

ปัจจุบันเหล็กหล่อเกรไฟต์ตัวหนอนกำลังได้รับความสนใจจากอุตสาหกรรมงานหล่อในประเทศไทย เนื่องจากมีสมบัติที่เด่นกว่าเหล็กหลอเทาและเหล็กหลอเหลี่ยมในหลายๆ ด้าน แต่อย่างไรก็ตามการควบคุมการผลิตให้มีโครงสร้างตามมาตรฐานยังเป็นไปได้ยาก เนื่องจากมีอิทธิพลหลายประการที่ส่งผลกระทบต่อลักษณะรูปร่างของเกรไฟต์และโครงสร้างพื้น โครงงานวิจัยนี้จึงมีวัตถุประสงค์เพื่อ นำสูตรการผลิตเหล็กหล่อเกรไฟต์ตัวหนอน โดยมุ่งเน้นถึงผลกระทบของอัตราการเย็นตัวระหว่างการเย็บตัวของชิ้นงานหล่อเป็นสำคัญ ผลการวิจัยพบว่าอัตราการเย็นตัวมีอิทธิพลต่อทั้งรูปร่างลักษณะของเกรไฟต์และโครงสร้างพื้นของเหล็กหล่อเกรไฟต์ตัวหนอน โดยอัตราการเย็นตัวที่สูงขึ้นมีผลทำให้การกระจายตัวของเกรไฟต์และปริมาณเกรไฟต์กลมสูงขึ้น ซึ่งส่งผลให้ช่วงของปริมาณแมกนีเซียมที่เหมาะสมแคบลง นอกจากนี้อัตราการเย็นตัวที่สูงยังส่งผลให้เกิดโครงสร้างคราร์ไบด์ในโครงสร้างพื้นอีกด้วย การวิจัยขึ้นต่อไปจึงพยายามลดความไวของการเกิดโครงสร้างคราร์ไบด์โดยการเพิ่มค่าคราร์บอนเทียนเท่าและการทำอินโนคูเลชัน ผลการวิจัยพบว่าทั้ง 2 วิธีสามารถลดความไวในการเกิดโครงสร้างคราร์ไบด์ได้อย่างมีประสิทธิภาพ แต่อย่างไรก็ตามการเพิ่มค่าคราร์บอนเทียนเท่าส่งผลกระทบข้างเคียงทำให้ปริมาณเฟอร์ไรท์สูงขึ้น และการทำอินโนคูเลชันส่งผลให้การกระจายตัวและจำนวนเกรไฟต์กลมสูงขึ้น ซึ่งลักษณะรูปร่างและการกระจายตัวของเกรไฟต์รวมถึงชนิดของโครงสร้างพื้นที่เกิดขึ้นล้วนมีผลต่อสมบัติทางกลของเหล็กหล่อเกรไฟต์ตัวหนอนทั้งสิ้น

Abstract

TE 164887

Many advantages of compacted graphite iron over gray cast iron and ductile iron make it to be more interested in foundry industrial for recent year. However, the possibility of compacted graphite iron casting that meets the standard requirements is not simple like other cast irons because the graphite morphology and type of matrix structure can be easily affected by processing factors. The objective of this research is to study the effect of casting factors by focus in cooling rate during solidification of the casting. The results of experiment show that the cooling rate has effected to both of graphite morphology and matrix structure. The higher cooling rate during solidification causes higher nodularity. In this case, the amount of magnesium used has to reduce to meet the required graphite shape. Other than that, high cooling rate also can promote iron carbide in matrix structure. Then, the next experiment was focused on how to eliminate the iron carbide in high cooling rate, the minimum level of carbon equivalent and inoculation were investigated. The result shows the high value of carbon equivalent stabilizes the ferrite phase, in the other hand, inoculation promotes graphite nodules. Finally, the summation of shape and distribution of graphite and type of matrix structure, which effected from cooling rate, can affect the mechanical properties of the casting.