

งานวิจัยนี้เป็นการศึกษาประสิทธิภาพของการกำจัดหินน้ำลาย และลักษณะของฟันภายหลังจากการกำจัดหินน้ำลาย ด้วยเออร์เบิร์นเยกเกเลเซอร์ที่ระดับความหนาแน่นพลังงานต่างๆ โดยการทดลองแบ่งฟันที่ถอนจากคนไข้ออกเป็น 5 กลุ่มๆ ละ 7 ชิ้นแต่ละกลุ่มจะใช้ระดับความหนาแน่นพลังงานของเลเซอร์ที่ 15.0 29.7 40.0 50.5 และ $99.9 \text{ J/cm}^2/\text{pulse}$ ร่วมกับการนีคคละของน้ำตาลลดเวลาของกำจัดหินน้ำลาย จากการทดลองพบว่าลักษณะพื้นผิวของฟันภายหลังจากการกำจัดหินน้ำลาย ที่ระดับความหนาแน่นพลังงาน $15.0 \text{ J/cm}^2/\text{pulse}$ มีประสิทธิภาพของการกำจัดหินน้ำลายต่ำ โดยไม่ทำให้เกิดแองกุลัม (crater-like defects) จากการอเบลชันของเลเซอร์ และไม่ทำให้เกิดความเสียหายต่อพื้นผิวของฟัน ในขณะที่ระดับความหนาแน่นพลังงาน 29.7 และ $40.0 \text{ J/cm}^2/\text{pulse}$ พบว่าทำให้เกิดแองกุลัมตื้นในบางตำแหน่งของบริเวณพื้นผิวของฟัน และมีประสิทธิภาพของการกำจัดหินน้ำลายปานกลาง ส่วนที่ระดับความหนาแน่นพลังงาน 50.5 และ $99.9 \text{ J/cm}^2/\text{pulse}$ ถึงแม้ว่าจะมีประสิทธิภาพของการกำจัดหินน้ำลายสูง แต่ย่างไรก็ตามในระดับความหนาแน่นพลังงานนี้ ทำให้เกิดแองกุลัมที่สามารถสังเกตเห็นได้ชัดเจนจำนวนมาก บริเวณพื้นผิวของฟันที่มีการกำจัดหินน้ำลายจึงไม่เหมาะสมสำหรับใช้กำจัดหินน้ำลาย ดังนั้นจึงสรุปได้ว่าเออร์เบิร์นเยกเกเลเซอร์ที่ระดับความหนาแน่นพลังงานต่ำมีศักยภาพสำหรับการกำจัดหินน้ำลาย และสามารถนำไปประยุกต์ใช้ในการรักษาทางคลินิก ได้อย่างปลอดภัยและมีประสิทธิภาพ

Abstract

TE164943

This research purposed to investigate on efficiency of the Er:YAG laser at the different energy densities for calculus removal and the teeth surface morphology after the treatment. In the experiment, human-extracted teeth samples were divided into 5 groups consisted of 7 teeth each. After 5 groups of the teeth were irradiated at the energy density of 15.0, 29.7, 40.0, 50.5, and 99.9 $\text{J/cm}^2/\text{pulse}$ respectively together with fine water mist during calculus removal. The results showed that the energy density of 15.0 $\text{J/cm}^2/\text{pulse}$ has low efficiency of calculus removal. In addition, the laser at this energy density did not make any crater-like defects on the teeth surface and also did not destroy the surface of the teeth. Whereas, the energy density of 29.7 and 40.0 $\text{J/cm}^2/\text{pulse}$ can remove calculus at medium efficiency, on the other hand these two levels of energy density made crater-like defects on some irradiated surface of the teeth. Although, it was found that at the energy density of 50.5 and 99.9 $\text{J/cm}^2/\text{pulse}$ have highly efficiency of calculus removal, however made obviously crater-like defects on most of the irradiated-teeth surface. Therefore, these energy densities cannot be used for calculus removal. In conclusion, Er:YAG laser at the low energy densities have highly potential for calculus removal and can be further effectively applied and safe for other clinical purposes.