บทที่ 4 ผลการวิจัย และอภิปราย

ในบทนี้ได้นำเสนอวิธีการทดลองหลังจากที่ได้ออกแบบทั้งส่วนฮาร์ดแวร์ และซอร์ฟแวร์ เสร็จแล้ว จากนั้นนำเสนอผลการวิจัยและอภิปรายผล

4.1 การทดลองแสดงค่าอุณหภูมิ ค่าความเป็นกรด – ด่าง (pH) และค่าออกซิเจนบน เว็บไซต์

จุดประสงค์

- เพื่อเป็นการทดสอบการส่งค่าผ่าน GSM MODULE
- เพื่อทดสอบการทำงานของเว็บไซต์

อุปกรณ์

รูปที่ 4.1 แสดงอุปกรณ์ในการทดลอง

วิธีการทดลอง

- 1. เปิดการทำงาน GSM module ไมโครคอนโทรลเลอร์ และเซ็นเซอร์ทั้ง 3 ชนิด
- น้ำเซ็นเซอร์ทั้ง 3 ชนิด จุ่มลงในน้ำเพื่อให้เซ็นเซอร์วัดค่า (ดังรูปที่ 4.2) และส่งค่าผ่านทาง GSM module
- 3. เปิดหน้าเว็บไซต์เพื่อเช็คค่าที่ส่งมาแสดงผล

(ก) แสดงการวัดคุณภาพน้ำโดยใช้เซ็นเซอร์ออกซิเจน

(ข) แสดงการวัดคุณภาพน้ำโดยใช้เซ็นเซอร์อุณหภูมิ

(ค) แสดงการวัดคุณภาพน้ำโดยใช้เซ็นเซอร์ค่าความเป็นกรด-ด่าง (pH)
 รูปที่ 4.2 แสดงการทดลองวัดค่าคุณภาพน้ำโดยใช้เซ็นเซอร์

ผลการทดลอง

จากการทดลองส่งค่าที่วัดได้จากเซ็นเซอร์ทั้ง 3 ชนิด ผ่าน GSM module แสดงผลผ่านเวบ ไซต์บนหน้าจอคอมพิวเตอร์แสดงได้ดังรูปที่ 4.3 และแสดงผลบนหน้าจอโทรศัพท์มือถือ แสดงได้ดัง รูปที่ 4.4

รูปที่ 4.3 แสดงค่าที่วัดได้บนเว็บไซต์บนคอมพิวเตอร์

รูปที่ 4.4 แสดงค่าที่วัดได้บนเว็บไซต์บนมือถือ

จากการทดลองพบว่า ในการส่งค่าถึงเซิฟเวอร์ผ่าน GSM module มีความล่าช้าเล็กน้อย เพราะมีคำสั่งในการส่งจำนวนมาก

4.2 การทดลองกำหนดค่ามาตรฐาน (Threshold)

จุดประสงค์

เพื่อทดลองการตรวจสอบสถานะของค่าอุณหภูมิ ค่าความเป็นกรด – ด่าง (pH)
 และออกซิเจน

อุปกรณ์

ทำการติดตั้งอุปกรณ์เหมือนในการทดลองที่ 4.1

วิธีการทดลอง

- 1. ทำการทดลองเช่นเดียวกับการทดลองที่ 4.1
- 2. ทำการกำหนดค่ามาตรฐานของค่าต่างๆ ที่หน้า SETTING ของเว็บไซต์ ดังรูปที่ 4.5
- 3. เปิดการทำงานของอุปกรณ์
- 4. ตรวจสอบสถานะของค่าที่วัดได้จากเซ็นเซอร์ทั้ง 3 ชนิด ที่หน้า MONITOR ของ GUI

MONITOR	CONTROL	SETTING
	set mode	
auto:	O manual: 💿 💽	bmit
se	et threshold Oxyger	1
min: 4	max : 8	Submit
set t	hreshold Temperat	ure
min : 28	max : 32	Submit
	set threshold pH	
min : 7	max : 8	Submit

ร**ูปที่ 4.5** แสดงการตั้งค่ามาตรฐานของค่าออกซิเจน ค่าความเป็นกรด – ด่าง และ ค่าอุณหภูมิ

ผลการทดลอง

จากการทดลองกำหนดค่ามาตรฐานของเซ็นเซอร์แต่ละชนิด แล้วให้ระบบส่งค่าเข้าไป แสดงผลจะได้สถานะของค่าแต่ละค่าตามที่กำหนดค่ามาตรฐาน ดังนี้

MONITOR	CONTROL	SETTING
	MODE : AUTO	
DATE : 2012-03-16		
	TIME : 00:04:25	
Temperature 27.5 STATUS LOW	pH 8.2 STATUS HIGH	Oxygen 6.1 STATUS NORMAL

รูปที่ 4.6 แสดงสถานะของค่าทั้ง 3 เมื่อกำหนดค่ามาตรฐาน

- ค่าอุณหภูมิ อยู่ในสถานะ LOW เพราะว่ามีการกำหนดค่ามาตรฐานไว้ที่ 28 32 องศา เซลเซียส แต่ค่าที่ส่งมาคือ 27.5 องศา ซึ่งน้อยกว่าค่า min ที่กำหนด สถานะจึงแสดงเป็น สถานะ LOW
- ค่าความเป็นกรด-ด่าง อยู่ในสถานะ HIGH เพราะว่ามีการกำหนดค่ามาตรฐานไว้ที่ 7 8
 แต่ค่าที่ส่งมาคือ 8.2 ซึ่งมากกว่าค่า max ที่กำหนด สถานะจึงแสดงเป็นสถานะ HIGH
- ค่าออกซิเจน อยู่ในสถานะ NORMAL เพราะว่ามีการกำหนดค่ามาตรฐานไว้ที่ 4 8 ซึ่ง
 ค่าที่ส่งมาคือ 6.1 ซึ่งอยู่ในช่วงของค่ามาตรฐานที่กำหนด สถานะจึงแสดงเป็นสถานะ
 NORMAL

4.3 การทดลองการทำงานของระบบควบคุมการเปิด-ปิดมอเตอร์ แต่ละโหมด จุดประสงค์

เพื่อทดสอบระบบควบคุมการเปิด-ปิดมอเตอร์ ของโหมดการทำงานแบบอัตโนมัติ และ
 โหมดการทำงานแบบ Manual

อุปกรณ์

อุปกรณ์ที่ใช้ในการทดลองแสดงได้ดังรูปที่ 4.7

รูปที่ 4.7 แสดงอุปกรณ์ในการทดลอง

วิธีการทดลอง

- 1. ทำการติดตั้งอุปกรณ์ดังรูปที่ 4.7
- 2. ทำการวัดค่าคุณภาพน้ำดังรูปที่ 4.2
- 3. เปิดหน้าเว็บไซต์ จากนั้นเลือกไปที่หน้า SETTING เลือกโหมดการทำงาน
- 4. จากนั้นไปที่หน้า CONTROL
- 5. ทดลองใช้ฟังก์ชัน ในแต่ละโหมดการทำงาน

ผลการทดลอง

เมื่อเลือกโหมดการทำงานแบบ Manual และกำหนดค่าต่ำสุด-สูงสุดของเซ็นเซอร์แต่ละ ชนิดดังรูปที่ 4.8 จากนั้นทดลองกำหนดเวลาที่จะให้มอร์เตอร์ทำงานเท่ากับ 5 นาที ดังรูปที่ 4.9 และเมื่อกดปุ่ม ON ในหน้า CONTROL มอร์เตอร์จะหมุนทำงาน แสดงได้ดังรูปที่ 4.10

MONITOR	CONTROL	SETTING
set mode		
auto:	🗧 manual: 🖲 🛛 Sul	omit
Se	et threshold Oxygen	
min: 4	max: 8 S	ubmit
set threshold Temperature		
min : 2	7 max : 32 S	Submit
	set threshold pH	
min : 7	max : 9 3	Submit

รูปที่ 4.8 แสดงการเลือกโหมดการทำงานเป็น Manual

MONITOR		CONTROL	SETTING
	S	TATUS motor1 : OFF	
	run	5 minutes Submit	
		ON OFF	_

รูปที่ 4.10 แสดงเอาต์พุตของระบบกำลังทำงานเมื่อมีคำสั่งจากผู้ใช้ (มอเตอร์ทำงาน เมื่อผู้ใช้กดปุ่ม ON ในหน้า CONTROL)

ในขณะที่มอเตอร์ทำงาน สถานะของมอเตอร์ในหน้า CONTROL จะมีสถานะ ON ดังรูปที่

4.11

รูปที่ 4.11 แสดงสถานะมอเตอร์กำลังทำงานอยู่

หากมอเตอร์ได้ทำงานครบตามเวลา (ในที่นี้คือ 5 นาที) แล้ว สถานะของมอเตอร์จะมี สถานะ OFF แสดงดังรูปที่ 4.12 และมอเตอร์จะหยุดทำงาน แสดงดังรูปที่ 4.13

MONITOR	CONTROL	SETTING	
sī run	TATUS motor1 : OFF minutes Submit		
	ONOFF		1:21:10

รูปที่ 4.12 แสดงสถานะมอเตอร์ไม่ทำงาน เมื่อเวลาครบ 5 นาที

รูปที่ 4.13 แสดงเอาต์พุตของระบบหยุดทำงาน (มอเตอร์หยุดทำงาน เมื่อทำงานครบตามเวลาที่กำหนด)

อย่างไรก็ตาม แม้ว่าเวลาจะยังไม่ครบตามกำหนด แต่เมื่อผู้ใช้กดปุ่ม OFF ในหน้า CONTROL มอเตอร์จะหยุดทำงาน และสถานะของมอเตอร์จะมีสถานะ OFF เช่นกัน จากการทดลองในโหมดการทำงานแบบอัตโนมัติ (Auto) เป็นดังนี้ เมื่อเริ่มการทดลอง ในหน้า CONTROL จะแสดงสถานะของมอเตอร์เป็น OFF ดังรูปที่

4.14

MONITOR	CONTROL	SETTING
ST	TATUS motor1 : OFF	
	ON OFF	

รูปที่ 4.14 แสดงหน้าเว็บไซต์ควบคุมในโหมดการทำงานอัตโนมัติ

ในหน้า CONTROL สถานะของมอเตอร์จะยังคงมีสถานะ OFF ถ้าสถานะของค่าออกซิเจน เป็น NORMAL ซึ่งแสดงได้ดังรูปที่ 4.15 และมอเตอร์จะยังไม่ทำงาน ดังรูปที่ 4.16

รูปที่ 4.15 สถานะมอเตอร์ในหน้า CONTROL จะมีสถานะ OFF (ไม่ทำงาน) เมื่อออกซิเจนอยู่ใน สถานะ "NORMAL"

รูปที่ 4.16 แสดงเอาต์พุตของระบบหยุดทำงาน

เมื่อสถานะของค่าออกซิเจนมีค่าเป็น LOW ซึ่งหมายถึงต่ำกว่าค่ามาตรฐานที่กำหนด (ดังรูป ที่ 4.17) สถานะของมอเตอร์ในหน้า CONTROL จะเปลี่ยนเป็นสถานะ ON และมอเตอร์จะทำงาน ซึ่งแสดงได้ดังรูปที่ 4.18

ร**ูปที่ 4.17** แสดงสถานะมอเตอร์ทำงาน เมื่อออกซิเจนอยู่ในสถานะ "LOW"

รูปที่ 4.18 แสดงเอาต์พุตของระบบกำลังทำงาน

การกำหนดค่ามาตรฐาน (threshold) ของออกซิเจน เพื่อกำหนดให้มอเตอร์ทำงานหรือไม่ ทำงาน มีหลักการคือจะทำการกำหนดค่ามาตรฐานไว้ที่ค่ากลางระหว่างค่าต่ำสุด (min) และ ค่าสูงสุด (max) ถ้าหากค่าออกซิเจนต่ำกว่าค่ามาตรฐาน มอร์เตอร์จะยังคงทำงาน แม้ว่าสถานะของ ออกซิเจนจะเปลี่ยนเป็นสถานะ NORMAL แล้ว เมื่อค่าออกซิเจนสูงกว่าค่ามาตรฐาน มอเตอร์จึงจะ หยุดทำงาน

รูปที่ 4.19 แสดงตัวอย่างสถานะของค่าออกซิเจนมีสถานะเป็น NORMAL เนื่องจากอยู่ ในช่วงต่ำสุด-สูงสุดที่กำหนด แต่มอเตอร์จะยังคงทำงานเนื่องจากค่าออกซิเจนมีค่าเท่ากับ 5 ซึ่งน้อย กว่าค่ากลางของค่าต่ำสุด-สูงสุด (ซึ่งในที่นี้คือค่า 6) สำหรับรูปที่ 4.20 แสดงตัวอย่างสถานะของค่า ออกซิเจนมีสถานะเป็น NORMAL เนื่องจากอยู่ในช่วงต่ำสุด-สูงสุดที่กำหนด แต่มอเตอร์จะไม่ทำงาน เนื่องจากค่าออกซิเจนมีค่าเท่ากับ 6.1 ซึ่งมากกว่าค่ากลางของค่าต่ำสุด-สูงสุด (ซึ่งในที่นี้คือค่า 6)

รูปที่ 4.19 แสดงสถานะมอเตอร์ทำงานต่อไป เมื่อค่าออกซิเจนน้อยกว่าค่ากลางของค่ามาตรฐานที่ กำหนด (threshold)

ร**ูปที่ 4.20** แสดงสถานะมอเตอร์หยุดทำงานต่อ เมื่อค่าออกซิเจนมากกว่าค่ากลางของ threshold

บทสรุป จากการทดลอง พบว่าระบบต้นแบบที่ได้สร้างขึ้นสามารถใช้งานได้จริง