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Objective: To investigate the scale-invariant dynamic behavior of the electrophysiology of the brain in
subjects with epilepsy for different brain regions during ictal and interictal periods.

Methods: Intercranial EEG (ECoG) recordings of subjects with epilepsy obtained during ictal and
interictal periods for different brain regions are examined using computational methods based on the
wavelet-based representation for 1/f processes. The spectral exponent of the ECoG signals that
characterizes the scale-invariant behavior is determined.

Results: The spectral exponent of the ECoG signals obtained during seizure activity (ictal periods) is
significantly higher than that obtained during non-seizure activity (interictal periods). In addition,
during interictal period, the spectral exponent of the ECoG signals obtained within the epileptogenic
zone tends to be slightly higher than that obtained outside the epileptogenic zone.

Conclusions: The dynamics of the brain of subjects with epilepsy associated with different pathological
brain states (ictal and interictal) or different brain regions exhibit different scale-invariant behaviors.
The behavior of the brain dynamics during ictal periods tends to be more scale-invariant than during
interictal periods. Accordingly, the ECoG signal obtained during seizure activity tends to have
smoother temporal patterns than during non-seizure periods.

Significance: There is evidence that some biological systems including the brain exhibit scale-invariant
or self-similar behavior, a hallmark of a complex system. Scale-invariant behavior reflects the tendency
of a complex system to develop organized complexity with both temporal and spatial long-range
correlation structure.



- Fractal properties of different biological systems can be significantly different in their nature, origin
and appearance, where scale-invariant or scale-free behavior is a tendency of a complex system to
develop long-range correlations in time and space.

- In this study, the scale-invariant dynamic behavior of the electrophysiology of the brain in subjects
with epilepsy is investigated using the wavelet-based fractal analysis.

- The behavior of the brain dynamics during seizure activity tends to be more scale-invariant or have
smoother temporal patterns than during non-seizure periods.
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Abstract

Objective: To investigate the scale-invariant dynamic behavior of the electro-
physiology of the brain in subjects with epilepsy for different brain regions
during ictal and interictal periods.

Methods: Intercranial EEG (ECoG) recordings of subjects with epilepsy ob-
tained during ictal and interictal periods for different brain regions are exam-
ined using computational methods based on the wavelet-based representation
for 1/f processes. The spectral exponent v of the ECoG signals that char-
acterizes the scale-invariant behavior is determined.

Results: The spectral exponent v of the ECoG signals obtained during seizure
activity (ictal periods) is significantly higher than that obtained during non-
seizure activity (interictal periods). In addition, during interictal period, the
spectral exponent v of the ECoG signals obtained within the epileptogenic
zone tends to be slightly higher than that obtained outside the epileptogenic

zone.
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Conclusions: The dynamics of the brain of subjects with epilepsy associated
with different pathological brain states (ictal and interictal) or different brain
regions exhibit different scale-invariant behaviors. The behavior of the brain
dynamics during ictal periods tends to be more scale-invariant than during
interictal periods. Accordingly, the ECoG signal obtained during seizure
activity tends to have smoother temporal patterns than during non-seizure
periods.

Significance: There is evidence that some biological systems including the
brain exhibit scale-invariant or self-similar behavior, a hallmark of a complex
system. Scale-invariant behavior reflects the tendency of a complex system
to develop organized complexity with both temporal and spatial long-range

correlation structure.

Keywords: epilepsy, seizure, electroencephalography, scale-invariance,

fractals, wavelet analysis

1. Introduction

Recently, concepts and computational methods derived from the contem-
porary study of complex systems including chaos theory, nonlinear dynamics
and fractals have gained increasing interest for applications in biology and
medicine because physiological signals and systems can exhibit an extraordi-
nary range of patterns and behaviors (Goldberger, 2006). The mathematical
concept of a fractal is commonly associated with irregular objects that ex-
hibit a property called scale-invariance or self-similarity (Goldberger, 2006;

Mandelbrot, 1982). Fractal forms are composed of subunits resembling the



structure of the macroscopic object (Goldberger, 2006) which in nature can
emerge from statistical scaling behavior in the underlying physical phenom-
ena (Wornell, 1995). An important class of statistical scale-invariant or self-
similar random processes is the 1/f processes (Wornell, 1995).

There is evidence that some biological systems can exhibit scale-invariant
or scale-free behavior, in the sense that they do not have a characteristic
length or time scale that dominates the dynamics of the underlying process
(Havlin et al., 1995; Stam and de Bruin, 2004; Linkenkaer-Hansen et al.,
2001). Fractal properties of different biological systems can be significantly
different in their nature, origin, and appearance (Havlin et al., 1995), where
scale-invariant or scale-free behavior is a tendency of a complex system to
develop long-range correlations in time and space (Bassingthwaighte et al.,
1994; Barabési and Stanley, 1995; Bak, 1997).

Even though it is well accepted that the dynamics of the brain are in-
herently complex, the activity of the brain can exhibit intriguing temporal
patterns that are important as correlates of information processing (Gong
et al., 2003). For example, collective synchronized oscillations at various fre-
quencies as measured by the EEG are believed to reflect functional states of
the brain and cognitive processes (Miltner et al., 1999; Mima et al., 2001;
Nikolaev et al., 2001) and exhibit characteristics of scale-invariant dynamics
(Gong et al., 2003). Scale-invariant characteristics are often the result of
the self-organizing or self-regulating characteristics of complex systems with
nonlinearly couplings (Gong et al., 2003).

A traditional mathematical model and the empirical properties of 1/f

processes have largely been inspired by the fractional Brownian motion frame-



work (Wornell, 1995, 1993; Wornell and Oppenheim, 1992) as developed by
Mandelbrot and Van Ness (Mandelbrot and Ness, 1968). In general, models
of 1/ f processes are represented using a frequency domain characterization.
The dynamics of 1/f processes exhibit power law behavior (Watters, 1998)
and can be characterized in the frequency domain by S(w) «x 1/|w|’. In
(Wornell, 1995, 1993), a wavelet-based representation for 1/f processes was
developed. As the wavelet transform is a natural tool for characterizing self-
similar or scale-invariant signals, wavelet transformations play a significant
role in the study of self-similar signals and systems (Wornell, 1995). The
spectral exponent v that specifies the distribution of power from low to high
frequencies of 1/ f processes can be characterized in terms of the slope of the
log-variance of the wavelet coefficients versus scale graph.

In this study, we investigate the scale-invariant characteristics of the dy-
namics of the brain of subjects with epilepsy. Intercranial EEG (ECoG)
recordings of subjects with epilepsy obtained from during different patholog-
ical brain states (ictal and interictal) and different brain regions are examined
using computational analysis based on the wavelet-based representation for
1/ f processes (Wornell, 1995, 1993). From the computational results, it is
shown that there is a statistically significant difference between the spectral
exponent 7y of the ECoG signals obtained during ictal activity and that ob-
tained during interictal periods. This therefore suggests that the dynamics
of the brain of subjects with epilepsy during ictal periods behaves signifi-
cantly different from that during interictal periods. In addition, the com-
putational results also suggests that during interictal periods the dynamics

of the neuronal networks that are directly involved with the generation of



epileptic seizures behave slightly different from the dynamics of the neuronal

networks that are outside the regions involved with epileptic seizures.

2. Methods

2.1. Discrete Wavelet Transform

The discrete wavelet transform (DWT) is a representation of a signal
z(t) € Ly using a countably-infinite set of wavelets that constitute an or-
thonormal basis (Mallat, 1998). The synthesis and analysis representations
of the discrete wavelet transform of the signal z(¢) can be expressed as, re-

spectively, (Mallat, 1998)

z(t) = Z Z 0 Wmn () (1)

and
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where 9(t) is a given function, the mother wavelet, and {d,, ,} are the wavelet
coefficients. A family of wavelets {1, (t)} is obtained as normalized dila-
tions and translations of the mother wavelet ¥ (¢) (Daubechies, 1988; Mallat,
1989):

Y () = 27 2) (27™t — ) (3)

where m and n are the dilation and translation indices, respectively. The
mother wavelet 1(t) is localized in both time and frequency (Cohen and
Kovacevic, 1996).

For larger scales 2™, the wavelet 1, , is a stretched version of the mother

wavelet corresponding to low frequency content, while for smaller scales 2™,



the wavelet 1, , is a contracted version of the mother wavelet correspond-
ing to high frequency content. From a signal processing point of view, the
orthonormal wavelet transform can be interpreted as a generalized octave-
band filter bank (Wornell, 1993; Wornell and Oppenheim, 1992) because the
mother wavelet 1(t) is typically an impulse response of a bandpass filter.
The orthonormal wavelet transform can also be interpreted in the context of

multiresolution analysis (MRA) (Mallat, 1989).

2.2. 1/ f Processes

In general, models of 1/f processes are represented using a frequency
domain characterization. The dynamics of 1/f processes exhibit power-law
behavior (Watters, 1998) and can be characterized in the form of (Wornell,

1993) 2
S(w) ~ =2 (4)

jwl”

over several decades of frequency w, where S(w) is the Fourier transform of
the signal z(t) and v is the spectral exponent. An increase in the spectral
exponent 7y that specifies the distribution of spectral content from low to

high frequencies leads to sample functions with smoother temporal patterns

(Wornell, 1995, 1993).

2.3. Wavelet-Based Representation for 1/f Processes

The wavelet-based representation for 1/ f processes developed in (Wornell,

1993) is presented in the following theorem.

Theorem 1. (Wornell, 1993) Consider any orthonormal wavelet basis with

Rth-order regularity for some R > 1. Then the random process constructed



via the expansion
z(t) = Z Z AP (t) (5)

where the dn, , are a collection of mutually uncorrelated, zero-mean random

variables with variances

var (dp, ) = 0227 (6)

for some parameter 0 < v < 2R, has a time-averaged spectrum

Se(w) = o E 27| (2™ w) |2 (7)
that is nearly 1/f, i.e.,
2 2
e 7 9y
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for some 0 < 02 < g% < oo, and has octave-spaced ripple, i.e., for any

integer k

|w]7Ss(w) = |25w]7S, (2Fw) . (9)

Here, ¥(w) denotes the Fourier transform of the mother wavelet 1(t).
Accordingly, from Theorem 1, the spectral exponent y of a 1/f process
can be determined from the linear relationship between log, var (d, ,) and

the level m. The spectral exponent can then be given by

_ Alog, var (dmn)

A (10)

v

The spectral exponent v of a 1/f process is directly related to the self-
similarity (Hurst) parameter H (Wornell, 1995, 1993; Wornell and Oppen-
heim, 1992).



2.4. Ezxperimental Data

The ECoG data of epilepsy patients examined in this experiment were
obtained from the Department of Epileptology, University of Bonn (avail-
able online at http://epileptologie-bonn.de/cms/front_content.php?
idcat=193&lang=3%changelang=3) and originated from the study presented
in (Andrzejak et al., 2001). There are three ECoG data sets, referred to as
sets C, D and F, that were recorded using intercranial electrodes from five
epilepsy patients. The ECoG data of set C were recorded from the hip-
pocampal formation of the opposite hemisphere of the brain from where the
seizure was thought to have originated. The ECoG data of sets D and F
were recorded from within the epileptogenic zone. Further, the data in sets
C and D corresponds to ECoG signals during interictal (non-seizure periods)
while the ECoG data in set £ was recorded during seizure (ictal) activity.

Each ECoG data set contains 100 epochs of a single-channel ECoG signal
that were selected to be artifact free. The length of each epoch is 4097
samples (about 23.6 seconds). In addition, the epochs of the ECoG signal
satisfied the weak stationarity criterion given in (Andrzejak et al., 2001). The
sampling rate of the ECoG data is 173.61 Hz and a bandpass filter (passband
between 0.50 Hz and 85 Hz) was used during signal acquisition. Examples

of the ECoG signal for each data set are depicted in Fig. 1.

2.5. Analytic Framework

In the computational experiments, the discrete Meyer wavelet bases, il-
lustrated in Fig. 2, are used to decompose the ECoG signals into 3 levels
(m =1, 2 and 3). At these three levels the log,-var of the wavelet co-

efficients exhibits the most linear behavior. The spectral subbands of the
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discrete Meyer wavelets corresponding to levels m = 1, 2 and 3 are shown
in Fig. 3. The spectral exponent 7 of the ECoG signals is determined by
computing the slope of the log,-var of the wavelet coefficients as given in

(Wornell, 1995, 1993).

3. Results

3.1. The log,-var of the Wavelet Coefficients

The log,-var of the wavelet coefficients of the ECoG signals of the data
sets C, D and E are summarized in Table 1. In addition, the log,-var of
the wavelet coefficients of the ECoG signals of the data sets C', D and E at
the levels m = 1, m = 2 and m = 3 are compared in the box plots shown
in Fig. 4, Fig. 5 and Fig. 6, respectively. It is observed that the log,-var of
the wavelet coefficients of the ECoG signals of all data sets tends to increase
from a lower level to a higher level. At any level, the log,-var of the wavelet
coeflicients of the ECoG signals of the data set E tends to be higher than
that of the data sets C' and D.

From the two-tail, paired t-test of the log,-var of the wavelet coefficients
of the ECoG signals between data sets C' and E at levels m = 1, m = 2 and
m = 3, the null hypothesis Hj of all comparisons can be rejected. Likewise,
the null hypothesis of the two-tail, paired ¢-test of the log,-var of the wavelet
coefficients of the ECoG signals between data sets D and F at levels m = 1,
m = 2 and m = 3 can be rejected. Therefore, based on the two-tail, paired
t-test, the results suggest that there are statistically significant differences
between the log,-var of the wavelet coefficients of ECogG signals of data sets

C and E and between data sets D and E at any level m with a p-value of



p < 0.0001.

On the other hand, the null hypothesis of the two-tail, paired t-test of the
log,-var of the wavelet coefficients of the ECoG signals between data sets C
and D cannot be rejected at any level m. This result therefore suggests that
there are not statistically significant differences between the log,-var of the
wavelet coefficients of ECoG signals between data sets C' and D at any level

m. The results of all two-tail, paired t-tests are summarized in Table 2.

3.2. The Spectral Exponents of Epileptic ECoG Signals

From the log,-var of the wavelet coefficients of the ECoG signals of data
sets C, D and F shown in Fig. 4, Fig. 5 and Fig. 6, the spectral exponent ~y
of the ECoG signals is determined. The box plots of the spectral exponents
«v of the ECoG signals of data sets C, D and E are illustrated in Fig. 7. The
mean and the standard deviation of the spectral exponents y of the ECoG
signals for data sets C', D and E are summarized in Table 3. The spectral
exponent v of the ECoG signals of data set F tends to be higher than that
of data sets C' and D while the spectral exponent «y of the ECoG signals of
data set D tend to be just slightly higher than that of data set C.

The two-tail, paired t-test is used to determine whether there is a sta-
tistically significant difference between the spectral exponents v of ECoG
signals from the two data sets. The results of all two-tail, paired t-tests are
summarized in Table 4. Based on the two-tail, paired t-tests, the results
suggest that the spectral exponent v of the ECoG signals of data set F is
significantly different from that of data set C. Also, there is a statistically
significant difference between the spectral exponents «y of the ECoG signals of

data sets E and D. However, there is not a statistically significant difference
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between the spectral exponents v of the ECoG signals of data sets C and D
with a p-value of 0.0006.

4. Discussion

In this study, we investigate the scale-invariant characteristics of the
dynamics of the brain as quantified using ECoG data from subjects with
epilepsy associated with different pathological brain states (ictal and inter-
ictal) and different regions of the brain. The scale-invariant characteristics
of the dynamics of the brain of subjects with epilepsy are examined in terms
of fractal properties using a wavelet-based representation for 1/f processes
(Wornell, 1995, 1993). From the computational results, we observe that
ECoG signals associated with different ictal and interictal brain activity or
different brain regions exhibit different scale-invariant characteristics.

The spectral exponent 7 of ECoG signals obtained during seizure activity
tends to be higher than that of ECoG signals obtained during non-seizure
activity even though the ECoG signals are acquired from different brain re-
gions, i.e., within the epileptogenic zone and outside the epileptogenic zone.
Therefore, the ECoG signal obtained during seizure activity tends to have
smoother sample path patterns than ECoG signals acquired during non-
seizure periods. This further suggests that ECoG signals acquired during
seizure activity tends to be more self-similar than the ECoG signals obtained
during non-seizure periods. Further, there are statistically significant dif-
ferences between the scale-invariant characteristics or temporal patterns of
ECoG signals obtained during seizure activity and that obtained during non-

seizure periods.
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In addition, during non-seizure activity the ECoG signals acquired from
within the epileptogenic zone tends to exhibit different scale-invariant char-
acteristics from ECoG signals acquired from outside the epileptogenic zone.
During non-seizure activity, the spectral exponent + obtained from within
the epileptogenic zone tends to be slightly higher than that obtained from
outside the epileptogenic zone. This therefore suggests that the dynamics of
the brain activity as quantified by the ECoG signals obtained from within the
epileptogenic zone during non-seizure activity are slightly more self-similar
than ECoG signal obtained from outside the epileptogenic zone.

The computational results suggests that the dynamics of neuronal net-
works of subjects with epilepsy during ictal and interictal periods have dis-
tinguishing self-similar characteristics. During ictal activity thedynamics of
the brain tends to be more scale-invariant (self-similar) than that during in-
terictal periods. Accordingly, the neuronal networks during seizure activity
generate ECoG signals with a smoother temporal patterns than those gen-
erated by neuronal networks during interictal periods. During non-seizure
periods, the dynamics of heuronal networks that are involved with the gen-
eration of epileptic seizures (within the epileptogenic zone) also behave differ-
ently from the neuronal networks that are outside the regions involved with
epileptic seizure activity. An ECoG signal acquired from within the epilep-
togenic zone during an interictal period has scale-invariant behavior that
is slightly similar to the scale-invariant behavior of ECoG signals acquired

during seizure activity.
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Table 1: The log,-var of the wavelet coefficients of the EEG signals

Data Set Level Mean S.D.

C m=1 2.9911 1.3968
c m =2 6.2340 - 1.6298
C m=3 9.56324 1.5395
D m=1 2.9810 1.4276
D m=2 6.5519 1.7542
D m =3 10.0206 1.7979
E m=1 6.2813 2.0866
E m =2 12.4262 1.9566
E m =3 16.7179 2.0089
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Table 2: Results of two-tail, paired ¢-test of the log,-var of the wavelet coefficients between

the EEG data sets

Data Sets Level Hypothesis p-value
CvsD m=1 Hj not rejected  0.9596
Cvs E m=1 Hj rejected < 0.0001
Dvs E m=1 H, rejected < 0.0001
CvsD m=2 Hy not rejected  (0.1858
Cvs E m =2 Hj rejected < 0.0001
Dvs E m=2 Hj rejected < 0.0001
CvsD m=3 Hj not rejected  0.0405
Cvs E m =3 H, rejected < 0.0001
Dvs E m =3 Hj rejected < 0.0001
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Table 3: The spectral exponents 7 of the wavelet coefficients of the EEG signals

Data Set Mean S.D.

C 3.2706 0.4239
D 3.5198 0.5806
E 5.2183 0.5423
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Table 4: Results of two-tail, paired t-test of the spectral exponents y of the wavelet

coefficients between the EEG data sets

Data Sets Hypothesis p-value
CvsD Hj not rejected 0.0006
Cvs E Hj rejected < 0.0001
Dvs E Hy rejected < 0.0001
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Figure 2: The mother wavelet of the discrete Meyer basis.
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Examination of Scale-Invariant Behaviors of Epileptic ECoG Signals for Seizure
Localization: A Preliminary Study

S. Janjarasjitt>?*, K. A. Loparo®

2 Department of Electrical and Electronic Engineering, Ubon Ratchathani University, Warinchamrab, Ubon Ratchathani 34190 Thailand
b Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, Ohio 44106 USA

\bstract

)bjective: To investigate the scale-invariant behaviors of the brain for evidence of epileptic seizure localization.
fethods: ECoG data of a subject diagnosed with right mesial temporal lobe epilepsy (MTLE) obtained from various
:gions of the brain and associated with different pathological states are analyzed using wavelet-based fractal analysis
> compute the spectral exponent 7, a computational measure used for quantifying the scale-invariant behavior of the
rain.

‘esults: The brain of a subject with mesial temporal lobe epilepsy (MTLE) associated with different states exhibits
ifferent scale-invariant behaviors. The spectral exponent of the ECoG data substantially increases during an epileptic
sizure event. Furthermore, this characteristic can be observed only in regions of the brain that are involved with the
eneration of epileptiform activity (epileptogenic zone).

sonclusions: The computational results suggest that there are significant differences between the scale-invariant be-
avior of ECoG data during an ictal phase and that during both pre-ictal and post-ictal phases. The scale-invariant
ehavior of the ECoG data obtained from inside the epileptogenic zone is significantly different from that obtained from
utside the epileptogenic zone. In addition, the interaction effect between the regions of the brain and the phases is not
;atistically significant.

ignificance: The computational results provide preliminary evidence that the epileptogenic zone of mesial temporal

»be epilepsy may be localized both temporally and spatially by examining the scale-invariant characteristics.

leywords:

epilepsy, seizure, localization, epileptogenic zone, fractals, scale-invariant

. Introduction

Epilepsy is a common neurological disorder in which
lusters of nerve cells or neurons in the brain sometimes
\gnal abnormally [1]. Around 50 milllion people world-
ride are affected by epilepsy [2]. Epilepsy is characterized
y recurrent seizures that are physical reactions to sudden,
sually brief, excessive electrical discharges in clusters of
erve cells [2]. The normal pattern of neuronal activity
aat is disturbed, in epilepsy, can cause strange sensa-
.ons, emotions, and behaviors, or sometimes convulsions
.e. violent and involuntary contractions of the muscles),
wscle spasms, and loss of consciousness {1]. There are
1any possible causes for seizures ranging from illness to
rain damage to abnormal brain development [1].

Seizures are divided into two major categories: focal
sizures and generalized seizures [1]. Focal seizures, also
alled partial seizures, occur in just one part of the brain
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anjarasjitt), kenneth.loparo@case.edu (K. A. Loparo)
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while generalized seizures are a result of abnormal neu-
ronal activity on both hemispheres of the brain [1]. At the
present time, there is no cure for epilepsy {1]. Currently
available treatments can control seizures at least some of
the time [1], and prescription antiepileptic drugs are the
most common treatment approach [1]. Recent studies in
developed and developing countries have shown that up to
70% of newly diagnosed children and adults with epilepsy
can be successfully treated with antiepileptic drugs [2].
Epilepsy surgery is an alternative treatment for patients
who respond poorly to antiepileptic drugs (1, 2]. The most
common type of surgery for epilepsy is removal of a seizure
focus or small area of the brain where seizures originate
[1].

There are a number of different tests that have been
developed for diagnosing epilepsy. The most common di-
agnostic test for epilepsy is the investigation of EEG (elec-
troencephalogram) [1]. EEG signals display the electri-
cal activity of the brain, usually recorded by electrodes
placed on the scalp. Scalp EEG is however very sensi-
tive to signal attenuation and artifacts, and also has poor
spatial resolution. Intracranial EEG or electrocorticogram
(ECoG) is an invasive approach to provide improved mea-
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irement of electrical activity of the brain by placing elec-
odes on the cortex. Abnormalities in the brain’s electri-
il activity can be detected in the EEG and ECoG sig-
als. Another useful and significant diagnosis technique
" epilepsy is through the use of brain scans. The most
»mmonly used brain scans include CT (computed tomog-
iphy), PET (positron emission tomography), and MRI
nagnetic resonance imaging) [1].

Recently, concepts and computational methods derived
om the contemporary study of complex systems including
120s theory, nonlinear dynamics and fractals have gained
wcreasing interest for applications in biology and medicine
ecause physiological signals and systems can exhibit an
ctraordinary range of patterns and behaviors [3]. The
iathematical concept of a fractal is commonly associated
ith irregular objects that exhibit a property called scale-
wariance or self-similarity [3, 4]. Fractal forms are com-
ssed of subunits resembling the structure of the macro-
:opic object [3] that can emerge in nature from statisti-
il scaling behavior in the underlying physical phenomena
|. An important class of statistical scale-invariant or self-
milar random processes is the family of 1/f processes [5].

There is evidence that some biological systems can ex-
ibit scale-invariant or scale-free behavior, in the sense
1at they do not have a characteristic length or time scale
1at dominates the dynamics of the underlying process
i, 7, 8]. Fractal properties of different biological systems
i be significantly different in their nature, origin, and
ppearance [6], where scale-invariant or scale-free behav-
r is a tendency of a complex system to develop long-range
»rrelations in time and space [9, 10, 11]. Even though it is
ell accepted that the dynamics of the brain are inherently
»mplex, the activity of the brain can exhibit intriguing
smporal patterns that are important correlates of the un-
erlying dynamics of information encoding and processing
2].

A traditional mathematical model and the empirical
roperties of 1/f processes have largely been inspired by
e fractional Brownian motion framework [5, 13, 14] as
sveloped by Mandelbrot and Van Ness [15]. In general,
wodels of 1/ f processes are represented using a frequency
omain characterization. The dynamics of 1/f processes
<hibit power law behavior [16] and can be characterized
1 the frequency domain by S(w) « 1/|w|”. In [5, 13],
wavelet-based representation for 1/f processes was de-
sloped. As the wavelet transform is a natural tool for
me-frequency analysis, it is well suited for quantifying
J1f-similar or scale-invariant characteristics of signals and
lay a significant role in the study of self-similar signals
1d systems [5]. The spectral exponent -y that specifies
1e distribution of power from low to high frequencies of
! f processes can be computed in terms of the slope of the
g-variance of the wavelet coefficients versus scale graph.

In this study we investigate the scale-invariant behav-
rs of the brain for an evidence of epileptic seizure lo-
ilization. ECoG data of a subject diagnosed with right
iesial temporal lobe epilepsy (MTLE) obtained from var-

ious regions of the brain and associated with different
pathological states of the brain are used to compute the
spectral exponent <y a computational measure for quanti-
fying scale-invariant behavior of the brain. The computa-
tional results show that there is a substantial and sudden
increase in the spectral exponent v during an epileptic
seizure event. In addition, this substantial and sudden
increase in the spectral exponent v is a key signature of
an epileptic seizure that is only observed in regions of the
brain that are involved with the development of epileptic
seizure (epileptogenic zone). Therefore, this provides pre-
liminary evidence that epileptic seizures can be localized
temporally and spatially by quantifying the scale-invariant
behavior of the brain.

2. Background

2.1. Discrete Wavelet Transform

The discrete wavelet transform (DWT) is a represen-
tation of a signal z(¢t) € L, using a countably-infinite
set of wavelets that constitute an orthonormal basis [17].
The synthesis and analysis representations of the discrete
wavelet transform of the signal z(t) can be expressed, re-
spectively, as [17]

z(t) = Z Z A nPm,n(t) 1)

and

ded = / 2t (£)dt (2)
where 1(t) is a given function, the mother wavelet, and
{dmnn} are the wavelet coefficients. A family of wavelets
{®¥m,n(t)} is obtained as normalized dilations and transla-
tions of the mother wavelet y(t) [18, 19]:

Yy (t) = 272 (27™ — n) (3)

where m and n are the dilation and translation indices,
respectively. The mother wavelet () is localized in both
time and frequency [20].

For large scale 2™, the wavelet ¢y, is a stretched
version of the mother wavelet corresponding to the low
frequency content, while for small scale 2™, the wavelet
Ym,n is a contracted version of the mother wavelet cor-
responding to the high frequency content. From a signal
processing perspective, the orthonormal wavelet transform
can be interpreted as a generalized octave-band filter bank
(13, 14] because the mother wavelet ¥(t) is typically the
impulse response of a bandpass filter. The orthonormal
wavelet transform can also be interpreted in the context
of multiresolution analysis (MRA) [19].

2.2. 1/f Processes

In general, models of 1/ f processes are represented us-
ing a frequency domain characterization. The dynamics of



/ f processes exhibit power-law behavior [16] and can be
1aracterized in the form of [13]

™ b W

S(w)

ver several decades of frequency w, where S(w) is the
ourier transform of the signal z(t) and v is a spectral ex-
onent. An increase in the spectral exponent 7 specifying
1e distribution of spectral content from low to high fre-
uencies leads to sample functions with smoother temporal
atterns [5, 13, 14].

.3. Wawvelet-Based Representation for 1/f Processes

The wavelet-based representation for 1/ f processes de-
sloped in [13] is presented in the following theorem.

‘heorem 1. [13] Consider any orthonormal wavelet ba-
is with Rth-order regularity for some R > 1. Then the
andom process constructed via the expansion

z(t) = Z Z dm,nwm,n(t) (5)

there the dm n are a collection of mutually uncorrelated,
ero-mean random variables with variances

var (dpm n) = 0227™ (6)

or some parameter 0 < v < 2R, has a time-averaged
pectrum

Se(w) = 0% ) 2| (27w)|? (7)
hat is nearly 1/f, i.e.,
2 2
9L 9y
—L < < ZU.
L<sw) < ®

or some 0 < 02 < og, < 00, and has octave-spaced ripple,
€., for any integer k

W[ Sz (w) = [2*w]"S, (2Fw) . (9)

lere, ¥(w) denotes the Fourier transform of the mother
savelet Y(t).

Accordingly, from Theorem 1, the spectral exponent
~of a 1/f process can be determined from the linear re-
ationship between log, var (dm,) and the level m. The
pectral exponent can then be given by

Alog, var (dm.n
y= g2 ( )

Am (10)

nd is related to the self-similarity (Hurst) parameter H
5, 13, 14].

3. Methods

3.1. Data and Subject

Long-term multi-channel ECoG data of an epilepsy pa-
tient studied at University Hospitals of Cleveland, Case
Medical Center in Cleveland, Ohio, USA are examined.
With the consent of the patient, the long-term ECoG data
were recorded for a few days using a Nihon-Kohden EEG
system (band-pass (0.10-300 Hz) filter, 1,000 Hz sampling
rate) prior to surgery. The patient was diagnosed with
right mesial temporal lobe epilepsy (MTLE).

A 12-hour section of the long-term ECoG data recorded
between 1:55 p.m. and 1:55 a.m is examined in this study.
This section of long-term ECoG data contains 4 epilep-
tic seizure events and consists of 11 channels of differen-
tial ECoG signals as follow: 3 channels of right poste-
rior basal temporal lobe (referred to as RPT1, RPT2 and
RPT3), 3 channels of right anterior basal temporal lobe
(referred to as RAT1, RAT2 and RAT3), and 5 channels of
right mesial temporal lobe (referred to as RMT1, RMT2,
RMT3, RMT4 and RMT5). The first, second, third, and
fourth epileptic seizure events occur between 02:42:48 and
02:44:03, 03:54:36 and 03:56:25, 05:02:24 and 05:03:45, and
06:41:36 and 06:43:14 of the section, respectively.

Segments of the ECoG signals around the first, second,
third and last epileptic seizure events are shown in Fig. 1,
Fig. 2, Fig. 3 and Fig. 4, respectively. Evidently, there are
only a number of channels recording from the right mesial
temporal lobe region, i.e., RMT3, RMT4 and RMTS5, that
are directly affected by the epileptic seizures.

8.2. Analytic Framework

In the computational experiment, the ECoG data are
partitioned into epochs of 8,000 samples (8 seconds) each
with a sliding window of 2,000 samples (2 seconds). The
epochs of ECoG data are decomposed into 6 levels us-
ing the 5th order Coiflet mother wavelet that provides the
highest number of vanishing moments for both ¢ and
for a given support. Wavelet coefficients of all levels, i.e.,
m=1,2,...,6, are used to estimate the spectral exponent
v using a linear least-squares regression technique.

In addition, a weighted moving average filter is applied
to smooth the spectral exponents of the epochs of ECoG
data to reveal their main characteristics. The smoothed
spectral exponent is given by

n+N

)= Y wk—(n-N)k) (11)

k=n—-N

where v(k) denotes the spectral exponent of the kth epoch
of an ECoG signal and N = 59. The window function w(n)
used for the weighted moving average filter is a Hamming
window given by

w(n) = L (0.54 — 0.46 cos (2%%)) (12)

63.8
forn=0,1,...,2N.



Furthermore, in the computational experiment, the states nels corresponding to pre-ictal, ictal and post-ictal phases,

"the brain are divided into three phases as follow: pre-
tal, ictal and post-ictal phases. The pre-ictal phase in
is study is defined as a five-minute period before an
sileptic seizure onset while the post-ictal phase is defined
s a five-minute period after an epileptic seizure event. Re-
ark: the times of epileptic seizure onsets are identified
y visual changes in the ECoG signals by trained clinical
arsonnel. To test whether spectral exponents of ECoG
ata obtained from different regions of the brain and as-
sciated with different phases have a common mean, a
vo-way analysis of variance (ANOVA) is used.

. Results

1. Localization of Epileptogenic Zone

The spectral exponents <y of the first 4-hour section,
le second 4-hour section and the last 4-hour section of
ie ECoG data are shown, respectively, in Fig. 5, Fig. 6
1d Fig. 7. Likewise, the smoothed spectral exponents ¥ of
ie first 4-hour section, the second 4-hour section and the
st 4-hour section of the ECoG data are shown in Fig. 8,
ig. 9 and Fig. 10, respectively. The spectral exponents
(the smoothed spectral exponents ) of the ECoG data
wry corresponding to various states of the brain. Further,
ie different channels of the ECoG data exhibit different
aracteristics of the spectral exponents vy (the smoothed
iectral exponents J) even in the same state of the brain.

In addition, the smoothed spectral exponents ¥ of the
CoG data around the first, second, third and fourth epilep-
¢ seizure events are illustrated in Fig. 11, Fig. 12, Fig. 13,
1d Fig. 14, respectively. There are distinguishable changes
" the spectral exponents vy (the smoothed spectral expo-
:ts 7) corresponding to the epileptic seizure events in
1e ECoG channels RMT3, RMT4 and RMT5. It can
2 observed that the smoothed spectral exponents ¥ sub-
atially increase at an epileptic seizure onset and then
:crease right after an epileptic seizure in the ECoG chan-
}ls that are recording from the epileptogenic zone where
ie seizure originates.

The ECoG channels which are in the epileptogenic zone,
i, RMT3, RMT4 and RMTS5, are further investigated.
he smoothed spectral exponents ¥ of the first 4-hour sec-
on, the second 4-hour section and the last 4-hour section
"the ECoG channels RMT3, RMT4 and RMTS5 are illus-
ated in Fig. 15, Fig. 16, and Fig. 17, respectively. The
rresponding smoothed spectral exponents ¥ (plotted in
ack) are compared to the ECoG channel RMT4 (plot-
d in gray) around the first, second, third and fourth
ileptic seizure events in Fig. 18, Fig. 19, Fig. 20 and
g. 21, respectively. The dashed lines indicate the epilep-
> seizure onset. Clearly, the spectral exponents « signifi-
ntly change corresponding to the epileptic seizure events.

2. Comparison of Spectral Exponents
The mean, standard deviation (S.D.) and median of
e smoothed spectral exponents ¥ of every ECoG chan-

are summarized in Table 1. Box plots shown in Fig. 22,
Fig. 23 and Fig. 24 compare the smoothed spectral expo-
nents 7 of all ECoG channels corresponding to pre-ictal,
ictal and post-ictal phases, respectively. Obviously, there
are differences in the smoothed spectral exponents ¥ be-
tween either different channels or different states of the
brain.

The mean, standard deviation (S.D.) and median of
the smoothed spectral exponents ¥ of different regions of
the brain, i.e., RPT, RAT and RMT, corresponding to
various states of the brain are summarized in Table 2.
In addition, the smoothed spectral exponents ¥ of differ-
ent regions of the brain corresponding to various states of
the brain are compared in a box plot shown in Fig. 25.
The smoothed spectral exponent ¥ of the ECoG channels
obtained from the right mesial temporal lobe region dur-
ing the ictal phase tends to be higher than that during
the pre-ictal and post-ictal phases. Furthermore, during
the ictal phase the smoothed spectral exponent ¥ of the
ECoG channels obtained from the right mesial temporal
lobe region tends to be higher than that obtained from
the right posterior basal temporal lobe and right anterior
basal temporal lobe regions. Apparently, there are con-
spicuous characteristics of the spectral exponents of the
ECoG channels obtained from the right mesial temporal
lobe region during the ictal phase.

A two-way analysis of variance (ANOVA) is used with
regions of the brain and phases as the two factors. For
the regions of the brain there are three levels (RPT, RAT
and RMT) and for the phases there are three levels (pre-
ictal, ictal and post-ictal). Table 4 and Table 5 summarize
the mean square, F-statistic and p-value of the two-way
ANOVA of the spectral exponents v and the smoothed

spectral exponents 7, respectively. From the two-way ANOVA,

the results indicate that the individual factors, i.e., regions
of the brain and phases, have the most significant influence
on the spectral exponent (and also the smoothed spectral
exponent). In addition, there is an evidence that the in-
teraction effect between the regions of the brain and the
phases is not significant.

5. Conclusions

In this study, we examine the scale-invariant behaviors
of the brain of a subject diagnosed with right mesial tem-
poral lobe epilepsy (MTLE) using wavelet-based fractal
analysis. ECoG data recorded from various regions of the
brain (right posterior basal temporal lobe (RPT), right an-
terior basal temporal lobe (RAT) and right mesial tempo-
ral lobe (RMT)) and associated with different pathological
states of the brain (pre-ictal, ictal and post-ictal phases)
are analyzed. The spectral exponent 7 that specifies a dis-
tribution of spectral content from low to high frequencies
is used as a computational measure for quantifying scale-
invariant behavior. An increase in the spectral exponent -y



rads to sample functions with smoother temporal patterns
nd less complexity.
From the computational results, the spectral exponent
(and the smoothed spectral exponent %) of the ECoG
ata vary corresponding to the pathological states of the
rain. There is a substantial increase in the spectral expo-
ent 7y during an epileptic seizure event. The spectral ex-
onent v of the ECoG data during an ictal phase is signifi-
antly higher than that during both pre-ictal and post-ictal
hases. In addition, the ECoG data that is recorded from
ifferent regions of the brian also exhibit different charac-
sristics of the spectral exponent y. The distinguishable
haracteristics of the spectral exponent v during an epilep-
c seizure event can be observed only in the channels that
re involved with the generation of an epileptic seizure
vent or inside the epileptogenic zone. This therefore sug-
ests that ECoG data recorded from within the epilepto-
enic zone during an epileptic seizure event have smoother
:mporal patterns and are less complex than ECoG data
scorded from outside the epileptogenic zone and ECoG
ata that are recorded in the absence of epileptic seizures.
Clearly the underlying process of the brain behaves dif-
srently corresponding to different states of the brain. The
wcrease of the spectral exponent v of the ECoG data dur-
1g an epileptic seizure event suggests that the underlying
rocess of the brain during an epileptic seizure event be-
>mes more self-similar. Since such self-similar or scale-
wariant characteristics can be observed only in the chan-
els inside the epileptogenic zone, the underlying neuronal
etworks inside the epileptogenic zone are not strongly
oupled with the underlying neuronal networks outside
1€ epileptogenic zone during the seizure. From statistical
ssts, it is shown that both the pathological state of the
rain and the region of the brain individually have an in-
uence on the scale-invariant behavior. Furthermore, the
iteraction effect between the state of the brain and the
sgion of the brain does not have a significant influence on
1€ scale-invariant behavior.

. Discussion

The goal of presurgical epilepsy evaluation is to iden-
fy and delineate the cortical area that is primarily re-
»onsible for the generation of the epileptic seizures (the
oileptogenic zone) [21]. From the computational results,

is shown that all epileptic seizure events can be visu-
llized from the characteristics of the spectral exponent
used as a computational measure for quantifying the
:ale-invariant behavior. This therefore provides prelimi-
ary evidence that the onset of an epileptic seizure can be
lentified by temporally localizing changes in the spectral
<ponent. Furthermore, the epileptogenic zone can also
e identified by analyzing these changes in the spectral
<ponent..
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Table 1: Statistical values of smoothed spectral exponents of ECoG channels corresponding to various brain states

Phase Channel Mean S.D. Median
Pre-ictal RPT1  3.3249 0.0684 3.3245
Pre-ictal RPT2  3.2034 0.0609 3.2235
Pre-ictal RPT3  3.1211 0.0540 3.1347
Pre-ictal RAT1  3.0245 0.0442 3.0344
Pre-ictal RAT2 3.1094 0.0637 3.1113
Pre-ictal RAT3  3.2465 0.0871 3.2254
Pre-ictal RMT1  3.0391 0.0638 3.0097
Pre-ictal RMT2  3.1416 0.0607 3.1114
Pre-ictal ~RMT3  3.2257 0.0639 3.2039
Pre-ictal RMT4 3.1129 0.1053 3.1217
Pre-ictal RMTS5  3.1386 0.1113  3.1382
Ictal RPT1  3.2734 0.0707 3.3125
Ictal RPT2 3.1431 0.1049 3.1849
Ictal RPT3 3.0399 0.1009 3.0811
Ictal RAT1  3.0938 0.0595 3.1134
Ictal RAT2  3.0569 0.0727 3.0815
Ictal RAT3  3.1509 0.0774 3.1423
Ictal RMT1 3.0962 0.0559 3.0911
Ictal RMT2 3.1960 0.0608 3.1809
Ictal RMT3  3.4323 0.0908 3.4478
Ictal RMT4 3.4595 0.0662 3.4763
Ictal RMT5 3.4674 0.0725 3.4793
Post-ictal RPT1  3.2561 0.0642 3.2544
Post-ictal RPT2  3.1676 0.0728 3.1835
Post-ictal RPT3  3.0689 0.0540 3.0829
Post-ictal RAT1  2.9665 0.0820 2.9383
Post-ictal RAT2  2.9706 0.0594 2.9874
Post-ictal RAT3  3.0684 0.0706 3.0617
Post-ictal RMT1  3.1849 0.0729 3.1980
Post-ictal RMT2 3.2780 0.0782 3.2976
Post-ictal RMT3  3.3802 0.0778 3.3853
Post-ictal RMT4 3.2868 0.1591 3.2292
Post-ictal RMT5 3.1902 0.1944 3.1226




Table 2: Statistical values of smoothed spectral exponents of different regions of the brain corresponding to various brain states
Phase Region Mean S.D. Median
Pre-ictal RPT  3.2164 0.1038 3.2082
Pre-ictal ~RAT  3.1268 0.1135 3.1128
Pre-ictcal RMT 3.1316 0.1031 3.1327
Ictal RPT  3.1521 0.1336 3.1688
Ictal RAT  3.1005 0.0801 3.0989
Ictal RMT 3.3303 0.1694 3.3526
Post-ictal RPT  3.1642 0.0998 3.1655
Post-ictal RAT  3.0018 0.0853 3.0068
Post-ictal RMT  3.2640 0.1459 3.2626




Table 3: Statistical values of spectral exponents of different regions of the brain corresponding to various brain states
Phase Region Mean S.D.  Median
Pre-ictal RPT  3.2197 0.131  3.2152
Pre-ictal ~RAT  3.1277 0.1411  3.1033
Pre-ictal ~RMT  3.1191 0.1494 3.1148
Ictal RPT  3.1343 0.3585 3.1841
Ictal RAT  3.1311 0.2464 3.1465
Ictal RMT 34242 0.365 3.3143
Post-ictal RPT  3.1673 0.1318 3.1588
Post-ictal RAT  2.9927 0.1247 2.9837
Post-ictal RMT  3.2314 0.2042 3.2245




Table 4: Results of the two-factor analysis of variance of the spectral exponents

Factor Mean square F p
Phase 13.1201 273.2794 0.000
Region 25.5121 531.3938  0.000

Phase & Region 14.6949 306.0813 0.000



Table 5: Results of the two-factor analysis of variance of the smoothed spectral exponents

Factor Mean square F P
Phase 13.8645 288.8364 0.000
Region 25.0303 521.4504  0.000

Phase & Region 14.3601 299.1608 0.000
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Figure 1: A segment of the ECoG signal around the first epileptic seizure event.
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Figure 2: A segment of the ECoG signal around the second epileptic seizure event.
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Figure 3: A segment of the ECoG signal around the third epileptic seizure event.
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Figure 7: The spectral exponent of the last 4-hour section of the ECoG.
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Figure 8: The smoothed spectral exponent of the first 4-hour section of the ECoG.
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Figure 9: The smoothed spectral exponent of the second 4-hour section of the ECoG.
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Figure 10: The smoothed spectral exponent of the last 4-hour section of the ECoG.

20



168

165 166 167

164

163
Time (minute)

162

161

160

159

i ©
i 1 '}
- o~ o - N © - o [id < wn -
= - - = = = = = = =
o o o § § é = = = = =
o x o 4 o o o [+4
jsuueyd

Figure 11: The smoothed spectral exponent of the ECoG around the first epileptic seizure event.
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Figure 12: The smoothed spectral exponent of the ECoG around the second epileptic seizure event.
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Figure 13: The smoothed spectral exponent of the ECoG around the third epileptic seizure event.
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Figure 14: The smoothed spectral exponent of the ECoG around the last epileptic seizure event.
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Figure 15: The smoothed spectral exponent of the first 4-hour section of the RMT3, RMT4 and RMT5 channels.
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Figure 16: The smoothed spectral exponent of the second 4-hour section of the RMT3, RMT4 and RMT5 channels.
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Figure 17: The smoothed spectral exponent of the last 4-hour section of the RMT3, RMT4 and RMT5 channels.
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Figure 18: The corresponding smoothed spectral exponent compared to the RMT4 channel around the first epileptic seizure event.
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Figure 19: The corresponding smoothed spectral exponent compared to the RMT4 channel around the second epileptic seizure event.
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Figure 20: The corresponding smoothed spectral exponent compared to the RMT4 channel around the third epileptic seizure event.
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Figure 21: The corresponding smoothed spectral exponent compared to the RMT4 channel around the last epileptic seizure event.
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Figure 22: Comparison of the smoothed spectral exponents of individual channels during the pre-ictal phase.
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Figure 23: Comparison of the smoothed spectral exponents of individual channels during the ictal phase.
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Figure 24: Comparison of the smoothed spectral exponents of individual channels during the post-ictal phase.
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.bstract

omplex system analysis has been widely applied to examine the characteristics of EEG in health and disease, as well
s the dynamics of the brain. In this study, two complexity measures, correlation dimension and spectral exponent,
‘e applied to ECoG data of subjects with epilepsy obtained during different states (seizure and non-seizure) and from
ifferent brain regions are examined. From the computational results, it is observed that the spectral exponent obtained
om wavelet-based fractal analysis provides complementary information to the correlation dimension, derived from
onlinear dynamical systems analysis. ECoG data obtained during seizure activity have smoother temporal patterns
ad are less complex than that during non-seizure activity. In addition, there are significant differences between these
vo ECoG complexity measures when applied to ECoG data of subjects with epilepsy obtained from different brain

sgions.

‘eywords:  epilepsy, seizure, complexity, nonlinear dynamics, correlation dimension, fractals, wavelet analysis

. Introduction

Epilepsy is a common neurological disorder in which
usters of nerve cells or neurons in the brain sometimes
gnal abnormally [1]. Epilepsy is characterized by recur-
mt seizures that are physical reactions to sudden, usu-
ly brief, excessive electrical discharges in clusters of nerve
!lls, and around 50 milllion people worldwide are affected
y epilepsy [2]. The normal pattern of neuronal activity
1at is disturbed in epilepsy, can cause strange sensations,
notions, and behaviors, or sometimes convulsions (i.e.
lolent and involuntary contractions of the muscles), mus-
e spasms, and loss of consciousness [1]. There are many
sssible causes for seizures ranging from illness to brain
amage to abnormal brain development [1].

Seizures are divided into two major categories: focal
izures and generalized seizures [1]. Focal seizures, also
illed partial seizures, occur in just one part of the brain
hile generalized seizures are a result of abnormal neu-
mal activity on both hemispheres [1]. At the present
me, epilepsy cannot be cured [1], and available treat-
ents can control seizures at least some of the time [1].
lthough antiepileptic drugs are the most common ap-
‘oach to treating epilepsy [1], surgery may be required for
wtients who respond poorly to antiepileptic drugs [1, 2.
he most common type of epilepsy surgery involves re-

*Corresponding author
Email addresses: ensupajt@Qubu.ac.th,
parerk. janjarasjitt@Qcase.edu (S. Janjarasjitt ),
nneth.loparo@case.edu (K. A. Loparo)
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moval of the seizure focus, small area of the brain where
seizures originate [1].

There are a number of different tests that have been
developed for diagnosing epilepsy. The most common di-
agnostic test for epilepsy is the investigation of EEG (elec-
troencephalogram) [1]. EEG signals, usually recorded us-
ing electrodes placed on the scalp, display the electrical
activity of the brain. Scalp EEG is however very sensi-
tive to signal attenuation and artifacts, and also has poor
spatial resolution. Intracranial EEG or electrocorticogram
(ECoG) is an alternative approach to measure the electri-
cal activity of the brain by placing electrodes on the cortex.
Abnormalities in the electrical activity of the brain can be
detected in using both EEG and ECoG recordings.

Recently, concepts and computational methods derived
from the contemporary study of complex systems including
chaos theory, nonlinear dynamics and fractals have gained
increasing interest for applications in biology and medicine
because physiological signals and systems can exhibit an
extraordinary range of patterns and behaviors [3]. Also
many complex and interesting phenomena in nature are
complex nonlinear phenomena.

Nonlinear dynamical system analysis methods have been
applied to various types of EEG recordings obtained for
both normal and abnormal clinical situations [4] including
the resting state, sleep, coma, different states of cogni-
tion, and epilepsy. In general, nonlinear dynamical anal-
ysis methods have been used to characterize the underly-
ing neuronal dynamics of the brain associated with differ-
ent physiological states. A number of nonlinear dynamics
measures have also been developed to quantify features of
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rain dynamics [5]. Epilepsy is one of the most important
oplications for nonlinear dynamical analysis in biology
1d medicine at this time [6].

The information obtained from nonlinear dynamical
1alysis is primarily quantified in terms of the complex-
y parameter which is associated with the dimensionality
" the underlying system dynamics [7]. Dimensions speci-
ring how the attractor, a geometrical object in the phase
»ace of the system, is spatially distributed [8], and es-
mating the dimension of the attractor is one approach
» detecting and quantifying self-organization of complex
rstems [9]. The correlation dimension Ds introduced by
rrassberger and Procaccia [10, 11] is one of the most com-
ionly used dimensional measures [5].

The mathematical concept of a fractal is commonly
ssociated with irregular objects that exhibit a property
illed scale-invariance or self-similarity [3, 12]. Fractal
rms are composed of subunits resembling the structure
? the macroscopic object [3] which in nature can emerge
om statistical scaling behavior in the underlying physical
henomena [13]. An important class of statistical scale-
wvariant or self-similar random processes is the 1/f pro-
ssses [13].

A traditional mathematical model and empirical prop-
‘ties of 1/f processes have largely been inspired by the
actional Brownian motion framework [13, 14, 15] as de-
2loped by Mandelbrot and Van Ness [16]. In general,
lodels of 1/ f processes are represented using a frequency
omain characterization. The dynamics of 1/f processes
chibit power law behavior [17] and can be characterized
| the frequency domain by S(w) < 1/|w|".

There is evidence that some biological systems can ex-
ibit scale-invariant or scale-free behavior, in the sense
1at they do not have a characteristic length or time scale
1at dominates the dynamics of the underlying process
8, 19, 20]. Fractal properties of different biological sys-
'ms can be significantly different in their nature, origin,
nd appearance [18], where scale-invariant or scale-free be-
avior is a tendency of a complex system to develop long-
inge correlations in time and space [21, 22, 23].

In [13, 14], a wavelet-based representation for 1/f pro-
:sses was developed. As the wavelet transform is a natu-
il tool for time-frequency analysis is also provides a con-
:nient computational framework for characterizing self-
milar or scale-invariant signal characteristics [13]. The
»ectral exponent «y that specifies the distribution of power
om low to high frequencies of 1/f processes can be de-
rmined in terms of the slope of the log-variance of the
avelet coefficients versus scale graph. Furthermore, an
crease in the spectral exponent v leads to sample func-
ons with smoother temporal patterns [13, 14].

In this study, we investigate the complexity of ECoG
ata of subjects with epilepsy using two different com-
lex system analysis methods; one derived from nonlinear
ynamical analysis (correlation dimension) and the other
om wavelet-based fractal analysis (spectral exponent).
CoG data of subjects with epilepsy obtained during dif-

ferent pathological brain states (ictal and interictal) and
different brain regions (within and outside the epilepto-
genic zone) are used in the analysis.

From the computational results, it is shown that there
are statistically significant differences between the means
of the spectral exponent and the correlation dimension of
the ECoG data obtained during ictal and interictal peri-
ods and from different brain regions (within and outside
the epileptogenic zone). Further, the ECoG data obtained
during seizure activity tends to have smoother temporal
patterns with less complexity than during non-seizure ac-
tivity. Clearly, both the spectral exponent <y and the corre-
lation dimension Dj, although derived with different signal
attributes in mind, provide consistent results. Therefore,
wavelet-based fractal analysis can be used to quantify com-
plex dynamics of neuronal networks with similar results as
would be obtained using the correlation dimension D,.

2. Methods

2.1. Ezperimental Data

The ECoG data from epilepsy patients examined in
this experiment were obtained from the Department of
Epileptology, University of Bonn (available online at http:

//epileptologie-bonn.de/cms/front_content.php?idcat=

193&lang=3&changelang=3) and originated from the study
presented in [24]. There are three ECoG data sets, referred
to as sets C, D and E, that were recorded using inter-
cranial electrodes from five epilepsy patients. The ECoG
data of set C were recorded from the hippocampal forma-
tion of the opposite hemisphere of the brain from where the
seizure was thought to have originated. The ECoG data of
sets D and E were recorded from within the epileptogenic
zone. Further, the data in sets C' and D corresponds to
ECoG signals during interictal (non-seizure periods) while
the ECoG data in set E was recorded during seizure (ictal)
activity.

Each ECoG data set contains 100 epochs of a single-
channel ECoG signal that were selected to be artifact free.
The length of each epoch is 4097 samples (about 23.6 sec-
onds). In addition, the epochs of the ECoG signal satisfied
the weak stationarity criterion given in [24]. The sampling
rate of the ECoG data is 173.61 Hz and a bandpass filter
(passband between 0.50 Hz and 85 Hz) was used during
signal acquisition. Examples of the ECoG signal for each
data set are depicted in Fig. 1.

2.2. The Wavelet-Based Fractal Analysis
2.2.1. Discrete Wavelet Transform

The discrete wavelet transform (DWT) is a represen-
tation of a signal z(t) € Ly using a countably-infinite
set of wavelets that constitute an orthonormal basis [25].
The synthesis and analysis representations of the discrete
wavelet transform of the signal z(¢) can be expressed as,
respectively, {25]

z(t) = Z Z dm,nPm,n(t) (1)



dm = / " SO mn(t)dt @)

-0
here 9(t) is a given (mother wavelet) function, and {dm, .}
e the wavelet coefficients. A family of wavelets {¢/m »(t)}
obtained as normalized dilations and translations of the
other wavelet ¥(t) [26, 27]:

Prmn(t) = 27™/ 2 (27™¢ — n) (3)

here m and n are the dilation and translation indices,
'spectively. The mother wavelet 1(t) is localized in both
me and frequency [28].

For larger scales 2™, the wavelet v, », is a stretched
srsion of the mother wavelet corresponding to the low
equency content, while for smaller scales 2™, the wavelet
n,n 1S & contracted version of the mother wavelet cor-
sponding to the high frequency content. From a signal
‘ocessing perspective, the orthonormal wavelet transform
mn be interpreted as a generalized octave-band filter bank
4, 15] because the mother wavelet y(t) is typically the
1pulse response of a bandpass filter. The orthonormal
avelet transform can also be interpreted in the context
"multiresolution analysis (MRA) [27].

2.2. 1/f Processes

In general, models of 1/ f processes are represented us-
g a frequency domain characterization. The dynamics of
'f processes exhibit power-law behavior [17] and can be
aracterized in the form of [14]

0.2
S(w) ~ 2= @

||

rer several decades of frequency w, where S(w) is the
»urier transform of the signal z(t) and + is the spectral
:;ponent. The spectral exponent -y specifies the distribu-
on of spectral content from low to high frequencies, and
1 increase in v leads to sample functions with smoother
mporal patterns [13, 14].

2.8. Wavelet-Based Representation for 1/f Processes
The wavelet-based representation for 1/ f processes de-
loped in {14] is summarized in the following theorem.

heorem 1. [14] Consider any orthonormal wavelet ba-
s with Rth-order regularity for some R > 1. Then the
ndom process constructed via the expansion

z(t) = Z Z dm,nYm,n(t) (5)
m n
were the dm n are a collection of mutually uncorrelated,
ro-mean random variables with variances
var (dm,n) = 022"™ (6)

r some parameter 0 < v < 2R, has a time-averaged
ectrum

Se(w) = %> 2™ (2™w)[? (7)

that is nearly 1/f, i.e.,

2 2
oy, oy
— < < —
w7 = 5 S g )

or some 0 < 02 < 0%, < 00, and has octave-spaced ripple,
LS00y
i.e., for any integer k

]Sz (w) = [2Fw]7 S, (2%w) . (9)

Here, ¥(w) denotes the Fourier transform of the mother
wavelet Y(t).

Accordingly, from Theorem 1, the spectral exponent
v of a 1/f process can be determined from the linear re-
lationship between log, var (dp, ) and the level m. The
spectral exponent can then be given by

| Alogy var (d,)

A (10)

and is directly related to the self-similarity (Hurst) param-
eter H [13, 14, 15].

2.3. Nonlinear Dynamical Analysis

In practice, when we analyze a nonlinear dynamical
system, what we have to begin with are not the dynamics
of the system (a set of differential equations, for example);
but rather a set of observations that may or may not be
include all the actual variables of the system. We there-
fore do not have a complete description of the underlying
dynamics of the system, including measurements of sys-
tem state. Nonlinear dynamical systems analysis refers to
methods that can be used to obtain a more complete de-
scription of the underlying dynamics of the system from
measurable observations [5].

The process of nonlinear dynamical analysis consists of
two steps: 1) reconstruction of the dynamics of the system:;
and ii) characterization of the reconstructed attractor.

2.8.1. Attractor Reconstruction
The main problem in applying nonlinear dynamical
systems analysis is that only partial measurements of vari-
ables of the system are available. The true state of the
system of the system is not known, and the method of
time-delay embedding allows us to obtain a more compre-
hensive description of the dynamics and the states of the
system by unfolding the observed time series into a higher
dimensional state space, called the embedding space.

Let {z[n]} be a one-dimensional (observed) measure-
ment of the dynamical system. Note that the dynamical
system of interest in this study is the neuronal network,
and the set of observations available for the analysis are
EEG of ECoG recordings. The m-dimensional embedding
vector of the time series z is given by [9]

T

Xn = (z[n] z[n+ 7] z[n + (m - 1)7])

(11)



here m and 7 are embedding parameters denoting the
nbedding dimension and the time-delay, respectively. A
quence of embedding vectors {x,} is used to reconstruct
€ attractor. It is known that the reconstructed attractor
1s the same dynamical properties as the actual attractor
9].

The choice of embedding dimension m and time-delay 7
1s an effect on the accuracy of estimating the correlation
mension. The most important parameter for time-delay
nbedding is neither the embedding dimension m nor the
me-delay 7 individually, but their combined influence in
nbedding window [30]. There are a number of methods
r determining the appropriate time-delay 7 such as auto-
rrelation [30], mutual information [31], average displace-
ent [32], etc. A sufficient embedding dimension m can
: determined using the false nearest neighbor technique
3], for example.

3.2. Correlation Integral and Dimension

to decompose the ECoG signal into 3 levels (m = 1, 2
and 3). At these three levels the log,-var of the wavelet
coefficients exhibits the most linear behavior. The spec-
tral exponent v of the ECoG signal is determined by com-
puting the slope of the log,-var of the wavelet coefficients
as given in [13, 14] using a linear least-squares regression
technique. In addition, the attractor of the ECoG signal
is reconstructed using the embedding dimension m = 7
and the time-delay 7 = 1. The correlation dimension D-
of the ECoG signal is also estimated using a linear least-
squares regression technique. In fact, different sets of the
embedding parameters, i.e., embedding dimension m and
time-delay 7, are also used, and the same conclusion can
be obtained.

The one-way analysis of variance (ANOVA) is per-
formed to determine whether the complexity measures of
the ECoG data obtained during different pathological brain -
states and for different brain regions have a common mean.
Furthermore, multiple comparison tests are performed to

The correlation dimension Dy computed using the Grassbergdetermine whether there are any statistically significant

rocaccia algorithm is the easiest dimension to compute
4], although the computational time required can be pro-
bitive. The calculation of the correlation dimension is
1sed upon the correlation integral. The correlation inte-
al C(r) computed from the reconstructed attractor {x,}
defined by [10, 11]

N-1 N-1

ctr) = Jim Y Y 00 -lx-xl) (2

i=0 j=i+1

rere N denotes the length of the reconstructed attractor,
¢ = N(N — 1) and the Heaviside function ©(n) = 1 if
> 0; 0 otherwise. The correlation integral is thus a
easure of the probability that pairwise distances of points
1 the attractor in the state space are less than or equal to
specific distance r. A revised algorithm was introduced
r Theiler [9] to correct for autocorrelation effects in the
ne series by adding a new parameter called the Theiler
ndow w.

According to Grassberger and Procaccia [10, 11], the
rrelation integral C(r) behaves as a power of v for small
stances r, that is,

C(r) < r”. (13)

id the exponent v is defined as the correlation dimension
2- The correlation dimension can be estimated from the
:al slope of the log-log plot, i.e.,

(14)

d quantifies the active degrees of freedom or the com-
xxity of the dynamical system on the attractor.

{. Analytic Framework

In the computational experiments, for the wavelet-based
ictal analysis, the discrete Meyer wavelet bases are used

differences among means of specific pairs of the complex-
ity measures of the ECoG data.

3. Results

3.1. Characteristics of the Spectral Exponent

The spectral exponents v of the ECoG data sets C, D
and E are compared in the box plots shown in Fig. 2. In
addition, the mean, the median, and the standard devia-
tion of the spectral exponents ~ of the ECoG data sets C,
D and E are summarized in Table 1. The spectral expo-
nent y of the ECoG data set F tends to be higher than
that of the data sets C and D while the spectral exponent
7 of the ECoG data set D tends to be just slightly higher
than that of the data set C.

From the ANOVA of the spectral exponents 7 of the
ECoG data, the mean square, F-statistic and p-value are
112.3435, 415.6471 and 0, respectively. The ANOVA test
result implies that the means of the spectral exponents ~y
of the ECoG data sets C, D and E are statistically sig-
nificantly different. In addition, from the multiple com-
parison tests, it is shown that the spectral exponent v of
the ECoG data set E are statistically significantly differ-
ent from that of both data sets C and D with p « 0.0001.
There is however no statistically significant difference be-
tween the spectral exponents v of the ECoG data sets C
and D.

3.2. Characteristics of the Correlation Dimension

The box plots of the correlation dimensions Dy of the
ECoG data sets C, D and E are illustrated in Fig. 2. Ta-
ble 2 summarizes the mean, the median, and the standard
deviation of the correlation dimensions Dy. The correla-
tion dimension D, of the ECoG data set F tends to be
lower than that of the data set C. The correlation dimen-
sion Dy of the ECoG data set D tends to be higher than



1at of the data set E but slightly lower than that of the
ita set C.

From the ANOVA of the correlation dimensions D,
"the ECoG data, the mean square, F-statistic and p-
lue are 55.1015, 81.7871 and 0, respectively. Again, the
NOVA test result suggests that the means of the corre-
tion dimensions Dy of the ECoG data sets C, D and FE
‘e also statistically significantly different. Further, from
ie multiple comparison tests, it is shown that the correla-
on dimension Dy of the ECoG data set E is statistically
gnificantly different from that of both data sets C' and
' with p <« 0.0001. On the other hand, the correlation
mension Dy of the ECoG data set D is not significantly
fferent from that of the data set C.

Discussion

From the computational results, we observe that the
CoG data associated with different pathological brain

ates (ictal and interictal) and different brain regions (within

1d outside the epileptogenic zone) exhibit different char-
steristics in terms of the complexity measures used in
iis study. The correlation dimension Dy of the ECoG
ita collected during seizure activity is significantly lower
ian that of the ECoG collected during non-seizure activ-
v even though the ECoG data are acquired from different
gions of the brain, i.e., within the epileptogenic zone and
itside the epileptogenic zone. This thus suggests that the
CoG collected during seizure activity is less complex than
at during non-seizure activity, independent of region.
The spectral exponent v of the ECoG collected dur-
g seizure activity tends to be higher than that of the
CoG collected during non-seizure activity even though
& ECoG data were acquired from different regions of the
‘ain. Therefore, the ECoG collected during seizure ac-
vity tends to have smoother temporal patterns than the
CoG acquired during non-seizure periods. Further, there
e statistically significant differences between the tempo-
1 patterns of ECoG data collected during seizure activity
»m that collected during non-seizure periods and the re-
on of the brain does not seem to influence this conclusion.
In addition, during non-seizure activity the ECoG ac-
tired from within the epileptogenic zone also tends to
thibit different scale-invariant characteristics from the
CoG acquired from outside the epileptogenic zone. Dur-
g non-seizure activity, the spectral exponent v obtained
»m within the epileptogenic zone tends to be slightly
gher than that obtained from outside the epileptogenic
ne. This therefore suggests that the ECoG obtained
ym within the epileptogenic zone during non-seizure ac-
rity tends to have slightly smoother temporal patterns
an that obtained from outside the epileptogenic zone.
The computational results also suggests that the dy-
nmics of neuronal networks of subjects with epilepsy dur-
g ictal and interictal periods have distinguishing charac-
ristics. The statistical test results imply that the means
both complexity measures (v and D3) of the ECoG data

associated with different pathological brain states and dif-
ferent brain regions are significantly different, implying
that the dynamics of the neuronal networks within and
outside the epileptogenic zone, during seizure and non-
seizure periods, have different dynamical characteristics.
Even though the two complexity measures studied in
this work are based on different concepts, and quantify
different characteristics of the epileptic ECoG signal, both
complexity measures (spectral exponent «y and correlation
dimension Dj) provide similar interpretations. Therefore,
the wavelet-based fractal analysis can be used to quantify
the dynamics of neuronal networks providing consistent in-
formation to the more commonly used complexity measure

(D2).
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Table 1: The statistical values of the spectral exponents v of the ECoG data

Jata Set Mean Median S.D.

P 3.2706 3.3272 0.4239
P 3.5198 3.4503 0.5806
5 5.2183 5.2338 0.5423




Table 2: The statistical values of the correlation dimensions D2 of the ECoG data

Jata Set Mean Median S.D.

Z 4.2172 4.1803 0.7529
D 3.8239 3.8452 1.0815
E 2.7807 2.8117 0.5334
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Figure 1: Examples of ECoG signals of the data sets C, D and E.
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Abstract—The wavelet transform is a natural tool for charac-
terizing self-similar signals. In this work, the spectral exponent
derived from the wavelet-based representation for 1/f processes
is used to investigate the self-similarity of electrocorticography
(intracranial EEG) signals from an epilepsy patient. An increase
in <y leads to sample signals with smoother temporal patterns.
Our computational results show that during an epileptic seizure v
is significantly higher than that associated with other states of the
brain, implying that wavelet-based fractal analysis is potentially
a useful computational tool for epileptic seizure detection.

I. INTRODUCTION

Epilepsy is a common brain disorder in which clusters
of neurons signal abnormally [1]. More than 50 million
individuals worldwide, about 1% of the world’s population
are affected by epilepsy [2]. In epilepsy, the normal pattern
of neuronal activity is disturbed, causing strange sensations,
emotions, and behavior, or sometimes convulsions, muscle
spasms, and loss of consciousness [1]. There are many possible
causes for seizures ranging from illness to brain damage
to abnormal brain development [1], and epileptic seizures
are manifestations of epilepsy [3]. The electroencephalogram
(EEQG) is a signal that quantifies the electrical activity of the
brain, is used to assess and detect brain abnormalities, and is
crucial for the diagnosis of epilepsy [1].

Recently, concepts and computational tools derived from the
contemporary study of complex systems including nonlinear
dynamics and fractals have gained increasing interest for appli-
cations in biology and medicine because physiological signals
and systems can exhibit an extraordinary range of patterns
and behaviors [4]. The correlation integral and dimension are
common nonlinear dynamical analysis techniques that have
been applied to EEG signal analysis [5] to study various
aspects including sleep [6], [7], neurodevelopment [8], and
epilepsy [2], [9].

The mathematical concept of a fractal is commonly asso-
ciated with irregular objects that exhibit a geometric property
called self-similarity [4], [10]. Fractal forms are composed of
subunits resembling the structure of the macroscopic object [4]
which in nature can emerge from statistical scaling behavior
in the underlying physical phenomena [11]. 1/ f processes are
an important class of statistical self-similar random processes
[(11]. In [12], [13], a wavelet-based representation for 1 /f

978-1-4244-5016-9/09/$25.00 (©2009 IEEE

processes was developed where the spectral exponent (7),
estimated from the slope of the log-variance of the wavelet
coefficients versus the scale, specifies the distribution of power
from low to high frequencies. In previous studies, fractal
analysis using the wavelet transform was used to examine
epileptiform activity in rats [14] while in [15] the power
spectrum was used to calculate the fractal exponent.

In this work, self-similarity characteristics of ECoG (elec-
trocorticography) data from an epilepsy patient is examined
using the wavelet-based representation for 1/ f processes [12],
[13]. From the computational results, the spectral exponent
v corresponding to various states of the brain, e.g., seizure
onset, interictal, pre-ictal, and post-ictal, are distinguishable.
Further, the spectral exponent during an epileptic seizure event
is significantly higher than that associated with other states of
the brain. Therefore, this suggests that the spectral exponent
obtained from wavelet-based fractal analysis may be useful in
the detection of epileptic seizure events.

II. BACKGROUND
A. Discrete Wavelet Transform

The discrete wavelet transform (DWT) is a representation
of a signal z(t) € L, using a countably-infinite orthonormal
wavelet basis [16]. The synthesis and analysis representations
of the discrete wavelet transform of the signal z(t) can be
expressed as, respectively, [16]

T(t) = Z Z dm,n,wm,n(t) (1)
and o
dm,n = / x(t)'l/}m,n(t)dt @

where 9(t) is the mother wavelet and {d,, »} are the wavelet
coefficients. A family of wavelets {1, »(¢)} is obtained as
normalized dilations and translations of the mother wavelet

¥(t) [17], [18]:
"/"m,n(t) —_ 2—m/Z¢ (2—'mt _ TL) (3)

where m and n are the dilation and translation indices,
respectively. The mother wavelet ¢(t) is localized in both time
and frequency [19].
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Fig. 1. The intracranial EEG of the epilepsy patient.

For large scale 2™, the wavelet 1y, ,, is a stretched version
of the mother wavelet corresponding to low frequency content,
while for small scale 2™, the wavelet v, , is a contracted
version of the mother wavelet corresponding to high frequency
content. From a signal processing point of view, the orthonor-
mal wavelet transform can be interpreted as a generalized
octave-band filter bank [13], [20] because the mother wavelet
¥(t) is typically an impulse response of a bandpass filter. The
orthonormal wavelet transform can also be interpreted in the
context of multiresolution analysis (MRA) [18].

B. 1/f Processes

In general, 1/ f processes are represented using a frequency
domain characterization. The dynamics of 1/f processes ex-
hibit power-law behavior [21] and can be characterized in the

form of [13]

2
Iz

|l

S(w) ~ 4
over several decades of frequency w, where S(w) is the Fourier
transform of the signal z(t) and y is a spectral exponent. An
increase in the spectral exponent 7 specifying a distribution of
spectral content from low to high frequencies leads to sample
functions with smoother temporal patterns [13], [11].

C. Wavelet-Based Representation for 1/ f Processes

The wavelet-based representation for 1/f processes devel-
oped in {12] is presented in the following theorem.

Theorem 1: [13] Consider any orthonormal wavelet basis
with Rth-order regularity for some R > 1. Then the random
process constructed via the expansion

:L(t) = Z Z dm,nd’m,n(t) )

where the d,,, , are a collection of mutually uncorrelated, zero-
mean random variables with variances

var (A ) = 0227™ (6)

for some parameter 0 < y < 2R, has a time-averaged
spectrum

Sa(w) = 0 2™¥ (2"w)[? ™

m

that is nearly 1/f, i.e.,

2 2
g7, [%47]
—= 5 (W) <|—=

for some 0 < 02 < 0% < oo, and has octave-spaced ripple,
i.e., for any integer k&

| Sa(w) = [2¥w|7S, (25w) . )

Here, ¥(w) denotes the Fourier transform of the mother
wavelet ().

From Theorem 1, the spectral exponent v of a 1/f pro-
cess can be determined from the linear relationship between
log, var (d, ) and the level m, and is given by

_ Alogy var (dm n)

Am a0

III. ANALYTIC FRAMEWORK

A. Data and Subject

We analyze data from long-term ECoG recordings of an
epilepsy patient at University Hospitals of Cleveland, Case
Medicai Center in Cleveland, Ohio, USA before surgery. With
the consent of the patient, ECoG data were recorded for few
days using a Nihon-Kohden EEG system (band-pass (0.10-300
Hz) filter, 1000Hz sampling rate).

A single channel of a 2-hour record acquired from within
the focal region of the seizures is examined. The ECoG signal
is illustrated in Fig. 1 where 2 epileptic seizure events between
24m 47s and 27m 36s and between 93m 57s and 95m 45s, are
observed. Note: The first seizure occurred several hours after
the preceeding epileptic seizure event.
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Fig. 2. The spectral exponent -y of the intracranial EEG of the epilepsy patient.

B. The Wavelet-Based Fractal Analysis

In the computational experiment, the ECoG signal is parti-
tioned into epochs of 8000 samples (8 seconds). The Sth order
Coiflet orthonormal wavelet bases is used with the number of
vanishing moments for ¢ and ¢ equal to 10 and 9, respectively.
The ECoG epochs are decomposed into 6 levels and wavelet
coefficients of levels m = 1,2,3,4,5 are used to estimate
the spectral exponent y using a linear least-squares regression
technique.

IV. RESULTS

The spectral exponent of the ECoG signal is illustrated
in Fig. 2 where it is observed that -y has distinguishable
characteristics corresponding to different states of the brain.
In particular, we observe that during an epileptic seizure event
vy is significantly higher than that associated with other states
of the brain. Further, v dramatically increases during seizure
onset, suddenly decreases right after the epileptic seizure, and
then gradually increases returning to baseline as the influence
of the epileptic seizure diminishes. In addition, the ECoG
signal around the first and second epileptic seizure events
(plotted in gray) is compared to the corresponding spectral
exponent 7 (plotted in black) in Fig. 3(a) and Fig. 3(b),
respectively.

From the computational result shown in Fig. 2, it is evident
that both the proposed technique can be used to detect a seizure
event using a simple method such as thresholding. However,
the threshold value is likely patient specific and would need to
be adjusted based on recorded data. For the current patient, if
v = 3 is set as the threshold, the first and the second seizures
are then detected between 25m 9s and 27m 38s, and between
94m 1s and 95m 37s, respectively.

V. CONCLUSIONS

Self-similarity characteristics of the ECoG signal from an
epilepsy patient are examined using wavelet-based fractal
analysis. From the computational results it is observed that
during an epileptic seizure the spectral exponent of the ECoG

data exhibits a significantly value than associated with other
states of the brain.

Because of the limited space, only data from a single patient
recording with two epileptic seizure events are presented.
The computational experiments were however performed on
a larger number of patients with similar results and conclu-
sions: ECoG signals during epileptic seizures have smoother
temporal patterns and less complex temporal characteristics.
This is consistent with other findings in the literature, e.g. [9],
that suggests that complexity of the intracranial EEG decreases
during epileptic seizure events.

‘We hypotesize that the the spectral exponent v of the ECoG
signal can be used to identify and classify various states of
the brain. Future work will further investigate the application
of wavelet-based fractal analysis as a computational tool for
epileptic seizure detection.
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Abstract—In this work, the spectral exponent ~y derived from
the wavelet-based representation for 1/f processes is used to
analyze multi-channel electrocorticogram (ECoG) data obtained
from a subject with temporal lobe epilepsy. The computational
results show that the spectral exponents of different channels
of the ECoG data exhibit different characteristics of spectral
exponent . Also during an epileptic seizure the spectral exponent
v of the ECoG signals is significantly higher than that associated
with other states of the brain. An increase in the spectral
exponent can however be observed in only channels that exhibit
the ictal behavior, suggesting that regions of the brain that are
involved in ictal activity can be localized.

Index Terms—Electrocorticogram, epilepsy, seizure, fractals,
wavelet transform.

I. INTRODUCTION

Epilepsy is a common brain disorder in which clusters
of neurons signal abnormally [1]. More than 50 million
individuals worldwide, about 1% of the world’s population are
affected by epilepsy [2], where normal patterns of neuronal
activity are disturbed causing strange sensations, emotions,
and behavior, or sometimes convulsions, muscle spasms, and
loss of consciousness [1]. There are many possible causes for
seizures ranging from illness to brain damage to abnormal
brain development [1], and epileptic seizures are manifesta-
tions of epilepsy [3]. Electrocorticography measures electrical
activity from the surface of the brain (cortex) and is used to
assess and detect brain abnormalities, and is crucial for the
diagnosis of severe epilepsy in patients [1].

Recently, concepts and computational tools derived from the
contemporary study of complex systems including nonlinear
dynamics and fractals have gained increasing interest for appli-
cations in biology and medicine because physiological signals
and systems can exhibit an extraordinary range of patterns
and behaviors [4). The correlation integral and dimension are
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common nonlinear dynamical analysis techniques that have
been applied to both EEG [5] and ECoG signals to study
various aspects including sleep [6], [7], neurodevelopment [8],
and epilepsy [2], [9], [10].

The mathematical concept of a fractal is commonly asso-
ciated with irregular objects that exhibit a geometric property
called self-similarity [4], [11]. Fractal forms are composed of
subunits resembling the structure of the macroscopic object [4]
which in nature can emerge from statistical scaling behavior
in the underlying physical phenomena [12]. 1/ f processes are
an important class of statistical self-similar random processes
[12]. In [13], [14], a wavelet-based representation for 1/f
processes was developed where the spectral exponent (v),
estimated from the slope of the log-variance of the wavelet
cocfficients versus the scale, specifies the distribution of power
from low to high frequencies. In previous studies, fractal
analysis using the wavelet transform was used to examine
epileptiform activity in rats [15] while in [16] the power
spectrum was used to calculate the fractal exponent.

In this work, the characteristics of multi-channel ECoG
data obtained from a subject with temporal lobe epilepsy
are examined using the wavelet-based representation for 1/ f
processes [13], [14]. In the previous study using the same
computational approach reported in [10], it was found that the
spectral exponent v of a single-channel ECoG signal during
an epileptic seizure is significantly higher than that associated
with other states of the brain. An increase in the spectral
exponent -y leads to sample functions with smoother temporal
patterns. From computational results, significant differences in
the spectral exponent are observed during an epileptic seizure.
Furthermore, it is observed that the spectral exponents vy of
multi-channel ECoG data are different and vary according
to both regions of the brain and states of the brain. This
therefore suggests that the spectral exponent v may be a useful
quantitative measure for detecting and spatially localizing
epileptic seizure events.
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Fig. 1. Multi-channel ECoG data of the subject with temporal lobe epilepsy.

II. BACKGROUND
A. Discrete Wavelet Transform

The discrete wavelet transform (DWT) is a representation
of a signal z(t) € L, using a countably-infinite orthonormal
wavelet basis [17]. The synthesis and analysis representations
of the discrete wavelet transform of the signal x(t) can be
expressed as, respectively, [17]

.’E(t) = Z Z d-m,n"/}m,n(t)

M

and

o0
A = / 2t (D)t @
—00
where 9(t) is the mother wavelet and {d,, .} are the wavelet
coefficients. A family of wavelets {¢, ,(t)} is obtained as
normalized dilations and translations of the mother wavelet

(t) (18], [19]:
Yma(t) = 2729 (277t - n) 3)

where m and n are the dilation and translation indices,
respectively. The mother wavelet 1 (¢) is localized in both time
and frequency [20].

For large scale 2™, the wavelet ¢y, ,, is a stretched version
of the mother wavelet corresponding to low frequency content,
while for small scale 2™, the wavelet ¥y, , is a contracted
version of the mother wavelet corresponding to high frequency

content. From a signal processing point of view, the orthonor-
mal wavelet transform can be interpreted as a generalized
octave-band filter bank [14], [21] because the mother wavelet
¥(t) is typically an impulse response of a bandpass filter. The
orthonormal wavelet transform can also be interpreted in the
context of multiresolution analysis (MRA) [19].

B. 1/f Processes

In general, 1/f processes are represented using a frequency
domain characterization. The dynamics of 1/f processes ex-
hibit power-law behavior [22] and can be characterized in the

form of [14] .

£ @)

Jw]”

S(w) ~

over several decades of frequency w, where S(w) is the Fourier
transform of the signal z(t¢) and + is a spectral exponent, An
increase in the spectral exponent - specifying a distribution of
spectral content from low to high frequencies leads to sample
functions with smoother temporal patterns [12], [14].

C. Wavelet-Based Representation for 1/f Processes

The wavelet-based representation for 1/f processes devel-
oped in [13] is presented in the following theorem.

Theorem 1: [14] Consider any orthonormal wavelet basis
with Rth-order regularity for some R > 1. Then the random
process constructed via the expansion

z(t) = Z Z dm,nPm,n(t)

m n

®
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Fig. 2. Multi-channel ECoG data of the subject with temporal lobe epilepsy at the seizure onset.

where the d,,, ,, are a collection of mutually uncorrelated, zero-
mean random variables with variances
var {dpm n) = oo

(©)

for some parameter 0 < vy < 2R, has a time-averaged
spectrum

Se(w) = 0% 2™ (27w)|? )
m
that is nearly 1/f, i.e.,
2 2
oL 9y
< So(w) < ®
w7 = 5 = g

for some 0 < 02 < 0% < oo, and has octave-spaced ripple,
i.e., for any integer k
|w|7Se(w) = |25w]7 S, (2Fw) . 9)
Here, W(w) denotes the Fourier transform of the mother
wavelet 1(t).
From Theorem 1, the spectral exponent v of a 1/f pro-

cess can be determined from the lincar relationship between
log, var (d,,,») and the level m, and is given by

Y= Alog, var (dmn)

Arn (10)

III. METHODS

A. Data and Subject

A 4-minute section of long-term ECoG data of an epilepsy
patient studied at University Hospitals of Cleveland, Case
Medical Center in Cleveland, Ohio, USA is examined. With
the consent of the patient, the long-term ECoG data were
recorded for a few days using a Nihon-Kohden EEG system
(band-pass (0.10-300 Hz) filter, 1,000 Hz sampling rate)
prior to surgery. The patient was diagnosed with right mesial
temporal lobe epilepsy.

The section of long-term ECoG data examined in this study
consists of six channels of differential ECoG signals and
contains an epileptic seizure event. The first three channels
of differential ECoG signals, referred to as RMT1, RMT2 and
RMT3, were obtained from the right mesial temporal lobe
region, while the other three channels of differential ECoG
signals, referred to as LMT1, LMT2 and LMT3, were obtained
from left mesial temporal lobe region.

The section of long-term ECoG data is shown in Fig. 1.
The epileptic seizure occurs between 1m 50s and 3m 6s in
this section. Fig. 2 shows the multi-channel ECoG data around
the seizure onset. From Fig. 1 and Fig. 2, it can be observed
that there are only changes in the ECoG signals during the
epileptic seizure event for the channels RMT1, RMT2 and
RMT3 which were obtained from the right mesial temporal
lobe region.
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Fig. 3. The spectral exponents of multi-channel ECoG data.

B. Analytic Framework

In the computational experiment, the ECoG signals are
partitioned into epochs of 8,000 samples (8 seconds) with a
sliding window of 100 samples (0.1 second). The epochs of
the ECoG signals are decomposed into 6 levels using the 5th
order Coiflet wavelets which provide the highest number of
vanishing moments for both phi and psi for a given support.
Wavelet coefficients of all levels, i.e., m = 1,2,...,6, are
used to estimate the spectral exponent +y using a linear least-
squares regression technique.

IV. RESULTS

The spectral exponents of the multi-channel ECoG data for
channels RMT1, RMT2, RMT3, LMT1, LMT2 and LMT3
are displayed as a color-map plot shown in Fig. 3. From the
computational results, it is observed that different channels of
the ECoG data exhibit different characteristics of the spectral
exponent . Furthermore, the spectral exponcnt - has distin-
guishable characteristics corresponding to different states of
the brain. In particular, during an epileptic seizure the spectral
exponent 7y tends to be higher than that associated with other
states of the brain, and we observe that the spectral exponent
<y increases at seizure onset. This characteristics however can
be observed only for channels RMT1, RMT2 and RMT3.

Fig. 4 compares the spectral exponents v of the ECoG
signals of channels RMT3 and LMT2. Obviously, the spectral
exponents of the ECoG signals of channels RMT3 and LMT2
are remarkably different. The spectral exponent « for channel
RMTS3 significantly increases during an epileptic seizure while
the spectral exponent -y for channel LMT2 remains steady at
the baseline. In addition, the ECoG signal for channel RMT3
around the epileptic seizure (plotted in gray) is compared to
the corresponding spectral exponent v (plotted in black) in
Fig. 5.

V. CONCLUSIONS

The wavelet-based fractal analysis [10] is used to examine
self-similarity characteristics of the multi-channel ECoG data
obtained from a subject with temporal lobe epilepsy. From the
computational results, it is observed that the characteristics of
the spectral exponents v of the ECoG signals are different
during non-seizure and seizure periods and vary according to
regions of the brain (e.g., between regions that are involve with
seizure activity and region that are not involved with seizure
activity).

During the epileptic seizure the spectral exponent +y of the
ECoG signals exhibit a significantly higher value than that as-
sociated with non-seizure states of the brain. This implies that
ECoG signals during an epileptic seizure event have smoother
temporal patterns (less complex temporal characteristics). This
is consistent with other findings using different measures in
the literature, e.g. [9], that suggests that the complexity of
EEG signal decreases during an epileptic seizure event.

The signifcant change of the spectral exponent -y during
the epileptic seizure can be observed only in the channels
RMT1, RMT2 and RMT3 which were obtained from right
mesial temporal lobe region. The spectral exponent ~ of the
ECoG signals of the channels LMT1, LMT2 and LMT3 which
were obtained from the left mesial temporal lobe region does
not considerably change during the epileptic seizure compared
to the interictal period. This conclusion is supported by the
diagnosis result of the clinical study that reported that the
subject has right mesial temporal lobe epilepsy.

The computational results therefore show that the epilep-
tic seizure can be spatially and temporally localized from
the spectral exponent. Further, the spectral exponent ~y that
characterize the smoothness of temporal patterns may be a
useful computational measure for quantifying the state of the
brain during ictal and interictal periods and for determining
the regions of the brain that are involved with epileptic seizure
activity.
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