรรมการที่ปรึกษาวิทยานิพนธ  :   พวงเพ็ญ ตั้งบุญดวงจิตร, Ph.D., พรพรรณ ยงวิทิตสถิต, 
M.Sc., จีระภา ตันนานนท, M.Sc.  
 

บทคัดยอ 
ในกระบวนการฉายรังสีที่จัดการเกี่ยวกับกอนเนื้องอกที่มีการเคลื่อนที่ตามการหายใจเปนสิ่งที่

ยุงยาก ซึ่งถาไมมีการจัดการจะทําใหเนื้อเยื่อปกติไดรับปริมาณรังสีสูงขณะที่กอนเนื้องอกไดนอยลง ในเครื่องฉาย
รังสีศัลยกรรมทั่วรางกายชนิดไซเบอรไนฟมีระบบการติดตามการหายใจชนิดซินโครนีที่สามารถติดตามกอนเนื้อ
งอกที่มีการเคลื่อนที่ตามการหายใจแบบทันทีได  

ในงานวิจัยครั้งนี้ไดออกแบบและประดิษฐหุนจําลองการหายใจที่จําลองกอนเนื้องอกและการ
เคลื่อนที่ของการหายใจสําหรับทดสอบความถูกตองของเปาหมายของระบบการติดตามการหายใจชนิดซินโครนี 
โดยที่หุนจําลองสรางจากแผนอะคริลิกขนาด 17×45×15 ซม3 ซึ่งกลไกลการขับเคลื่อนใชเกียรมอเตอรในการขับ
แคมและทอพีวีซีปลายตัดใหเกิดการเคลื่อนที่ของแทนกอนเนื้องอกและผิวหนัง ในสวนของอิเล็กทรอนิกสไดใช 
เอซี/ดีซี สวิตซิ่งและวงจรเร็กกูเลเตอรเพื่อปรับความตางศักยที่จายกระแสไฟใหกับเกียรมอเตอรเพื่อใหเกิดการ
ขับเคลื่อน โดยสามารถเปลี่ยนแปลงความเร็วได จากนั้นหุนจําลองไดทําการสอบเทียบและประเมินโดยใชระบบ
อารพีเอ็มและมีการนําหุนจําลองมาทดสอบความถูกตองของเปาหมายของระบบซินโครนีโดยการเปลี่ยนแปลง
ขนาดของการหายใจ, อัตราเร็วของการหายใจและระยะของกอนเนื้องอก  

จากผลการทดลองพบวาหุนจําลองการหายใจสามารถเคลื่อนที่ในแนวบนลาง (กอนเนื้องอก)  เปน
ระยะ 15, 25 และ 25 มม. เคลื่อนที่ในแนวหนาหลัง (ขนาดการหายใจ) เปนระยะ 0 ถึง 15 มม. และอัตราการหายใจ
สามารถปรับเปลี่ยนไดต้ังแต 0 ถึง 30 ครั้งตอนาที โดยที่คาเบี่ยงเบนมาตรฐานมากที่สุดในการเคลื่อนที่ในแนวหนา
หลังของขนาดการหายใจและอัตราเร็วในการหายใจมีคา 0.22 มม. และ 0.089 วินาทีตอรอบ ตามลําดับ สวน
ความคลาดเคลื่อนของเปาหมายในระบบการติดตามการหายใจชนิดซินโครนีมีคานอยกวา 1 มม. และพบวาขนาด
ของการหายใจ, อัตราเร็วของการหายใจและระยะของกอนเนื้องอกไมมีผลตอความถูกตองของระบบซินโครนี 
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CHAPTER I 

INTRODUCTION 

 

 
The optimized radiation therapy is to precisely deliver a lethal dose to the 

target volume while minimizing the dose to surrounding healthy tissues and critical 

structures [1, 2]. Moving target volume is complicated to fulfill this objective, it is 

well known that target motion due to breathing is one of the major obstacles in dose 

escalation of radiation therapy to some tumors in the thoracoabdominal region [3]. 

Thus respiratory motion is a significant and challenging problem in radiation therapy 

[4]. Several approaches have been developed to manage the effect of respiratory 

motion in radiation oncology [5]. The conventional method of increasing the internal 

margin component of the clinical target volume (CTV) is almost always used to 

increase the volume of healthy tissues exposed to high doses that consequently 

increases the likelihood of treatment-related complications [6]. Furthermore, reduction 

of respiratory motion can be achieved by using either breath-hold techniques or 

respiratory gating techniques. However, the disadvantage of both techniques is the 

increasing of treatment time. Another way to manage respiratory motion better but 

also more difficult approach is to allow patient to breathe freely while a tracking and 

control systems monitor the tumor’s position and the position of external markers, 

Synchrony® respiratory tracking system, the tumor position is inferred from the 

external breathing surrogates. The Synchrony® system is a respiratory compensation 

system integrated to Cyberknife® (Accuracy Inc.), which uses external markers in 

conjunction with diagnostic x-ray imaging to compensate for respiratory motion [7, 8]. 

Then, evaluations of accuracy of Synchrony® respiratory tracking system should be 

considered to be full of confidence that it can be able to maximize tumor control 

probability while minimize normal tissue complication. As a result, it will decrease the 

mortality and improve the quality of life. 
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1.1 Magnitude and measurement of respiratory motion 
Intrafraction motion can be caused by the respiratory, skeletal muscular, 

cardiac and gastrointestinal systems. Of these four systems, it is well known that 

respiration induced anatomic motion is an important source of positional, or 

geometric, uncertainty in organs of the thorax and abdomen [9, 10]. This intrafraction 

motion impacts all forms of external beam radiation therapy and is an issue that 

becomes increasingly important in the era of image guided radiation therapy (IGRT) 

[5]. 
Respiratory motion affects all tumor sites in the thorax and abdomen, 

including in particular the lung, liver, pancreas, kidneys, and other thoracic and 

abdominal tumor which can move as much as 35 - 40 mm [5-7, 11, 12]. Quetelet 

(1842) and Hutchinson (1850) studied the pattern of breathing on 300 and 1714 adult 

subjects, respectively.  Their data show very wide frequency range, between 6 and 31 

times per minute [13] 

At rest with normal situation, a healthy person breathes 12 to 15 times per 

minute [14] and the movement amplitudes of individual skin respiratory motion 

markers range from 3.1 to 14.8 mm with a median of 7.5 mm [15]. The motion also 

varies markedly between patients, indicating that an individual approach to respiratory 

management is advised. 

Internal organ motion has been detected via ultrasound, computed 

tomography (CT), magnetic resonance (MR), nuclear medicine and fluoroscopy. The 

respiratory motion studies have tracked the movement of the tumor with the 

radiographic of internal markers embedded at the tumor site. These data are 

summarized in tables 1.1 and 1.2 for lung and abdominal tumor motion, respectively. 
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Table 1.1 Lung tumor motion data showing the ranges (minimum- maximum) and 

mean values in millimeters for each site in three dimensions; AP: anterior-posterior; 

LR: left-right; SI: superior-inferior [9]. 

 

Observer 

Direction 

SI AP LR 

Barnes: Lower lobe 18.5 (9-32) - - 

Middle, upper lobe 75 (2-11) - - 

Chen (0-5) - - 

Ekberg 3.9 (0-12) 2.4 (0-5) 2.4 (0-5) 

Engelsman: 

Middle/upper lobe (2-6) - - 

Lower lobe (2-9) - - 

Erridge 12.5 (6-34) 9.4 (5-22) 7.3 (3-12) 

Ross: - 1 (0-5) 1 (0-3) 

Middle lobe - 0 9 (0-16) 

Lower lobe - 1 (0-4) 10.5 (0-13) 

Grills (2-3) (0-10) (0-6) 

Hanley 12 (1-20) 5 (0-13) 1 (0-1) 

Murphy 7 (2-15) - - 

Plathow: Lower lobe 9.5 (4.5-16.4) 6.1 (2.5-9.8) 6.0 (2.9-9.8) 

Middle lobe 7.2 (4.3-10.2) 4.8 (1.9-7.5) 4.3 (1.5-7.1) 

Upper lobe 4.3 (2.6-7.1) 2.8 (1.2-5.1) 3.4 (1.3-5.3) 

Sppenwoolde 5.8 (0-25) 2.5 (0-8) 1.5 (0-3) 

Shimizu - 6.4 (2-24) - 

Sixel (0-13) (0-5) (0-4) 

Stevens 4.5 (0-22) - - 
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Table 1.2 The ranges (minimum- maximum) and mean of abdominal tumor motion in 

millimeters for each site in the superior-inferior (SI) direction [9]. 

 

Breathing mode 

Site Observer Shallow Deep 

Pancreas Suramo 20 (10-30) 43 (20-80) 

Bryan 20 (0-35) - 

Liver Weiss 13+5 - 

Harauz 14 - 

Suramo 25 (10-40) 55 (30-80) 

Davies 10 (5-17) 37 (21-57) 

Kidney Suramo 19 (10-40) 40 (20-70) 

Davies 11 (5-16) - 

Diaphragm Wade 17 101 

Korin 13 39 

Davies 12 (7-28) 43 (25-57) 

Weiss 13+5 - 

Giraud - 35 (3-95) 

Ford 20 (13-31) - 

 

 

From the data, the lung tumor motions generally show a much greater 

variation. The most motion of the abdominal values is the superior-inferior (SI) 

direction and no more than a two millimeters displacement in the anterior-posterior 

(AP) and lateral directions.  

The amount of a lung tumor position moving during breathing varies 

widely. Stevens et al. found that no correlation between the occurrences or magnitude 

of tumor motion and tumor size, location, or pulmonary function. They suggested that 

tumor motion should be assessed individually.  

In magnitudes of respiratory motion, there are no general patterns of 

respiratory behavior that can be assumed for a particular patient prior to observation 

and treatment. Many individual characteristics of breathing; quiet versus deep, chest 
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versus abdominal, healthy versus compromised, etc. and many motion variations 

associated with tumor location and pathology lead to individual patterns in 

displacement, direction, and phase of tumor motion. Thus, the correlation of 

respiratory motion between tumor motion with radiographic internal markers 

(fiducials) embedded at the tumor site and organ motion with respiratory signal are 

studied and illustrated schematically in table 1.3. 

 

Table 1.3 Correlation of tumor/organ motion with the respiratory signal [9]. 

 

 

 

 

 

Organ/Source 
Respiratory 

signal 

N patient 

(measurement) 
Correlation Phase shift Source 

Diaphragm SI Abdominal 5 (60) 0.82-0.95 Not observed Vedam et al(16) 

fluoroscopy displacement 

Tumor and  Abdominal 43 0.41-0.94 Short delays Ahn et al. (12) 

diaphragm, displacement observed 

fluoroscopy 

Tumor, SI Spirometry  11 (23) 0.39-0.99 -0.65-0.5 s Hoisak et  

fluoroscopy and  abdominal al. (17) 

displacement 

Tumor, 3D Abdominal 26 Respiratory Principally Tsunashima  

biplane displacement waveform cycle with 0-0.3 s et al. (18) 

radiography agree with SI existence of >  

and AP tumor 1.0 s 

motion 

Lung vessel, Abdominal 4 SI 0.87+0.23 - Koch et  

cine MRI displacement AP 0.44+0.27 al. (19) 

Lung tumor, Abdominal 9 where tumor  0.74-0.98 <1 s 4pts Mageras et  

Respiration-correlation displacement SI motion>5mm al. (10) 

CT <0.5 s 5 pts Mageras et  

Lung tumor, SI Diaphragm 12 0.73-0.96 <1 s 4pts al (10). 

respiration-correlation position 

CT <0.5 s 5 pts  
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1.2 The simulation of respiratory motion 
Many types of respiratory motion phantom are built for evaluating the 

efficiency and accuracy of respiration correlated radiation therapy technique. The 

Cyberknife manufacturer invented a Synchrony® motion table as shown in figure 1.1. 

It is a 2D motion phantom using DC motor and cam for the driving force with variable 

speed, one moving along the superior to inferior direction (longitudinal axis) that 

referred to target motion and another moving along the anterior to posterior direction 

(vertical axis) that referred to skin respiratory motion. It was used in the verification of 

the proper operation of Synchrony® tracking system at a clinical site. This done by 

comparing the targeting accuracy and dose distribution of treatment planning and true 

field of radiation of ball cube phantom, will be measured both positioning accuracy 

and radiation distribution shape [20].  

 

 
(a)  

 
(b) 

Figure 1.1 (a) The Synchrony® motion table and (b) ball-cube assembly 

 

Synchrony® motion table 

Ball cube phantom 

Ball cube assembly 
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John et al modified a standard respiratory motion phantom tool with an 

AC/DC device that allowed setting of constant full cam rotation time of 4 seconds. 

Second identical cam was added which will have the phantom block to move in the 

left and right direction of 25 mm distance as shown in figure 1.2 [21]. 

 

 
 

Figure 1.2 Respiratory motion phantom modified by John et al 

 

The Standard Imaging Inc. invented a respiratory gating platform as 

illustrated in figure 1.3 to simulate the breathing motion along the longitudinal axis of 

over a 5 mm to 40 mm distance to replicate tumor motion. Cycle interval or 

respiratory rate can be varied from 2.0 to 6.0 seconds per cycle, independently control 

the range of motion and the respiratory cycle [22]. 

 

Figure 1.3 Respiratory gating platform 

2nd cam 

1st cam 
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The Modus Medical devices Inc. has produced the QuasarTM respiratory 

motion phantom shown in figure 1.4. The cylinder motion occurs in superior-inferior 

direction form 0 to 40 cm and respiratory rate can be varied from 4 to 50 cycles per 

minute. A platform which refers to skin motion is the same respiratory rate as cylinder, 

an amplitude of skin motion is moved with 1 cm (anterior to posterior direction) [23]. 

 

 
Figure 1.4 QuasarTM respiratory motion phantom 

 
 

1.3 Methods to account for respiratory motion in radiotherapy 
Several methods have been developed to manage the effect of respiratory 

motion in radiation therapy [5]. One is to enlarge the clinical target volume (CTV) by 

increasing margin of tumor positions during respiration, a related motion-

encompassing approach is the slow CT scanning method or multiple CT scans are 

averaged that multiple respiration phases are recorded per slice (maximum intensity 

projection) that the images of the tumor show the full extent of the respiratory motion. 

But the disadvantage of slow CT scan methods is the loss of resolution due to motion 

blurring and the increased dose from slow CT scanning. Although this method will not 

affect the dose delivered to the target, it will also lead to increase dose delivered to 

normal tissues or critical organ. 

Another method to minimize the PTV margin is the breath-hold method 

that minimizes the effects of respiratory motion on radiation treatment, typically 
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applied at normal end - exhalation or deep inhalation. This method provide higher 

accuracy of dose delivery to target than motion-encompassing methods, but breath 

holding is not applicable to most patients due to compliance, especially for elderly 

patients or patients with compromised pulmonary capacity. 

For respiratory gating methods that allows the patient to breathe normally 

with the radiation beam is turned on only within a specified portion (phase or 

amplitude) of the patient’s respiratory cycle. The position and width of the respiratory 

gating are determined by monitoring the patient’s respiratory motion using either an 

external respiratory signal to infer the tumor position, or by directly tracking 

implanted radio-opaque markers (fiducials) fluoroscopically. Typically the gate is 

chosen over a range of the respiration cycle during which the tumor motion is minimal 

(at exhale) or the lung volume is maximal (at inhale).  Gating does allow a reduction 

of the PTV margin resulting in decrease dose to normal tissue. However, the 

disadvantage of respiratory gating is limited portion of the breathing cycle which can 

reduce the duty cycle (the fraction of the gate width to the respiratory cycle period), 

increase the treatment time [2, 5, 6, 9, 24]. 

Another method to manage the effect of respiratory motion is to move or 

shape the radiation beam dynamically to target; this will be referred to as real- time 

tracking system. Under ideal condition, continuous real-time tracking can reduce the 

tumor motion margin in dose distribution while maintaining a 100% duty cycle for 

efficient dose delivery [5, 9, 25]. Real-time tracking requires the ability to 

automatically adjust the position of the beam relative to the moving target. There are 

four possible ways to do this:  

(a)  Shift the patient using a remotely controlled couch. 

(b) Shift the aperture of a remotely controlled collimator (Multileaf 

collimator). 

(c)  Redirect the beam electromagnetically (for charged-particle beams). 

(d)  Shift the beam by physically repositioning the radiation source (i.e., a 

linear accelerator). 

All of these methods require connecting a system for measuring tumor 

position through a real-time control loop to the beam alignment system. Because 

moving tumors have more degrees of freedom than a conventional gantry-mounted 
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linear accelerator (Linac) and couch, real-time tracking requires specialized 

beam/patient positioning tools [5, 25]. Thus to succeed, a tracking system must be able 

to do four things: 

(a) Determination of the tumor position 

(b) Anticipation of the tumor motion to allow for time delays in 

realignment of the beam 

(c) Transmittal of the target coordinates to the re-alignment system 

through a control loop 

(d) Reposition of the beam 

 

All of these must be done automatically and in real time, where real time 

refers to timescales that are short compared to the period over which the tumor moves 

appreciably [9, 24, 26]. 

If the tumor position must be inferred from the respiratory surrogate’s 

motion such as the chest or abdomen, the control loop also requires an algorithm that 

relates tumor to surrogate motion which the most general and robust surrogate tracking 

algorithm should adapt to changes in the respiration patterns. This is the basis of the 

Cyberknife with Synchrony respiratory tracking system [26] (appendix A and B). 
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CHAPTER II 

OBJECTIVES 

 
 

 The main purpose of this experiment was to construct a respiratory motion 

phantom for testing the targeting accuracy of the Synchrony® respiratory tracking 

system. 

The other two sub-purposes were: 

1. To evaluate the targeting accuracy of the Synchrony® respiratory 

tracking system. 

2. To study the correlation of the amplitude of skin motion, respiratory rate 

and moving distance of tumor with the total targeting errors in the Synchrony® 

respiratory tracking system. 
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CHAPTER III 

LITERATURE REVIEWS 

 
 

T. Zhou, et al [27] developed a respiratory motion phantom simulator as 

show in figure 3.1. It consists of two independent programmable robotic 3D linear 

motion platforms, Skin Motion Simulator (SMS) and Tumor Motion Simulator (TMS) 

The SMS consists of three high-precision orthogonally mounted linear slides, and the 

TMS consists of two such linear slides and one vertically mounted linear piston 

actuator (Ultra Motion, LLC). Each stage includes a high-performance servomotor, an 

integrated gear head at the motor output shaft, and an optical rotary encoder mounted 

on the motor back shaft. The platforms are controlled by a personal computer through 

an Ethernet-addressable motion control board. The simulated motions were evaluated 

by using Optotrak, which was placed about two millimeters from the simulator. For 

each test, two sets of data were collected: one set measured the motion at the top stage 

of the simulator in Optotrak’s coordinates and the other measured the commanded 

motion to each slide in the simulator’s coordinates. A registration method was applied 

to convert the Optotrak results into the simulator’s coordinates for comparison. As a 

result, respiratory skin and tumor motions have a precision better than ± 0.1 mm that 

will be a tool in Cyberknife suited for phantom treatments, dose verifications of 

Synchrony® respiratory system. 
 

 
 

 

 

 

 

 

 

Figure 3.1 Respiratory motion simulator 
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Researchers from three Cyberknife centers [28] studied the Synchrony® 

respiratory tracking system. They conducted an “end-to-end” test procedure using a 

test object to simulate a spherical target as shown in figure 3.2. Orthogonal 

radiochromic films can be placed within the test object, which allows for subsequent 

comparison of planned and delivered a spherical dose profiles. After irradiation, a film 

analysis software package provided by Accuray calculates the centroid of the 

delivered dose profiles. The distance between the centers of the planned and delivered 

dose profiles is a measure of the system’s submillimeter accuracy and thus represents 

all possible errors in the treatment planning and delivery process including error in the 

tracking system. Programmable motion tables were used to simulate respiratory 

motion of the object and the external optical markers, the amplitude of motion was 25, 

8, and 3 mm for superior-inferior, anterior-posterior, and left-right directions, 

respectively. The motion pattern was a sine4 (ωT/2) waveform; the period was 3.6 s; 

and the phase difference between the object and marker motions was 0, 15, and 30 

degrees for different experiments. As a result, the mean error observed during 

treatment with the Synchrony® system across all motion patterns was 0.7 ± 0.3 mm.  

 

 
 

Figure 3.2 Test object for End to End test 

 

K Wong, et al [4, 29] studied the accuracy and precision of the beam 

steering by recording the motions of both the Linac and a ball-cube target using an 

independent optical tracker in the Synchrony® system. For this study, the target is a 

plastic ball-cube phantom which was scanned and planned for a 30 Gy at 100% 
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isodose line treatment. Respiratory motion was generated using a computer-controlled 

3D motion simulator in regular respiratory motion as three sinusoids with the 

following extents: 10 mm SI, 10 mm AP, and 5 mm LR. The respiratory period was 5 

seconds. All three axes were in phase. The Optotrak Certus optical tracking system for 

measurements in this study was used (Active LEDs were attached to the Linac and the 

motion simulator) as shown in figure 3.3. As a result, their findings summarized that 

Synchrony® was able to track 61 of the 98 beams. Inability to track occurred when the 

Optotrak view was blocked by the Linac or robot arm, or when the Linac was oriented 

in such a way that the markers on the end of the Linac were not visible to the 

Optotrak. The standard deviation of the Linac to target distance was 0.82 ± 0.27 mm 

and these measurements provide independent, high-precision measurement of the 

tracking accuracy of Cyberknife with Synchrony® system 

 

 
 

Figure 3.3 The set up of the Optotrak certus (Arrow) in Cyberknife treatment room. 

Two LEDs are attached to the tumor motion simulator near the target ball-cube. An 

additional six LEDs are attached to the final collimator of the Cyberknife Linac. 

 

G Kim, et al [30] evaluated the tumor motion and treatment accuracy of 

the Synchrony® tracking system for the treatment of liver motion. The motions of 
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tumor in 64 treatments of 24 patients were analyzed by using correlation error (the 

distance between the model-based estimated and image-based actual position) of log 

file in Synchrony® tracking system. As a result, the mean correlation error was 1.1 ± 

0.7 mm. It was shown that Synchrony motion tracking system has a clinically relevant 

accuracy in liver tumor. 
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CHAPTER IV 

MATERIALS AND METHODS 
 

 

  For good communication, both material and method parts were reported 

in three parts. The first one is the design and construction of an in-house respiratory 

motion phantom. In the second part, the completed phantom was calibrated and 

evaluated with Real-time Position Management (RPM) system and the last one 

describes the application of the phantom in verify the targeting accuracy of the 

Synchrony®  respiratory tracking system. 

 

 

4.1 Design and construction of the in-house respiratory motion 

phantom  
 

4.1.1 Materials 

 4.1.1.1 Acrylic plates, PVC pipe, nut and bolt (as shown in 

figure. 4.1 a, b, and c, respectively) 
 

       
         (a)           (b)                   (c) 
 

Figure 4.1 (a) 3 and 5 mm thickness acrylic plates (b) PVC pipes (c) nut and bolt 
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4.1.1.2 Gear motor 

The gear motor with 12 VDC 15 Watt was used in the 

research. The speed of motor can be increased up to 50 rounds per minute. The 

dimension of its front area is 6 x 6 cm2 with 8 mm axle (Figure 4.2). 

 

 
 

Figure 4.2 Gear motor 12 VDC 

 

4.1.1.3 Switching power supply 

The switching power supply shown in figure 4.3 is an 

electronic power supply unit (PSU) with a switching regulator in order to provide the 

required DC output voltage. Its input voltage is 220 VAC with the output of 13.8 VDC 

- 10 Amp. 

 

 
 

Figure 4.3 Switching power supply 
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4.1.1.4 Electronic board and parts for assembling an adjustable 

voltage regulator circuit 

The adjustable voltage regulator circuit is important to convert 

the 13.8 VDC source to various DC voltages. This circuit is called a DC to DC 

converter or a voltage regulator. Figure 4.4 shows the electronic board and parts of the 

adjustable voltage regulator.  

 

 
 

Figure 4.4 The adjustable voltage regulator circuit 

 

4.1.1.5 Accessories for electronics 

Figure 4.5 (a – d) shows the lead, electric wire and electric 

soldering iron used for connection of electronic circuit elements and coping saw (a 

type of hand saw used for cutting the acrylic plate and PVC pipes).  

 

            
        (a)     (b) 
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         (c)       (d) 

 

Figure 4.5 (a) Lead (b) Electric wire (c) Electric soldering iron (d) coping saw 

 

4.1.1.6 Tourniquet 

The tourniquet is a constricting device used to pull the tumor 

motion platform for moving in SI direction. 

 

 
 

Figure 4.6 Tourniquet 

 

4.1.2 Methods 

The in-house respiratory motion phantom model was designed to be able 

to simulate respiratory motion signal and tumor motion.  
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The acrylic plates with 5 mm thickness were used for fabricating an 

external part of the phantom and 3 mm for the skin motion platform (Figure 4.7) and 

holding the gear motor and also supporting two long sides of the phantom. The nuts 

and bolts were used to join every part together. The size of the phantom is 17 × 45 × 

15 cm3. 

 

 
Figure 4.7 The external part of the phantom 

 

Inside the phantom, there are mechanical and electronic parts. The 

mechanical part was made of 3 mm thickness acrylic plate which consists of a skin 

motion platform (Figure 4.7), a tumor motion platform (Figure 4.8a), slashed PVC 

pipes with 15, 25, and 10 mm long (Figure 4.8b), and cam (Figure 4.8c). 
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(a)                                              (b)                                   (c) 

 

Figure 4.8 Each part of the in-house respiratory motion phantom model  

 

One end of slashed pipe was attached with the cam and another end 

attached with the tumor motion platform (Figure 4.9) by using four nuts and bolts to 

move the platform in supero-inferior (SI) direction with the same length of the pipe. 

(The tumor motion platform can move by push of slash cut pipe and pull with 

tourniquet). Moreover, another side of the cam was attached with the gear motor to 

rotate the cam for moving the skin motion platform in antero-posterior (AP) and tumor 

motion platform in SI direction.  

 

 

 

Figure 4.9 Top view of inside phantom 
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                     The electronic part was composed of an adjustable voltage regulator 

circuit shown in figure 4.4. The circuit was assembled according to the circuit diagram 

illustrated in Figure 4.10. 

 

 

 

Figure 4.10 The electronic circuit diagram of the phantom 

 

The switching power supply convert the 220 VAC to 13.8 VDC and 

transfer the DC current to the adjustable voltage regulator circuit for driving gear 

motor with variable velocity adjusted by voltage regulator circuit. The construction of 

the respiratory motion phantom was shown in figure 4.11. 
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Skin motion platform
Tumor motion platform

Outside phantom

CamSlash cut pipe

 
 

Figure 4.11 The construction of the in-house respiratory motion phantom 

 

 

4.2 Calibration and evaluation of the in-house respiratory motion 

phantom  

 
4.2.1 Materials 
The Real-time Position Management™ (RPM) system (appendix C) 
The Real-time Position Management™ (RPM) system of Varian Medical 

Systems, Palo Alto, CA version 1.7.5 was used to monitor and record a respiratory 

signal, specifically the rise and fall of the anterior abdominal surface. The RPM 

system consists of Charge-Coupled Device (CCD) with illuminator ring, in-room 

viewfinder, junction box, marker block with infrared reflective two dots, and RPM 

workstation. 
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Figure 4.12 The RPM system of Varian that consists of a Charge-Coupled Device 

(CCD) with illuminator ring, in-room viewfinder and marker block. 

 

4.2.1 Methods 

In order to calibrate and evaluate the performance of the respiratory 

motion phantom, The RPM system was used to verify the amplitude and respiratory 

rate position. 

Before the RPM system was used for calibration and evaluation of the 

phantom, it was verified by XY/4D motion simulation table of Sun Nuclear 

Corporation shown in figure 4.13. The simulation table has a respiratory surrogate 

housing which can move in AP direction to simulate skin motion. The respiratory 

surrogate housing can control the moving with computer software. For testing the 

RPM system, the respiratory signal with 20 mm amplitude and 4 sec/cycle respiratory 

rate was created. The standard deviation of amplitude and respiratory rate were 

calculated. The result shows the acceptable errors of less than 0.1 mm and 0.1 sec per 

cycle for amplitude and respiratory rate, respectively.  

Charge couple device 

Marker block

In-room viewfinder 
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Figure 4.13 XY/4D motion simulation table 

 

The respiratory phantom surface motion was calibrated for the amplitude 

positions of 6, 7.5, 9, 12, and 15 mm and respiratory rates of 5, 10, 15, 20, 25, and 30 

cycles per minute by placing the RPM block on the skin motion platform. The two 

circular markers on the block were track the infrared reflecting from the charge couple 

device (CCD). 

The precision test of respiratory phantom was performed for the amplitude 

position of 7.5 mm for every respiratory rate and respiratory rate of 15 cycles per 

minute for every amplitude position. 

 

 

4.3 Testing the targeting accuracy of Synchrony® respiratory tracking 

system 

 
4.3.1 Materials 

4.3.1.1 Cyberknife with the Synchrony® respiratory tracking 

system 

 Figure 4.14 shows the Cyberknife machine with 6 MV photon 

beam and the Synchrony® respiratory tracking system with 4th generation (Accuracy 

Incorporated) of the Faculty of Medicine, Ramathibodi Hospital used for this study. 

The sizes of the secondary collimators of the machine are 5, 7.5, 10, 12.5, 15, 20, 25, 

30, 35, 40, 50, and 60 mm diameters. 

Respiratory 
surrogate housing 
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Figure 4.14 Cyberknife machine in Ramathibodi Hospital 

 

4.3.1.2 Treatment planning system 

The MultiPlan® treatment planning system of Cyberknife 

robotic radiosurgery system version 2.2 shown in figure 4.15 which was used for this 

study. 

 

 
 

Figure 4.15 The MultiPlan® treatment planning system 
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4.3.1.3 Computed tomography (CT) simulator machine 

The Philips Mx8000IDT - 16 CT scanner (Phillips Medical, 

Best, The. Netherlands) of the Faculty of Medicine, Ramathibodi Hospital shown in 

figure 4.16 was used for this study. 

 

 
 

Figure 4.16 Computed tomography (CT) simulator machine in Ramathibodi Hospital 

 

4.3.1.4 Ball-cube assembly with radiochromic 

The ball cube is a targeting tool made of 4 pieces which 

connect together using threaded nylon rod and nuts. An acrylic ball with 31.75 mm 

diameter representing a target is placed in the center of the cube as shown Fig 4.17a. 

Two pieces of radiochromic film may be inserted perpendicularly together for dose 

distribution measurement. The ball-cube is placed in a plastic ball phantom (Fig. 

4.17b). There are five metal fiducials inside the ball phantom for tracking process.   

 

 
                (a) 

Acrylic ball 

Ball-cube 

Film 
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(b) 

 

 Figure 4.17 (a) The acrylic ball and the ball-cube rendering (b) The ball-cube 

assembly with precut MD55 gafchromic film  

 

4.3.1.5 The in-house respiratory motion phantom 

Figure 4.18 shows the in-house respiratory motion phantom for 

testing the targeting accuracy of the Synchrony® respiratory tracking. 

 

 
 

Figure 4.18 The in-house respiratory motion phantom 

 

Gafchromic film 

Ball-cube 

Ball phantom 
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4.3.1.6 A flatbed transparency scanner 

A flatbed transparency scanner, Epson Perfection V700 Photo 

scanner (Fig.4.19) was used for this study. The size of scanning surface is 20 x 30 cm 

with the maximum resolution of the film scanning of 6400 dpi. . 

 

 
 

Figure 4.19 A flatbed transparency scanner 

 

4.3.2 Methods 

4.3.2.1 CT Simulation and treatment planning 

 a. A ball-cube with two pieces of film inside was loaded into 

the ball phantom with proper orientation (SI directions).   

 b. The phantom was scanned by using axial mode, 120 kVp, 

and 1.5 mm slice thickness. 

 c. The CT images of the ball-cube phantom were imported to 

the treatment planning system. 

d. In fiducial mode, every fiducial in the images was digitized. 

e. A treatment plan was generated with the goal of  80% 

isodose line of  6.5 Gy conforming the outer surface of the acrylic ball target (left = 

31.75 mm, anterior = 31.75 and superior = 31.75 mm) with its center at the same  

point of the ball’s as illustrated in figure 4.20. 
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Figure 4.20 The treatment plan for the E2E test ball-cube phantom  

 

4.3.2.2 Radiation Delivery 

a. Digital reconstruction radiographs (DRRs) was generated to 

verify the treatment delivery. 

b. The ball-cube with two pieces of MD55 Gafchromic film 

was placed on a piece  of a 5 cm thick Styrofoam and then placed on the top of the 

tumor motion platform of the in-house respiratory motion phantom put on the 

treatment couch as shown in Figure 4.21. The orientation of anterior, superior and left 

edges of the film was marked on both pieces of the film. The setup orientation of the 

ball-cube in the phantom must be exactly the same as the CT scanning. . 
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Figure 4.21 The setup of the in house respiratory motion phantom and ball cube for 

testing the targeting accuracy of the Synchrony respiratory tracking 

 

c. The respiratory motion phantom switch was turned on and 

ensures that the phantom is centered to the imagers. 

d. The LEDs markers were attached to the motion phantom. 

The markers were adjusted with a camera to check breathing pattern. 

e. The correlation model was created. The x-ray image was 

acquired to match the plan DRRs. The technique of 110 kVp, 100 mA and exposure 

time of 50 ms was used. A short exported exposure time is always used.  

f. The phantom was exposed with the moving various 

parameters to verify and study the correlation of amplitude of skin motion, respiratory 

rate and moving distance of tumor with the targeting accuracy of Synchrony® 

respiratory tracking system as shown in the table 4.1. 

 

 

 

 

Styrofoam 

Ball-cube phantom
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Table 4.1 The Parameter’s values for testing the synchrony® respiratory tracking 

 

Parameters 
Amplitude 

(mm) 

Respiratory rate 

(cycle/min) 

Tumor motion  

(mm) 

Amplitude (mm) 6 15 25 

7.5 15 25 

9 15 25 

12 15 25 

15 15 25 

 

Respiratory rate  7.5 5 25 

(cycle/min) 7.5 10 25 

7.5 15 25 

7.5 20 25 

7.5 25 25 

7.5 30 25 

 

Tumor distance (mm) 7.5 15 15 

7.5 15 25 

  7.5 15 35 

 

g. The exposed films were removed for analysis. Keep the 

films out of a UV light for 24 hours before being scanned.   

 

4.3.2.3 Film Analysis 

a. The exposed and also unexposed films were scanned at the 

same time using a flatbed transparency scanner. During scanning, the anterior edge of 

the films is on the top and the left or superior edge is on the left of the image. 

Furthermore, these edges should not be varied more than 5 degrees from the actual 

image edges. However they should be as parallel as possible to the axes of the image. 
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b. The scanning images were loaded to End to End (E2E) Film 

Analysis 2.0 Software tool (Appendix D). All results of the centroid of dose 

distribution (total targeting error) were analyzed.  

 

4.3.2.4 Statistical analysis 

All total targeting errors of the centroid of dose distribution for 

each parameter group were analyzed by using one way ANOVA (Analysis of 

Variance). 
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CHAPTER V 

RESULTS  

 

 

5.1 Design and construction of the in-house respiratory motion 

phantom  

The in-house respiratory motion phantom was constructed. As a result, the 

size of the motion phantom is 17×45×15 cm
3
 made of white acrylic plastic structure. 

The cam was driven by the gear motor 12 VDC. The phantom can be moved in two 

directions, supero-inferior with 15, 25 and 35 mm distances by tumor motion platform 

movement and antero-posterior in the range form 0 to 15 mm by moving the skin 

motion platform. By adjusting the voltage regulator, the respiratory rate can be varied 

from 0 to 30 cycles per minute. Figure 5.1 shows the construction parts of in-house 

respiratory motion phantom. 

 

 

 
 

(a) 

                                   
 

               (b)             (c)         (d) 

 

Figure 5.1 Each part of in-house respiratory motion phantom (a) external structure (b) 

tumor motion platform (c) slash cut pipes (d) cam 

External structure 

Tumor motion platform Slash cut pipes Cam 
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Each part of in-house respiratory motion phantom was assembled. The 

switching power supply was connected to adjustable voltage regulator circuit and gear 

motor. Cam with 15, 25, or 35 mm slash cut pipes was attached to axle of gear motor. 

The skin motion platform is moved by cam and the tumor motion platform is pushed 

by slash cut pipe and pulls with tourniquet within the phantom. The completed in-

house respiratory motion phantom was shown in figure 5.2  

 

          

(a)           (b) 

Outside phantom  

 

      

    (c)                            (d) 

Inside phantom 

 

Figure 5.2 The completed in-house respiratory motion phantom (a - b) outside 

phantom (c - d) inside phantom 

 

 

 

 

Tumor motion platform 

Skin motion platform 
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Adjustable voltage 
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Cam 
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5.2 Calibration and evaluation of the in-house respiratory motion 

phantom  

The respiratory motion phantom was calibrated and evaluated by using the 

RPM (The Real-time Position Management™) system to define the amplitude 

positions of 6, 7.5, 9, 12, and 15 mm and respiratory rates of 5, 10, 15, 20, 25, and 30 

cycles per minute.  

For each amplitude and respiratory rate position, the calibration was 

repeated five times. Then each amplitude and respiratory rate position was marked on 

the motion phantom by using a permanent pen as shown in figure 5.3. Figure 5.4 

shows the sinusoidal waves for the calibration of 7.5 mm amplitude position and 

respiratory rate of 15 cycles per minute (4 seconds per cycle).  

 

 

 

Figure 5.3 The amplitude position (mm) on the skin motion platform and respiratory 

rate position of the respiratory motion phantom 

 

Amplitude position 

Respiratory rate 

position 
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Figure 5.4 Sinusoidal waves at amplitude position of 7.5 mm and respiratory rate of 

15 cycles per minute (4 seconds per cycle) of the in-house respiratory motion phantom 

 

Table 5.1 and 5.2 show the results of the precision test for amplitude 

position and respiratory rate, respectively. 

 

 

Table 5.1 The standard deviation of amplitude position (mm) of the in-house 

respiratory motion phantom 

  

Setting value Mean reading ± SD  Range (Min-Max)  

6.0 6.0 ± 0 - 

7.5 7.6 ± 0 .22 7.5 - 8.0 

9.0 9.0 ± 0 - 

12.0 12.0 ± 0 - 

15.0 15.0 ± 0 - 

 

 

 

7.5 mm 

Respiratory rate 
Amplitude 
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Table 5.2 The standard deviation of respiratory rate (sec/cycle) of the in-house 

respiratory motion phantom 

 

Setting value 
Mean reading ± SD 

Range 

(Min-Max) Cycle/min Sec/cycle 

5 12 11.98 ±0.045 11.9-12 

10 6.0 6.04 ± 0.089 6.0-6.2 

15 4.0 4.0 ± 0.07 3.9-4.1 

20 3.0 3.0 ± 0.0 - 

25 2.4 2.4 ± 0.07 2.3-2.5 

30 2.0 2.0 ± 0.0 - 

 

The maximum standard deviation measured of the amplitude of skin 

motion is 0.22 mm. Also the maximum standard deviation measured of the respiratory 

rate is 0.089 seconds per cycle. 

 

 

5.3 Testing of the targeting accuracy of Synchrony
®
 respiratory 

tracking system 

From the film scanning, the errors of the target position in anterior, 

superior and left directions were obtained by using E2E software (appendix D). The 

total targeting errors (mm) were then calculated.  Figure 5.5 shows (a) the exposed 

film and (b) digital centroid analysis with E2E software. The total targeting errors with 

various amplitudes of skin motion, respiratory rates and tumor motion distances are 

shown in table 5.3, 5.4, and 5.5, respectively. 
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(a) 

 

 

(b) 

 

Figure 5.5 The example of (a) exposed films and (b) digital centroid analysis E2E 

software. 
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Table 5.3 Total targeting errors (mm) of various amplitudes of skin motion for 15 

cycles/min respiratory rate and 25 mm tumor motion distances 

 

Amplitude  
No. 

Mean ± SD 
1 2 3 

6 0.40 0.94 0.75 0.70 ±0.27 

7.5 0.31 0.65 0.34 0.43 ±0.19 

9 0.55 0.33 0.77 0.55 ±0.22 

12 0.45 0.63 0.57 0.55 ±0.09 

15 0.75 0.78 0.98 0.84 ±0.13 

Mean ± SD 0.61 ±0.22 

 

 

Table 5.4 Total targeting errors (mm) of various respiratory rates for 7.5 mm 

amplitude of skin motion and 25 mm tumor motion distances 

 

 

Respiratory 

rate (cycle/min) 

No. 
Mean ± SD 

1 2 3 

5 0.53 0.37 0.61 0.50 ±0.12 

10 0.61 0.28 0.33 0.41 ±0.18 

15 0.31 0.65 0.34 0.43 ±0.19 

20 0.25 0.46 0.33 0.35 ±0.11 

25 0.79 0.32 0.583 0.56 ±0.24 

30 0.83 0.37 0.55 0.58 ±0.23 

Mean ± SD 0.47 ±0.18 

 

 

Table 5.5 Total targeting errors (mm) of various tumor motion distances for 7.5 mm 

amplitude of skin motion and 15 cycles/min respiratory rate 

 

Tumor 

distance (mm) 

No. 
Mean ± SD 

1 2 3 

15 0.83 0.68 0.752 0.75 ±0.08 

25 0.31 0.65 0.34 0.43 ±0.19 

35 0.73 0.72 0.45 0.63 ±0.16 

Mean ± SD 0.61 ± 0.19 
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The mean values of the total targeting errors for the skin motion, 

respiratory rate and tumor motion distance are 0.61 ± 0.22 mm, 0.47 ± 0.18 mm, and 

0.61 ± 0.19 mm, respectively.  By using the ANOVA statistical test to analyze the 

total targeting errors, there are no significant differences for  the skin motion 

amplitudes from 6 to 15 mm (p-value = 0.1717, 95% CI), respiratory rate from 5 to 30 

cycles/min (p-value = 0.5961, 95% CI) and tumor motion distance from 15 to  35 mm 

(p-value = 0.099, 95% CI). 
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CHAPTER VI 

DISCUSSION 
 

 
The in-house respiratory motion phantom was constructed and evaluated 

using the Varian RPM system. The phantom consists of two platforms for two 

directions of motion: superior to inferior with the distances of 15, 25, and 35 mm 

anterior to posterior from 0 to 15 mm. The respiratory rate can be varied from 0 to 30 

cycles per minute. The measurement values in the standard deviation of amplitude of 

skin motion and respiratory rate indicated that the stability of the respiratory motion 

phantom is fairly stable and acceptable with maximum standard deviation of 0.22 mm 

amplitude and 0.089 seconds/cycle respiratory rate. This is due to stable voltage 

supplying to the gear motor. However, the problem of the respiratory motion phantom 

is the heat from the gear motor and the adjustable voltage regulator circuit which could 

be broken if it moves for a long period of time. This problem may be solved by 

moving the heat sink outside the phantom. 

According to the evaluation of targeting accuracy of the Cyberknife with 

Synchrony® respiratory tracking system, although, the amplitude of skin motion, 

respiratory rate and tumor motion distance are varied in human standard range, the 

Synchrony® respiratory tracking system has sufficient performance for moving 

treatment target with the maximum error of 0.61 ± 0.22 mm . The result agrees with   

the other studies, three Cyberknife centers [28] with the error of 0.7 ± 0.30 mm and 

Wong et al [4, 29] with the error 0.82 ± 0.27 mm. Consequently, the total system error 

of the Cyberknife system with Synchrony® respiratory tracking system could be 

ensured with error less than 1.0 mm which amplitude of skin motion, respiratory rate 

and tumor motion distance do not affect the targeting accuracy of Synchrony® 

respiratory tracking system. However, this system will be successful if respiratory 

training for patients is well performed. Nevertheless, the system will stop 

automatically when target is out of range from the correlation model which can cause 

several hours of treatment time. 



Fac. of Grad. Studies, Mahidol Univ.  M.Sc.(Medical Physics) / 43 
 

In this study, the target deformation is beyond our scope. The Correlation 

model between the external marker and target positions motion is modeled just a 

simple linear relationship for this phantom. The nonlinear model for target 

deformation should be considered for future study. 
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CHAPTER VII 

CONCLUSION 

 

 
From this study, the in-house respiratory motion phantom was designed 

and constructed. The performance of the motion phantom was calibrated and evaluated 

using the Varian RPM system. The results show sufficient accuracy and stability with 

the precision better than 0.22 mm amplitude for skin motion and 0.089 seconds per 

cycle for respiratory rate. After evaluation, it was used to test the targeting accuracy of 

the Cyberknife system with the Synchrony® respiratory tracking system.  

 This motion phantom is very useful and convenient tool for independently 

testing the targeting accuracy of the Synchrony® respiratory tracking system. 

The maximum targeting error of the Synchrony® respiratory tracking 

system tested by this respiratory motion phantom is 0.61 ± 0.22 mm with skin motion 

test.  By using ANOVA statistical test, it is found that the targeting accuracy of this 

system does not depend on amplitude of skin motion, respiratory rate and tumor 

motion distance (p-value > 0.099, 95% CI).  

The testing of the Cyberknife with the Synchrony® respiratory tracking 

system using the respiratory motion phantom shows that it is suitable for clinical 

treatment with only a sub-millimeter error.  
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APPENDIX A 

 

 

Cyberknife (Image guided robotic radiosurgery) system 
The Cyberknife is a frameless robotic radiosurgery system that combines 

image guidance with robotic technology aiming at the delivery of highly conformal 

radiation dose distributions to target with standard uncertainty of less than 1 mm, 

invented by John Adler, who is a neurosurgeon at Stanford University. In August 

2001, it was cleared by the Food and Drug Administration (FDA) for tumor treatment 

any anatomical site [27, 31-35]. This system consists of the treatment manipulator 

(robot), patient positioning system, the target locating system (TLS) and linear 

accelerator (Linac) which illustrated schematically in figure 1A [20, 33, 36-38]. 
 

 
 

Figure 1A Main component of Cyberknife robotic radiosurgery system 
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The treatment manipulator (robot), a 6-axis manipulator is used for 

positioning and pointing the Linac to treatment target, provides a 65 -100 cm source to 

axis distance (SAD) with up to 1,200 treatment positions. 

The patient positioning system includes the treatment couch. It is used to 

position the patient with automatic patient positioning technology which has 

motorized control of six degrees of freedom: three translations and three rotations. 

The Target Locating System (TLS) has three components: 

1. The x-ray sources are attached to the ceiling on each side of the 

treatment couch. 

2. The x-ray generators supply high-voltage power to the x-ray source, 40-

125 kV, 25-300 mA, 1-500 ms. 

3. An amorphous silicon detectors are used along with the x-ray sources to 

correctly position the patient for treatment. 

The linear accelerator is attached to the treatment manipulator and delivers 

radiation dose to the patient. It contains a compact 6 MV x-ray, dose rate 3, 4, and 6 

Gy/minute, with 9.5 GHz X band accelerator. The secondary collimators are included 

in diameters of 5, 7.5, 10, 12, 15, 20, 25, 30, 35, 40, 50, and 60 mm. 

In process, the target locating system is used to obtain the patient image 

during treatment. The acquired radiographs are automatically registered to digitally 

reconstructed radiographs (DRRs) derived from the treatment planning computed 

tomography (CT) for determining the patient’s position. A control loop between the 

imaging system and the robotic arm allows the pointing of the treatment beam to be 

adapted automatically to the observed position of the treatment site. This allows the 

system to monitor and adjust to patient movement during treatment. The treatment 

beam can be directed at the treatment target [39, 40]. 

The advantages of the Cyberknife system include the ability to deliver 

treatment without a frame (frameless) which is noninvasive, increased fractionation 

flexibility, the ability to treat extra-cranial lesions and reduce the tumor motion margin 

in dose distribution while maintaining a 100% duty cycle for efficient dose delivery  

[31, 32, 41, 42]. 
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APPENDIX B 

 

 

Synchrony® respiratory tracking system 
The Synchrony® respiratory tracking system (RTS) is subsystem of the 

Cyberknife treatment device to irradiate extra-cranial tumors that move due to 

respiration [43]. It is used to monitor patient breathing and adjust the radiation beam to 

match target organ, with goal of compensating for tumor motion due to respiration 

[27]. Within the treatment room, the Synchrony® camera array is mounted to the 

ceiling near the foot of the treatment couch and used for detecting the external LEDs 

marker [20]. With Synchrony, a correlation model between an internal organ motion 

(internal tumor position) and the skin respiratory motion (external marker position) is 

established by simultaneously taking x-ray images to track an internal fiducials and 

using infrared trackers (Synchrony® Tracking Marker LEDs) placed on the chest or 

abdomen. This correlation model is established and verified during treatment and also 

checked and updated regularly by acquisition of new pairs of x-ray image [44]. The 

linear accelerator follows the tumor motion based on the prediction from the external 

marker position and moves the linear accelerator dynamically with the target [11, 24, 

27, 45]. This concept is illustrated in figure 1B  

 

 
 

Figure 1B The Synchrony®  Respiratory Tracking System  
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The main components of the Cyberknife with Synchrony® as shown in 

figure 2B are: 

1. Linac with 6MV x-ray mounted to a robotic arm. 

2. Two orthogonal flat-panel x-ray detectors positioned perpendicular to 

the x-ray source.  

3. Synchrony® tracking vest is designed specifically for using with 

tracking markers, which are light-emitting diodes (LED).  

4. Synchrony camera array holds 3 CCD (charge coupled device) cameras.  

5. The Synchrony and the target locating system (TLS) computer 

 

 
 

Figure 2B Main components of the Cyberknife robotic radiosurgery system with the 

Synchrony® respiratory tracking system 
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Step of working in Synchrony® respiratory tracking system are: 

 1. The target locating system (TLS) computer acquires x-ray image with a 

time stamp. 

2. The Synchrony® computer uses the time stamp to identify the location 

of the internal tumor markers. 

3. The Synchrony® computer sent the calculated target location to the TLS 

computer at that time stamp. 

4. The TLS computer extracts and identifies the internal tumor marker in 

the live image. The actual target location is sent to the Synchrony® computer with the 

time stamp. 

5. The Synchrony® computer checks the agreement of the actual target 

location and the calculated target location is less than 5 mm. If not, an ESTOP is 

initiated which the treatment is paused. 

6. A robot moves on to the next beam delivery location within 2-3 s. 

 The correlation model between internal tumor and external marker 

position is generated by fitting the 3D internal tumor position at respiratory cycle to 

the simultaneous external marker position. The tumor position is determined by 

detecting fiducial or internal tumor markers in x-ray images. The tumor position and 

the time at which the image was acquired are sent to the Synchrony computer. The 

continuously measured external marker positions are stored in a buffer. The image 

acquisition time is used to find the corresponding position and velocity of all the 

markers. For each marker, a data point consisting of the marker position, marker 

velocity, and target position is added to its data set. As each new data point is added, 

the parameters for each correlation model type are computed. 

For the Synchrony® system process, prior to treatment, a 2-4 small gold 

fiducial markers embedded at the tumor site. After approximately 1 week, a patient 

returned for planning CT. The patient lay comfortably supine and wore a Synchrony 

tracking vest. The vest was form-fitting and highly elastic to ensure that it moved with 

the patient’s chest wall or abdomen as illustrated in figure 3B 
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Figure 3B Three LED markers are attached to vest that the patient wears during 

treatment 

 

On the day of treatment, the patient was wore a Synchrony tracking vest 

and lay supine on the treatment couch in the same immobilization device that was used 

during the planning CT scan. The 3 LED markers (External markers) were attached to 

the patient’s chest or abdomen. The camera array continuously registered the positions 

of external markers and reported them to the Synchrony® computer. The x-ray 

imaging is synchronized with optical tracking of external markers [7]. During the 

initialization stage of the procedure, a correlation model is computed, using least-

squares fit of all available data points. Then the linear, single, and dual quadratic 

models are considered [5]. 

Each model provides an estimate of the internal tumor position from the 

external marker position: 

 

                                                   XTi = fi (XMi)                                                              (1) 

Where  XMi  is the position vector of the ith marker. 

     XTi  is the position vector of the target estimated from the ith 

marker. 

 

When more than one internal tumor marker, the average value of the 

individual tumor position is used estimate of the target position. 
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Even if the external marker and internal tumor position follow linear 

trajectories the linear model is built. Using this simplification, the correlation model 

can be written as: 

 

                                                 XTi = fi(ri)                            (2) 

Where ri represents the distance traveled along each marker’s principal 

axis of motion. 

 

The initial release of the Synchrony® system used only a linear function 

for fi :  

XTi = Ari + B                    (3) 

 

The linear coefficients A and B are vector-valued quantities. The linear 

correlation model is easy to build and robust which it provides accurate tracking 

results for many patients. 

Even if the external marker and internal tumor position separate the 

trajectories during inhalation and exhalation (hysteresis or phase difference), the 

correlation between the external marker and tumor positions will be nonlinear, the 

nonlinear models (single and dual quadratic models) are built.  

 

 
    (a)       (b) 

Figure 4B Illustration of (a) phase difference and (b) its effect on correlation between 

external marker and target positions [5].  
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        A dual-curvilinear two polynomials model was used to separately 

model the inhalation and exhalation phases of the respiratory cycle: 

              (4) 

Where    represents the external marker velocity 

          ri
j represents the distance traveled along each marker’s principal 

axis of motion 

         N = 1, which is the linear model in Eq. (3), and N = 2, which is a 

quadratic model. 

 

   A dual quadratic model, if the external marker position is outside of the 

range of the linear correlation model, a quadratic fit is considered [5]. 

 

After the correlation model is built, it can be used to predict the tumor 

position based on the position of external optical markers. The predicted position 

computed from the model can be compared to the actual position of the tumor 

extracted from the real-time x-ray images. The discrepancy between the predicted 

position and the actual position is reported in real time by Synchrony® tracking 

software. If the discrepancy is greater than 5 mm, the radiation beam is turned off 

automatically and a new correlation model can be rebuilt [5, 7, 24, 37]. 

Advantages of The Synchrony® respiratory tracking system are that 

patients can breathe normally that there is no loss of Linac duty cycle such as with 

gate therapy, the localization of the internal tumor position is very precise and does 

not depend on patient position error and minimized irradiation of normal tissue or 

critical structures [43, 46]. 

 

 

 



Fac. of Grad. Studies, Mahidol Univ.  M.Sc.(Medical Physics) / 59 
 

 

APPENDIX C 

 

 

Real-time Position Management™ (RPM) System 
The Varian® Real-time Position Management™ (RPM) system is video 

based system that tracks a patient's respiratory cycle to correlate tumor position. Using 

an infrared tracking CCD (Charge coupled device) camera and a reflective marker 

block, the system measures the patient's respiratory pattern and period of motion in 

waveform. The gating thresholds are set when the tumor is in the desired portion of the 

respiratory cycle. These thresholds determine when the gating system turns the 

treatment beam on and off [47]. 
The system uses video tracking of marker block with CCD video camera 

and infrared illuminator. The CCD camera is fixed to the wall of treatment room or to 

the CT couch in the CT simulation room and images in real-time a lightweight plastic 

block with reflective markers attached to it. The maker block is placed on the patient 

chest or abdomen. The reflective markers on the plastic block that reflect the infrared 

(IR) coming from the illuminator mostly back towards the IR light source. Each video 

camera frame is digitized in real-time which is analyzed by real- time tracking 

software. For each image are detected the presence and locates the centroid of the two 

markers on the block in pixel coordinate. When marker block is move, the real-time 

position signal, the respiratory signal period, amplitude and phase is showed control 

panel [48]. 
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Figure 1C The Real-time Position Management™ (RPM) System. (a) The marker 

block with two reflective markers. (b) CCD camera and infrared illuminator (c) the 

real-time position signal is showed control panel. 
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APPENDIX D 

 

 

The E2E test (End to end test) 
The E2E test is designed to test the overall geometric targeting accuracy of 

the Cyberknife system. The ball-cube dose distribution recorded on film reflects the 

targeting accuracy based on radiation delivered to the ball-cube phantom. 

The ball-cube phantom (Figure 1D) was used for testing the targeting 

accuracy of Synchrony® respiratory tracking system. Orthogonal radiochromic films 

can be placed within the 4 pieces ball-cube phantom which connects together using 

threaded nylon rods and nuts. A 31.75 mm diameter acrylic ball is place in the center 

of cube. For application, a ball-cube with 2 pieces of film was loaded into the ball 

phantom for testing the targeting accuracy. 
 

 
 

Figure 1D The ball-cube phantom 

 

In process of E2E test, a treatment plan is generated with the goal of 

conforming the isodose line to the target ball (for this research, 80% contour aiming at 

31.75 mm target ball). After the delivery, a two exposed films and unexposed film are 

scanned and analyzed using film analysis software package of Accuray. The software 

Ball- cube  

Gafchromic film  

Ball phantom  
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calculates the distance between the centers of the planned and delivered dose 

distributions. These results indicate the accuracy and stability of the system’s non-

isocentric beam geometry. Radiochromic film is suitable for this process because of its 

relative insensitivity to ambient light and also because of the relatively high dose 

characteristics of radiosurgery procedures [32, 49, 50]. 

 

 
 

Figure 2D Analysis software package provided by Accuray for E2E test 
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