งานวิจัยนี้ศึกษาความเหมาะสมในการนำแบบจำลองของ Wesely มาคำนวณหาความเร็วในการตกสะสมแบบ แห้ง (V_d) ของก๊าซซัลเฟอร์ ไคออกไซค์ (SO_s) บริเวณนาข้าวของประเทศไทย โดยเปรียบเทียบกับการวัคค่า V_d ของก๊าซ SO_s จากการทคลองค้วยวิธีอัตราส่วนของ Bowen ซึ่งเป็นวิธีที่ใช้วัคค่า Deposition flux แล้วคำนวณค่า V_d จากการประยุกค์ใช้ Fick's law เนื่องจากค่า V_d จะแปรผันตามสภาวะแวคล้อม และชนิคก๊าซ ข้อมูลสภาวะ แวคล้อมที่ทำการตรวจวัคใค้แก่ ความคัน ไอน้ำ, อุณหภูมิ, ความเร็วลม, Solar irradiation, net radiation, Soil heat flux และความข้มข้นของก๊าซ SO_s ที่ความสูงสองระคับ โดยเก็บตัวอย่างทุกวันในช่วงเคือน เมษายนถึง ธันวาคม 2546 ผลการศึกษาพบว่าค่า V_d ที่คำนวณด้วยแบบจำลองของ Wesely มีรูปแบบที่ต่างจากค่า V_d ที่ได้ จากการทคลองด้วยวิธีอัตราส่วนของ Bowen การวิเคราะห์ความอ่อนไหวของตัวแปร แบบจำลองของ Wesely มีลวามอ่อนไหวค่อการเปลี่ยนแปลงของความเร็วลมสูง เมื่อความเร็วลมเพิ่มขึ้น 2 เท่าจะทำให้ค่า V_d เปลี่ยนไป ร้อยละ 38 ของค่าเดิม ส่วนการเปลี่ยนแปลงของ Solar irradiation และอุณหภูมิอากาศ มีผลต่อค่า V_d น้อย ประมาณ ร้อยละ 5 ของค่าเดิม ต่างจาก Bowen ratio ที่ขึ้นกับอิทธิพลของพลังงานแสงอาทิตย์ทำให้ค่า V_d เปลี่ยนค่าตามช่วงวัน โดยมีค่าสูงในตอนกลางวัน ค่าความแตกต่างของค่า V_d ที่ได้จากแบบจำลองของ Wesely เมื่อเปรียบเทียบกับ Bowen ratio ในช่วง 9:00 น. ถึง 15:00 น. พบว่ามีค่าความแตกค่างกันร้อยละ 74 - 187 This study aims to investigate the applicability of Wesely model in determining the deposition velocity of Sulfur dioxide, V_d , on rice fields in Thailand. The value obtained by Wesely model is compared to measurements using Bowen ratio technique. The Bowen ratio technique measures the deposition flux and V_d is determined by applying Fick's law. Because V_d is affected by environmental conditions and type of gas, measuring parameters to be used in the Bowen ratio technique and Wesely model consist of wind velocity, wet and dry bulk temperature, net radiation, soil heat flux, and SO_2 concentrations at two different heights levels. All parameters were collected daily from April to December 2003. Results of the study show that the value of V_d calculated by Wesley model doesn't follow the same pattern as the one measured by the Bowen ratio technique. A sensitivity test of Wesely model shows a large variation of V_d with the change of wind speed. When the wind speed increases by 2 times, V_d increases by 38 percent. However, Wesely model is less sensitive in terms of solar irradiation and air temperature. When the two parameters increases by 2 times, V_d change only by 5 percent. On the contrary, Bowen ratio technique is quite sensitive to the value of net radiation: V_d values are varied diurnally and the maximum V_d occurs around noon time. Difference between Wesely model and Bowen ratio is approximately 74 to 187 percent, depending on time of the day (9:00-15:00 hours).