

ผู้เข้าวิทยานิพนธ์	การศึกษาการเคลือบฟิล์มบางอินเดียม ทิน ออกไซด์ โลบวิช
หน่วยกิจของวิทยานิพนธ์	การระเหยสารแบบใช้ไออ่อนช่วย
โดย	15 หน่วย
อาจารย์ที่ปรึกษา	นายจิรัชติ อินทร์เนตร
ระดับการศึกษา	รศ.ดร.พิเชษฐ์ ลิ้มสุวรรณ
สาขาวิชา	ดร.พัฒน์ รักความสุข
ปีการศึกษา	วิศวกรรมศาสตรมหาบัณฑิต
	เกกโนโลยีวัสดุ
	2544

บทคัดย่อ

ในสมัยก่อน มีการศึกษาด้านคว้าเก็บวัสดุฟิล์มบางอินเดียม ทิน ออกไซด์ (ITO) กันอย่างแพร่หลาย เนื่องจาก การใช้งานอย่างกว้างขวาง ในวงการอุตสาหกรรมอิเล็กทรอนิกส์ และรวมไปถึงล้านอื่นๆด้วย สำหรับงานวิจัยนี้ ได้ทำการศึกษาการเคลือบฟิล์มบางอินเดียม ทิน ออกไซด์ ด้วยวิธีการระเหยสาร ด้วยลำอิเล็กตรอนแบบใช้ไออ่อนช่วยเพื่อประยุกต์ใช้ในงานอุตสาหกรรม เลนส์แวนพาเลสติก

ฟิล์มบาง อินเดียม ทิน ออกไซด์ จะถูกเตรียมลงบนชิ้นงานกระชากและพาลสติกที่อุณหภูมิต่ำ โดยกำหนดความหนาประมาณ 120 นาโนเมตร การเตรียมฟิล์มจะเตรียมด้วยเครื่องเคลือบแบบห้องเคลือบเดี่ยว (Batch) ขนาด 26 นิ้ว ภายในมีชุดแหล่งกำเนิดลำอิเล็กตรอนขนาด 10 กิโลวัตต์ และแหล่งกำเนิดไออ่อนชนิดขั้วค่าไฟฟ้าเชิง กำช้อดซิเจนที่ป้อนเข้าในห้องเคลือบจะถูกควบคุมด้วยด้วยความคุณอัตราการไนลอนของก๊าซ ค่าสมบัติทางแสงและค่าความหนาฟิล์มที่ได้จะวัดด้วยเครื่อง Variable Angle Spectroscopic Ellipsometry (VASE) ส่วนค่าความต้านทานผิวฟิล์ม (Sheet resistance) จะวัดด้วยเครื่องวัดแบบ Four-point Probe จากการทดลองพบว่าค่าสมบัติทางแสงและทางไฟฟ้าของฟิล์มอินเดียม ทิน ออกไซด์จะเปลี่ยนแปลงหรือควบคุมได้ด้วยการปรับอัตราการเคลือบ, อัตราการไนลอนของก๊าซออกซิเจน และค่ากระแสขับไออ่อน (Ion Drive Current) ของแหล่งกำเนิดไออ่อน

ในงานวิจัยนี้ฟิล์มอินเดียม ทิน ออกไซด์ที่มีสมบัติทางแสงและทางไฟฟ้าดีที่สุดจะได้จากการเคลือบกับได้ด้วยปรับแหล่งกำเนิดอุณหภูมิชิ้นงาน 70 °C, อัตราการเคลือบ 2 A%/s, ค่ากระแสขับไออ่อน 0.98 A, อัตราการไนลอนของก๊าซออกซิเจนที่ป้อนเข้าห้องเคลือบ 2 sccm และปัลซ์ผ่านแหล่งกำเนิดไออ่อน 15 sccm ค่าการส่องผ่านแสงของฟิล์มจะมากกว่าร้อยละ 80 ในช่วงการมอ-

เห็น และค่าความด้านทานผิวฟิล์มจะมีค่าต่ำกว่า 170 ohm/sq ฟิล์มอินเดียม ทิน ออกไซด์ที่ได้จาก การเคลือบฟิล์มภายในได้ล้ำแพรนีจะถูกนำมาเคลือบร่วมกับชั้นเคลือบฟิล์มป้องกันการสะท้อนแสง (Antireflection Coating) บนชั้นงานพลาสติก CR39 ซึ่งเป็นโพลิเมอร์ชนิดหนึ่ง เพื่อทำการเคลือบ เคลือบฟิล์มหลายชั้นที่มีสมบัติในการป้องกันไฟฟ้าสถิตย์และป้องกันการสะท้อนแสง ซึ่งพบว่าค่า ความนำไฟฟ้าของชั้นงานเคลือบจะเพิ่มขึ้นซึ่งหมายถึงชั้นงานจะสามารถป้องกันไฟฟ้าสถิตย์ ได้ ส่วนทางค้านการป้องกันการสะท้อนแสงนั้นยังคงดำเนินงานวิธีดังไปในอนาคต

Recently thin film of Indium tin oxide (ITO) has been investigated extensively because of its widely used in electronics and other applications. In this work, ITO films prepared by ion beam assisted deposition were studied for the application in ophthalmic lens industry.

ITO films thickness around 120 nm were deposited on glass and plastic substrates at low temperature in a 26 inches optical batch coater with 10 kw electron beam gun and a cold cathod ion gun. Oxygen gas was introduced into the chamber through mass flow controller. Optical properties and film thickness were determined by variable angle spectroscopic ellipsometry. Sheet resistance was measured using the four-point probe technique. It was found that optical and electrical properties of these ITO films can be changed or modified by the deposition rate, oxygen flow rate and ion drive current of the ion gun.

In this research, the best ITO films were obtained by the following conditions : substrate temperature of 70 °C, deposition rate of 2 Å/s, ion drive current of 0.98 A, Oxygen flow rate at the chamber base plate of 2 sccm and 15 sccm of oxygen flow rate pass through the ion gun. The film transmittance was over 80 percent in visible region and sheet resistance of the film was lower than 170 ohm/sq. The ITO films prepared by these condition were provided to coating with an antireflection coating on a CR39 to produce an antistatic-antireflection coating lens. The surface conductance on the coating lens were increasing but the condition to produce an antireflection coating lens was not completely in this time.