
Available online at https://www.rsu.ac.th/rjas 

Rangsit Journal of Arts and Sciences, July-December 2015               RJAS Vol. 5 No. 2, pp. 187-197 
Copyright © 2011, Rangsit University                                                  ISSN2229-063X (Print)/ISSN2392-554X (Online) 

187 

Synchronization of chaotic systems based on an interconnection and damping assignment-
passivity-based control 

 
Adirak Kanchanaharuthai1* Pinit Ngamsom2 and Arsit Boonyaprapasorn3 

 
1Department of Electrical Engineering, College of Engineering, Rangsit University, Patumthani 12000, Thailand 

2Department of Mechanical Engineering, College of Engineering, Rangsit University, Patumthani 12000, Thailand 
3Department of Mechanical Engineering, Chulchomklao Royal Military Academy, Nakhon-Nayok 26001, Thailand  

1E-mail: adirak@rsu.ac.th, 2E-mail: ngamsomp@hotmail.com, 3E-mail: axb125@hotmail.com   
   

*Corresponding author 
 

 Submitted 5 February 2015; accepted in final form 20 April 2015  
Available online 26 December 2015 

             

Abstract 
This paper presents the synchronizations of chaotic nonlinear systems.  With the help of a passivity-based 

control design [interconnection and damping assignment passivity-based control (IDA-PBC)] method, a nonlinear 
control strategy is proposed to achieve the chaotic synchronization.  In particular, there are two chaotic systems of 
interest, Genesio system and Chua's circuit system, which are employed as two examples for illustration.  The 
simulations indicate the effectiveness and feasibility of the proposed method to synchronize the chaotic systems of 
interest.  In addition, the performances of the proposed control scheme are evaluated and compared with an existing 
nonlinear control, in particular, backstepping controller.  
 
Keywords:  chaotic synchronization, nonlinear control, interconnection and damping assignment passivity-based 
control, Genesio system, Chua’s circuit system. 
  

บทคดัย่อ 

บทความน้ีนาํเสนอการประสานกนัของระบบไม่เป็นเชิงเส้นท่ีไม่เป็นระเบียบ  จากการใชก้ารออกแบบการควบคุมท่ีอาศยัการไม่มีปฏิกริยา 
(การควบคุมท่ีไม่มีปฏิกริยาท่ีอาศยัการเช่ือมระหว่างกนัและการกาํหนดการหน่วง) เราจะไดต้วัควบคุมท่ีสามารถบรรลุถึงการประสานกนัของระบบท่ี
ไม่เป็นระเบียบ  ระบบของ Genesio และระบบวงจรของ Chua เป็น 2 ตวัอย่างของระบบท่ีไม่เป็นระเบียบท่ีถูกนาํมาใชง้านเพ่ือแสดงถึงการประยุกต์
ของวิธี IDA-PBC ท่ีนาํเสนอ  ผลการจาํลองระบบช้ีใหเ้ห็นถึงประสิทธิภาพและความเป็นไปไดข้องวิธีการท่ีนาํเสนอเพ่ือใหเ้กดิการประสานกนัของ
ระบบไม่เป็นระเบียบขา้งตน้  นอกจากน้ีสมรรถนะของวิธีการควบคุมท่ีนาํเสนอจะถูกประเมินค่าและถูกเปรียบเทียบกบัการควบคุมแบบกา้วถอยหลงั 

 

คําสําคัญ: การประสานท่ีไม่เป็นระเบียบ, การควบคุมไม่เป็นเชิงเส้น, การควบคุมท่ีไม่มีปฏิกริยาท่ีอาศยัการเช่ือมระหว่างกันและการกาํหนดการหน่วง,

ระบบของ Genesio, ระบบวงจรของ Chua 

 

1.  Introduction 
After Pecora and Carroll (Pecora & 

Carroll, 1990) introduced a method for chaotic 
synchronization, there have recently been 
considerable interests in investigating the 
synchronization of a variety of chaotic systems.  
Chaotic synchronization has a number of potential 
applications in laser physics, chemical reactor, 
secure communication, biological network, power 
systems, etc. It is well-known that the key idea of 
synchronization becomes the use of the master 
system output to control the slave system so that 
the output of the response system is capable of 
asymptotically tracking the master system output. 

In the past two decades, a number of control 
design techniques have been developed for the 
chaotic control and synchronization.  Of particular 
interest is the use of nonlinear control technique to 
achieve synchronization of chaotic systems.  To 
the best of our knowledge, the synchronization 
problem with the help of nonlinear control 
strategies has attracted a great deal of attention 
such as variable structure control (Wang & Su, 
2004), OGY method (Ott, Grebogi, & Yorke, 
1990), adaptive control (Chen & Lu, 2002; Yu & 
Zhang, 2004), backstepping control (Park, 2006; 
Yassen, 2007; Krstic, Kanellakopoulos, & 
Kokotovic, 1995), observer-based control 
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(Mahboobi, Shahrokhi, & Pishkenari, 2006), 
dynamic surface control (Li, 2012), immersion and 
invariance control (Xie, Han, & Zhang, 2012; Xie, 
Han, & Chen, 2013), sliding mode control (Zhang, 
Ma, & Liu, 2004), and so on. 

Although considerable research has 
addressed the chaotic synchronization via the 
above-mentioned nonlinear control approaches, 
less attention has been devoted to synchronization 
of chaotic systems via the interconnection and 
damping assignment passivity-based control (IDA-
PBC) scheme.  There have not recently been any 
research works addressing the synchronization 
problem based on the IDA-PBC strategy. 

In the past decade, the IDA-PBC 
methodology has been  one of the most popular 
design methods for nonlinear control (Ortega, 
Castanos, & Astolfi, 2008; Ortega, Van der Schaft, 
Maschke, & Escoba, 2002) and synchronization 
(Zhu, Zhou, Zhou, & Teo, 2012).  This method has 
numerous advantages: it is a systematic 
methodology that ensures closed-loop stability, 
improves transient performance for underactuated 
mechanical systems (Zhu et al., 2012) and multi-
machine power systems (Kanchanaharuthai, 
Chankong, & Loparo, 2015), and facilitates the 
determination of controller parameters as 
compared with the conventional control design 
strategies that include iterative tuning approaches.  
For example, the IDA-PBC design strategy 
facilitates any additional damping to the system via 
the selection of appropriate matrices, where each 
matrix includes the coupling between the electrical 
damping and the mechanical damping, thereby 
mitigating and suppressing the heavy oscillations 
in the multi-machine power systems 
(Kanchanaharuthai et al., 2015).  

The paper continues this line of 
investigation and uses a technique based on the 
IDA-PBC scheme for the design of a nonlinear 
control law to accomplish chaotic synchronization.  
The proposed control law obtained is simple but 
efficient and easy to implement in practical 
applications.  Besides, one can use only a single 
control to achieve chaotic synchronization.  To 
evaluate the effectiveness of the proposed 
approach for chaotic synchronization, simulation 
studies are carried out on the Genesio system 
(Park, 2004) and Chua's circuit system (Zhou & 
Er, 2007), respectively. 

The rest of this paper is organized as 
follows.  The IDA-PBC method applied to 

synchronize the chaotic systems is provided in 
Section 2.  In Section 3, two chaotic systems of 
particular interest are mentioned and the controller 
design for each chaotic system is given. In Section 
4, simulation results are given.  Finally, we 
conclude in Section 5. 

 
2.  IDA-PBC method 

Interconnection and damping assignment 
- a formulation of Passivity-Based Control (PBC) - 
introduced by Ortega (Ortega & Garcia-Canseco, 
2004) is a general method for the design of a high 
performance nonlinear controller for systems 
which can be described by a port-Hamiltonian 
model.  This method not only assigns suitable 
dynamics to the closed-loop system, but being a 
Hamitonian formulation.  It is also capable of 
providing a control design which achieves 
stabilization by rending the system passive with 
respect to a desired storage function and the 
injection of a suitable level of damping.  

In this section, we present a brief 
recapitulation of the IDA-PBC method applied to 
the control of chaotic synchronization.  The 
interested reader is referred to the survey and 
tutorial paper (Ortega & Garcia-Canseco, 2004) for 
more details, and in particular, (Kanchanaharuthai 
et al., 2015; Ortega, Galaz, Astolfi, Sun, & Shen, 
2005; Galaz, Oreta, & Bazanella, 2003) for 
applications to transient stability of power systems, 
(Zeng, Zhang, Qiao, 2013) for power electronics 
applications, and so on. 

Consider a nonlinear system that is affine 
in the control input u  and whose dynamics is 
given by the following set of differential equations:  

 ( ) ( ) ( ) ( )x t f x g x u x= + ,  (1) 

with the state variables nx R∈  and the control 

input mu R∈ . ( )f x  and ( )g x are the smooth 

vector functions in the appropriate dimensions.  
The idea of IDA-PBC is to make the closed-loop 
system with a stabilizing (static) feedback control 

( )u xβ=  as an explicit port-Hamiltonian system 
in the form:  
 

( ) ( ( ) ( )) ( ),d d dx t J x R x H x= − ∇  (2)  
where the matrices ( ) ( )d dJ x J x= −  and 

( ) ( ) 0T
dR x R x= ≥  denote the desired closed-

loop interconnection structure and dissipation, 
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respectively, which are determined by the 
designer, and a Hamiltonian function 

( ) : n
d xH R R→  is the desired total storage 

function for the closed-loop system that satisfies an 
equilibrium point arg min ( )e dx H x= .  

( ) ( )d dH x H x
x
∂

∇ =
∂

 is the gradient of ( )dH x . 

In order to make (1) equal to (2), a 
solution of the so-called matching equation needs 
to be determined as shown below: 

( ) ( ) ( ) ( ( ) ( )) ( )d d df x g x x J x R x H xβ+ = − ∇
 (3) 
with the matrices ( ) ( ),  ,d dJ x R x  and ( )dH x  
as design variables.  The equilibrium point of the 
closed-loop system is stable at the origin if the 
desired Hamiltonian ( )dH x  is positive definite.  

Consequently, the time derivative of ( )dH x  
along closed-loop trajectories becomes in the form 

( ) ( ) ( ) ( ) 0.T
d d d d

d H x H x R x H x
dt

= −∇ ∇ ≤ (4) 

Therefore, ( )dH x  serves as a Lyapunov function 
for the closed-loop system and the origin is a stable 
equilibrium point. In (4), asymptotic stability can 
be guaranteed in a case that ( )dR x  is also strictly 
positive definite. In order to solve the matching 
equation in (3), we split (3) into two parts: a fully 
actuated part and an un-actuated part.  Let ( )Q x  

be †( ) ( )
T

g x g x⊥    where ( )g x⊥  denotes a 

full-rank left annihilator of ( )g x , i.e. 

( ) ( ) 0, rank( ( )) ,g x g x g x n m⊥ ⊥= = −   while 
† ( )g x  denotes a left inverse of ( )g x , i.e. 
† ( ) ( )g x g x I= .  After multiplying (3) from the 

left by ( )Q x , we obtain a partial differential 
equation (PDE) and an algebraic equation, 
respectively, as follows. 

( ) ( ) ( ( ) ( )) ( )d d dg x f x g J x R x H x⊥ ⊥= − ∇ (5) 
†( ) ( )[( ( ) ( )) ( ) ( )]d d dx g x J x R x H x f xβ = − ∇ −

 (6) 
From the PDE in (5), it is noted that ( )dJ x and 

( )dR x  are free to be chosen by the designer with 
the constraint of skew-symmetry and positive 

semi-definiteness, respectively.  ( )dH x  may be 
totally or partially fixed, if we can ensure that the 
Lyapunov stability conditions are satisfied: 
namely, (i) ( ) 0d eH x∇ = , (ii) 2 ( ) 0d exH∇ > .  

Thus, the functions ( ) ( ),  ,d dJ x R x  and 

( )dH x  need to be determined such that (5) is 
satisfied with the Hamiltonian having an isolated 
minimum at the desired equilibrium point ex R∈  
so that the equilibrium is stable and the Lyapunov 
stability conditions are also satisfied. In addition, 

ex  is in the largest invariant set under the closed-
loop dynamics (2) which is contained in
{ | 0}n T

d d dx R H R H∈ ∇ ∇ = .  An estimate of 
the attraction domain for this closed-loop system is 
then given by the largest bounded level set
{ | }n

dx R H c∈ ≤ . 

As a result, the control law ( )u xβ=  
can be directly computed from (6) as follows. 

1( ) [ ( ) ( )] ( )
           {[ ( ) ( )] ( ) ( )}

T T

d d d

x g x g x g x
J x R x H x f x

β −=
× − −

   (7) 

The key step in this design method is the 
solution of the PDE that guarantees stability of the 
closed-loop system.  This technique relies on the 
concept of exact model matching of the closed-
loop system with a certain desired behavior that is 
determined by the pre-specified interconnection 
structure and dissipation matrices.  Roughly 
speaking, the control objective of this technique is 
to find a stabilizing control law which can ensure 
that this closed-loop system behaves exactly like 
the pre-specified target system achieving exact 
model matching. In order to solve the matching 
equation above, there are different approaches to 
solve the PDE (5) as follows. 

• Algebraic IDA: when the desired energy 
function is assigned and selected a priori, 
then PDE (3) becomes an algebraic equation 
in ( )dJ x and ( )dR x .  Eventually, the 
controller is designed using (7). 

• Non-parameterized IDA: ( )dJ x and 

( )dR x  are selected to accomplish the 
desired structure of the closed-loop system; 
subsequently, all assignable energy 
functions compatible with that structure are 
characterized.  This characterization is 
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provided in terms of a solution of the PDE 
(3). In addition, among the family of 
solutions, we choose the one with an 
equilibrium point ex . 

The overview of these and other 
approaches (Ortega & Garcia-Canseco, 2004) 
along with the applications to different examples 
(Dorfler, Jonhsen, & Allgower, 2009) can be 
investigated further in details. 

 
3.  Synchronization of chaotic systems  

Consider the drive chaotic system as 
follows: 

( ),x f x=   (8) 

where nx R∈  denotes the state vector and ( )f x  
is an 1n×  matrix.  In contrast, the response 
system is in the form of 

( ) ,y g y u= +  (9) 

where ny R∈  denotes the state vector and ( )g y  
is an 1n×  matrix. Let e y x= −  be the 
synchronization error vector.  

 
The aim of this section is to show how to 

design a state-feedback controller via an 
interconnection and damping assignment 
passivity-based control (IDA-PBC) method 
(Ortega & Garcia-Canseco, 2004; Ortega et. al., 
2005; Galaz et al., 2003) for chaotic 
synchronization such that the trajectory of the 
response system (9) with an initial condition 0y  
can approach the drive system (8) with an initial 
condition 0x  and eventually achieve the following 
synchronization requirement:  

0 0lim | ( ) | lim | ( , ) ( , ) | 0,t te t y t y x t x→+∞ →+∞= − =
 (10) 
where | |⋅  denotes the Euclidean norm. 

In two chaotic system applications of 
interest, the non-parameterized IDA approach and 
the algebraic IDA approach are used to find the 
proposed controllers that are capable of achieving 
the desired chaotic synchronization requirement, 
namely the synchronization between the chaotic 
drive (master) system and the controlled response 
(slave) system as well as leading to the closed-
loop error signals converging to zero.  Throughout 
this work, our investigation is under the following 
assumption: all parameters of drive and controlled 
response systems are precisely known and the 

proposed controllers are designed based on those 
known ones.  

To show the effectiveness of the IDA-
PBC approach applied on a wide variety of chaotic 
systems, the Genesio system and the Chua's circuit 
system are used as case studies with the details as 
follows. 
3.1  Genesio system 

Consider the drive Genesio system as 
follows. 

1 2

2 3
2

3 1 2 3 1

x x
x x
x cx bx ax x

=
 =
 = − − − +







 (11) 

where  ( 1, 2,3)i ix =  are the state variables.  

, ,a b c  denote the positive real constants.  In 
addition, the aim of this section is to design a state 
feedback controller u such that the controlled 
response systems of the forms: 
 

1 2

2 3
2

3 1 2 3 1

y y
y y
y cy by ay y u

=
 =
 = − − − + +







 (12) 

is asymptotically synchronized with the drive 
Genesio system (11).  By subtracting (11) from 
(12), we have the error dynamics as 

1 2

2 3
2 2

3 1 2 3 1 1

 
e e
e e
e ce be ae y x u

=
 =
 = − − − + − +







(13) 

where , 1, 2,3i i ie y x i= − = .  Therefore, our 
objective is to design an IDA-PBC controller u  
for the closed-loop error dynamics (13) such that 
the error signals between drive system (11) and the 
controlled response system (12) converge to zero 
and thus both systems are asymptotically 
synchronized. 

In order to apply the IDA-PBC method, 
we can write the system (13) in the general form 
(1), i.e., ( ) ( )e f e g e u= +  as follows. 

1 2

2 3
2 2

3 1 2 3 1 1

0
0
1

 
e e
e e u
e ce be ae y x

     
     = +     
     − − − + −     







 

 
Proposition 1: For any initial values, the drive 
chaotic system (11) can asymptotically 
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synchronize with the controlled response system 
(12) and the equilibrium point ex  of the closed-
loop error dynamics (13) is asymptotically stable 
with the static state feedback controller in a form: 

23 2 3 1 1 3
2 2

1 2 3 1 1

( ( , ))

    , 

u J e r e e e
ce be ae y x

′= − − +Φ

+ + + − +
  (14) 

where 2
1 3 3 1 23

1( , ) ( )
2

e e e e JΦ = + . 23J  and

3 0r >  are an arbitrary constant and a free 
parameter, respectively.  In addition, for the 
Hamiltonian form (2) the desired interconnection 
matrix ( )dJ e  and the damping matrix ( )dR e  are 
selected as shown in (13) along with the following 
energy function in a form: 

2 2
23 31 3 1 21

1 1)
2

,( ) (
2d e e e e JH e e e= − − +Φ + (15) 

Proof: Based on non-parameterized IDA 
approach, we fix the interconnection matrix 

( )dJ e  and the damping matrix ( )dR e  as 

23

23

3

0 1 0
( ) ( ) 1 0 ,

0 0

0 0 0
( ) 0 0 0 0,

0 0

d d

d

J e J e J
J

R e
r

 
 = − = − 
 − 

 
 = ≥ 
  

  (16) 

where 23J  with 3 0r >  are free parameters. 
Following an idea given in (Shen, Sun, 

Ortega, & Mei, 2005), we can show that the 
energy function can be determined using the 
matrix structures in (16).  

From this choice of those matrices, it is 
obvious that the PDE (5) characterizing the 
admissible energy functions are in the form: 

2
2

23 3
1 3

                d

d d

H e
e
H HJ e
e e

∂ = ∂
 ∂ ∂− + =
 ∂ ∂

 (17) 

By using a commercial symbolic 
language software, e.g. Maple, all admissible 
functions ( )dH x  are obtained as in (17) where 

1 3( , )e eΦ  is an arbitrary differentiable function 
and has to be selected such that each energy 

function ( )dH x has an isolated minimum at the 

desired equilibrium point ( )0,0,0ex = .  This 
implies from LaSalle's invariance principle that 

 
1 1 1 2 2 2

3 3 3

0 , 0 ,
0

e y x e y x
e y x
= ⇒ = = ⇒ =
= ⇒ =

.   

Also, the controlled response system (12) 
synchronize the drive system (11) by the proposed 
controller, u .  Thus, the resulting control law u
can be straightforwardly obtained from 
Proposition 1.  This completes the proof.  

 
3.2  Chua's circuit system 
 
Consider the Chua's circuit system as follows. 

1 1 2 1 1

2 1 2 3

3 2 2

( ( ))z p z z f z
z z z z
z p z

= − −
 = − +
 = −







 (18) 

where   ( 1, 2,3)iz i =  are the state variables. 

1 4 1 3 4 1 1
1( ) ( )(| 1| | 1|)
2

f z p z p p z z= + − + − −

.  It is obvious that the circuit considered is not the 
strict feedback form (Krstic et al., 1995; Zhou, & 
Er, 2007); thus, it can be transformed into the 
desired feedback form from selecting new 
variables (Zhou & Er, 2007) as follows. 

1 3 2 2,  ,x z x z= =  and 3 1x z=  (19) 
Subsequently, we obtain the drive Chua's circuit 
system in the strict feedback form, which allows 
us to directly employ the IDA-PBC technique as 
follows. 

1 2 2

2 3 1 2

3 ( )

x p x
x x x x
x f x

= −
 = + −
 =







 (20) 

where

1 2 1 4 3

1 3 4 3 3          

( ) (1 )
1 ( )(| 1| | 1|).
2

f x p x p p x

p p p x x

= − +

− − + − −
 

Similarly, the aim of this section is to design a 
state feedback controller u  such that the 
controlled response system of Chua's circuit 
system of the form: 
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1 2 2

2 3 1 2

3 ( )

y p y
y y y y
y f y u

−
= −

 = +
 = +







  (21) 

with 

1 2 1 4 3

1 3 4 3 3          

( ) (1 )
1 ( )(| 1| | 1|),
2

f y p y p p y

p p p y y

= − +

− − + − −
 

is asymptotically synchronized with the drive 
system of Chua's circuit (20). By subtracting (20) 
from (21), we obtain the error system as 

1 2 2

2 3 1 2

3 ( , , )

e p e
e e e e
e f x y e u

= −
 = + −
 = +







  (22) 

where  ( 1, 2,3)i i ie y x i= − =  and  

1 2 1 4 3 1 3 4

3 3 3 3

1( , , ) (1 ) ( )
2

                 (| 1| | 1|) | 1| | 1|)

f x y e p e p p e p p p

y y x x

= − + − −

× + − − − + + −
.   

Therefore, our objective is to design an 
IDA-PBC controller u  for the system (22) such 
that the error signals between the drive system and 
the controlled response system of Chua's circuit 
eventually approaches zero, leading to the fact that 
both systems are asymptotically synchronized.  
For this system, the Algebraic IDA approach is 
utilized to show the effectiveness of IDA-PBC 
strategy as described below. 

 
Proposition 2: With the aid of the Algebraic IDA 
approach, the chaotic drive system (20) can be 
asymptotically synchronized by the controlled 
response system (21) for any initial values and the 
equilibrium point ex of the error system (22) is 
asymptotically stable with the static state feedback 
controller 

23 2 2 3 3 3 ( , , ).u J p e r e f x y eγ= − − −   (23) 
Moreover, for the Hamiltonian form (2), the 
desired interconnection and damping matrices 
( ( )dJ e  and ( ))dR e  in (25) can be determined 
using the following energy function: 

2 2 2
1 1 2 2 3 3

1( ) ( ),
2

                           0,  1, 2,3.

d

i

H e e e e

i

γ γ γ

γ

= + +

> =
  (24) 

Proof: Based on the Algebraic IDA approach, we 

firstly choose the desired energy function as 
( )dH x in (24); subsequently, the PDE in (5) 

becomes an algebraic equation in ( )dJ e  and 

( )dR e  with the following structure: 

23

23

0 1 0
( ) ( ) 1 0 ,

0 0
d dJ e J e J

J

− 
 = − =  
 − 

 

2

3

0 0 0
( ) 0 0 0

0 0
dR e r

r

 
 = ≥ 
  

  (25) 

where 23J  are directly calculated from (5) and 

0,  2,3.ir i> =  
After some simple calculation, we obtain 

a PDE that becomes the algebraic equation of the 
form: 

 

2 2 2 2
2

2 23 1 1 2 2 2 23 3 3 1 2
1 2 3

                                                       d

d d d

H e p e
e

H H Hr J e r e J e e e e
e e e

γ

γ γ

∂− = − = − ∂
∂ ∂ ∂ − + = − + = + −
 ∂ ∂ ∂
    (26) 
Therefore, it is easy to obtain the following results. 

2 2 2 2 2 2

1 1 1 1    1 
 e p e p

e e
γ γ
γ γ

− = − ⇒ =
= ⇒ =

 

2 2 2 2 2 2

23 3 3 3 23
3

1
1

r e e r

J e e J

γ γ

γ
γ

− = − ⇒ =

= ⇒ =
  (27) 

 From the analysis above, it follows that 
from selecting ( )dJ e  and ( )dR e  in (25), the 
closed-loop error system consisting of (25) and 
(23) matches the model (2). Consequently, the time 
derivative of the energy function along the 
trajectories of (3) satisfies the following equality: 

2 2
2 2 3 3         

( ) ( ) ( )

0.

T
d d d de e R x H

e
H H

eγ γ

= −∇

= − − ≤



 

It can be concluded from using LaSalle’s 
invariance principle that the equilibrium point ex  
of the error system (19) is asymptotically stable. 
Consequently, the controlled response and drive 
systems will approach synchronization for any 
initial values.  This completes the proof.  
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4.  Simulation results 
In this section, the IDA-PBC controller 

methodology is applied on the Genesio system as 
well as Chua's circuit system to verify and 
demonstrate the effectiveness of the proposed 
method.  To evaluate the effectiveness of the 
proposed controller, the simulation results using 
the proposed (IDA-PBC) controller are compared 
with an existing nonlinear (BSP-backstepping) 
control scheme, which is explained partially in the 
Appendix (Krstic et al., 1995).  

Additionally, the closed-loop 
performances of the systems are evaluated by 
using computer simulations.  The complete system 
dynamics are obtained by solving the differential 
equations (11)-(13) and (20)-(22) in the MATLAB 
environment.  The time domain simulations are 
carried out to investigate the performances of the 
designed controllers (u ) for such systems. 
• Genesio system: for the simulation, we 

assume that the initial conditions,  
( )1 2 3( (0), (0), (0)) 2, 3,1x x x = −  and 

( )1 2 3( (0), (0), (0)) 2,3, 5y y y = − −  are 
used.  Consequently, the initial value 

1 2 3( (0), (0), (0))e e e  of the error dynamics 

is ( 4,6, 6)− − .  In order to investigate a 
chaotic behavior, three parameters are selected 
as 1.2,  2.92,  6a b c= = =  and the 
parameters of the control law as 

323 1.5,  1.8J r= = .  With the proposed 
IDA-PBC scheme the chaotic synchronization 
of the system (9) and (8) as well as the 
resulting error system (10) are shown in 
Figures 1 and 2 where both Figures illustrate 
the synchronization errors and the state 
trajectories of this system, respectively.  

• Chua's circuit system: in the simulation, we 
assume that the initial conditions, 

( )1 2 3( (0), (0), (0)) 0.2,0.5,0.3x x x =  and 

( )1 2 3( (0), (0), (0)) 2,0.3,0.4 ,y y y =  are 
employed. Thus, the initial value

1 2 3( (0), (0), (0))e e e  of the error dynamics 

is (1.8, 0.2,0.1)− .  In order to show a 
chaotic behavior, four parameters of the 
circuit are 1 2 4 30.5, 1, 5p p p p= = = =   
and the parameters of the control law as 

323 31/ 1.5, 1.8rJ γ= = = . With the 
proposed IDA-PBC technique the chaotic 
synchronization of the system (21) and (20) as 
well as the resulting error system (22) are 
illustrated in Figures 3 and 4, showing the 
system errors and the system state variables, 
respectively. 

From the simulation results above, it is 
obvious that the IDA-PBC design technique is 
capable of not only achieving the synchronizations 
of two chaotic systems (the synchronization errors 
converge to zeros), but also accomplishing better 
dynamic performances (the transient responses for 
the closed-loop error dynamics of two chaotic 
systems can be improved) as compared to 
backstepping control (BSP) methods. 
 
5. Conclusions 

In this paper, the synchronization 
problems for some chaotic systems, in particular 
Genesio and Chua's circuit systems, have been 
investigated.  With the aid of the IDA-PBC 
scheme, a nonlinear control law for asymptotic 
chaotic synchronization has been proposed.  Even 
if the proposed control law is easy to implement in 
practical applications, it is still effective.  Finally, 
the simulations of two chaotic systems are 
presented to illustrate the effectiveness, feasibility, 
and validity of our proposed scheme.  Besides, 
they provide better transient responses and 
synchronization errors than the backstepping 
control strategy. 
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7. Appendix 
A. Genesio system with a backstepping 

controller 
For any initial values, the chaotic drive 

system (11) can be asymptotically synchronized 
by the controlled response system (12) and the 
equilibrium point ex  of the closed-loop error 
dynamics (13) is asymptotically stable with the 
backstepping (BSP) controller in the form: 

2 2
2 3 3 1 2

1 2
2 2

1 2 3 1 1      

u w c w w w
w w

ce be ae y x

α α∂ ∂
= − − + +

∂ ∂

+ + + − +

 

  (A.1) 

where  

1 1 2 2 1 1

3 3 2 1 2

1 1 1 1

1
2 1 2 1 1 2 2

1

, ( ),
( , ),

( ) ,

( , ) .

w e w e w
w e w w

w c w

w w w w c w
w

α
α

α
αα

= = −
 = −

=
 ∂ = − + −

∂


  (A.2) 

In this system the tuning parameters are chosen as 

1 2 30.1, 1,c c c= = =  so that the closed-loop 
error system is asymptotically stable. 
B. Chua’s circuit system with a backstepping 

controller 
For any initial values, the chaotic drive 

system (20) can be asymptotically synchronized 
by the controlled response system (21) for any 
initial values and the equilibrium point ex of the 
error system (22) is asymptotically stable with the 
backstepping (BSP) controller in the form: 

2 2
2 3 3 1 2

1 2

( , , )      f

u w c w w w
w

x
w

y e

α α∂ ∂
= − − + +

∂ ∂
+

 

,  (B.1)  

where  

1 1 2 2 1 1

3 3 2 1 2

1 1 1 1

2 1 2 2 1 2 2

1
1 1 1

1

, ( ),
( , ),

( ) ,
( , ) ( 1) (1 )

                    ( )

w e w e w
w e w w

w c w
w w p w c w

w w
w

α
α

α
α

αα


 = = −

= −
 =
 = − + −
 ∂

+ + ∂


  (B.2) 

In this system, the tuning parameters are 
chosen as 1 2 30.25,  0.5, 1,c c c= = =  so that 
the closed-loop error system is asymptotically 
stable. 

 
 
 

http://dx.doi.org/10.1016/j.chaos.2003.12.073
http://dx.doi.org/10.1016/j.chaos.2003.12.073
http://dx.doi.org/10.1016/j.sysconle.2006.12.002
http://dx.doi.org/10.1016/j.sysconle.2006.12.002


KANCHANAHARUTHAI ET AL 
RJAS Vol. 5 No. 2 Jul.-Dec. 2015, pp. 187-197 

196 

 
Figure 1  Synchronization errors 1 2 3( ( ), ( ), ( ))e t e t e t  of Genesio system 

 
Figure 2  State trajectories of ( )iy t and ( )ix t ( )1,2,3i =  of Genesio system   
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Figure 3  Synchronization errors 1 2 3( ( ), ( ), ( ))e t e t e t  of Chua’s circuit system  
   
 

 
 Figure 4  State trajectories of ( )iy t and ( )ix t ( )1,2,3i =  of Chua’s circuit system  

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2
e 1(t)

 

 

0 2 4 6 8 10 12 14 16 18 20
-0.2

0

0.2

0.4

e 2(t)

0 2 4 6 8 10 12 14 16 18 20
-4

-2

0

2

Time (sec.)

e 3(t)
BSP
IDA-PBC

0 2 4 6 8 10 12 14 16 18 20

-3

-2

-1

0

1

2

y 1(t)
 &

 x
1(t)

 

 

0 2 4 6 8 10 12 14 16 18 20
-0.5

0

0.5

y 2(t)
 &

 x
2(t)

 

 

0 2 4 6 8 10 12 14 16 18 20
-2

-1

0

1

2

Time (sec.)

y 3(t)
 &

 x
3(t)

 

 

y1(t): BSP

x1(t)

y1(t): IDA-PBC

y2(t): BSP

x2(t)

y2(t): IDA-PBC

y3(t): BSP

x3(t)

y3(t): IDA-PBC


	บทคัดย่อ

