

เหล็กกล้าความแข็งแรงสูงถูกใช้เป็นวัตถุคุณในการผลิตชิ้นส่วนยานยนต์ โดยมีแนวโน้มการใช้งานกثุ่มที่มีค่าความแข็งแรงสูงขึ้น แต่ค่าความแข็งแรง และค่าความแข็งที่เพิ่มสูงขึ้นนี้ส่งผลให้ความสามารถในการขึ้นรูปวัสดุดังกล่าวลดต่ำลง และการเกิดการยึดติดของอนุภาคชิ้นงานบนผิวคลาดที่ทำการขึ้นรูปเกิดได้ง่ายขึ้น งานวิจัยชิ้นนี้มีวัตถุประสงค์เพื่อลดการยึดติดของอนุภาคชิ้นงานบนผิวคลาดในการขึ้นรูปเหล็กกล้าความแข็งแรงสูง โดยใช้วิธีการปรับสภาพผิวและการเคลือบผิวเมร์พิมพ์ขึ้นรูป เหล็กกล้าความแข็งแรงสูง โดยในงานนี้ได้เลือกการปรับสภาพผิวหรือเคลือบผิวด้วย VC (TD), TiC (CVD), TiCN (CVD), TiCN (PVD), TiAlN (PVD), CrAlN (PVD), VC (TD) + DLC (PVD), TiN (PVD) และ Nitriding + CrN (PVD) ทำการทดสอบหาประสิทธิภาพในการลดการยึดติดของอนุภาคชิ้นงานบนผิวคลาดในกระบวนการพัฒนารูปขึ้นงานตัว喻เบรียบเทียบกับกรณีไม่เคลือบผิวคลาด และยังใช้การวัดค่าความแข็งแบบนาโน และการทดสอบการขีดข่วนเพื่อหาสมบัติทางกล และความสามารถในการยึดเกาะของฟิล์มดังกล่าวกับวัสดุพื้น การทดสอบโดยรูปแบบของบล็อก งานถูกใช้ในการหาค่าสัมประสิทธิ์ความเสียดทานและอัตราการสึกหรอจำเพาะระหว่างผิวคู่สัมผัสของบล็อกที่ผ่านการปรับสภาพผิว หรือเคลือบผิวกับเหล็กกล้าความแข็งแรงสูงรีดอุ่นเกรด SPFH 590 (JIS) และเหล็กกล้ารีดอุ่นสำหรับโครงสร้างยานยนต์เกรด SAPH 440 (JIS) จากการทดสอบแสดงให้เห็นว่าการปรับสภาพผิว และเคลือบผิวช่วยลดการยึดติดของอนุภาคชิ้นงานบนผิวคลาดได้ทุกชนิดเมื่อเบรียบเทียบกับคลาดที่ไม่เคลือบผิว โดยฟิล์ม TiC (CVD), TiCN (PVD), TiCN (CVD) และ Nitriding + CrN (PVD) ให้ประสิทธิภาพในการป้องกันการยึดติดได้ดีสุดในการขึ้นรูปเหล็กกล้าความแข็งแรงสูง นอกจากนี้เพื่อแสดงให้เห็นว่าฟิล์ม PVD สามารถเพิ่มความสามารถในการยึดเกาะกับคลาดด้วยการทำเรซิลล์ในไตรค์ ก่อนแล้วเคลือบทับด้วยฟิล์มที่ต้องการใช้งาน เช่น ฟิล์ม Nitriding + CrN (PVD) ถูกทดสอบด้วยการลากขึ้นรูปชิ้นงานเหล็กกล้าความแข็งแรงสูงพิเศษเกรด SPFC 980Y (JIS) ผลการทดลองพบว่าหลังการขึ้นรูป 1,000 ชั่วโมง ไม่พบการเกิดการยึดติดของอนุภาคบนผิวคลาด และฟิล์ม CrN (PVD) ยังยึดเกาะกับผิวคลาดได้ดีกว่ากรณีด้วยที่ไม่ได้ทำเรซิลล์ในไตรค์ก่อนการเคลือบ

High strength steel (HSS) is widely used in automotive industry for manufacturing reinforcement parts. Due to the high strength and hardness of HSS, the formability is very low and adhesion to the tooling can be a problem. The goal of this thesis is to reduce HSS adhesion on stamping dies by a systematically studying the effect of various surface coatings on the tooling material. The surface coatings were comprised of VC (TD), TiC (CVD), TiCN (CVD), TiCN (PVD), TiAlN (PVD), CrAlN (PVD), VC (TD) + DLC (PVD), TiN (PVD) and Nitriding + CrN (PVD). U-channel bending tests of HSS were used to evaluate the anti-adhesion performance of the various coatings. Scratch testing and nano-indentation were performed to determine the bond strength between the coatings and the tool substrate, as well as the hardness and elastic modulus. Ball-on-disk testing was conducted to measure the friction coefficient and specific wear rate between coated balls and two grades of steel sheet, SPFH 590 (JIS) and SAPH 440 (JIS). It was found that all the coatings reduce die adhesion during U-channel bending of HSS when compared with uncoated dies. TiC (CVD), TiCN (PVD), TiCN (CVD) and Nitriding + CrN (PVD) were found to be the most effective at preventing adhesion to the die surface. In addition it was found that the bond strength of the coatings on the tool substrate plays an important role in the anti-adhesion performance. An attempt was made to increase the bond strength of PVD coating by introducing radical nitriding on the tool surface prior to coating with a CrN (PVD). The effectiveness of the Nitriding + CrN (PVD) was examined by deep drawing of an advanced grade of HSS, SPFC 980Y. It was found that Nitriding + CrN (PVD) coated dies provide deep-drawn parts with nearly constant surface roughness after 1000 forming strokes. The roughness of uncoated dies was found to abruptly increase after only 30 forming strokes.