

วิทยานิพนธ์นี้มีวัตถุประสงค์เพื่อศึกษาความสามารถในการผลิตก๊าซชีวภาพและประสิทธิภาพในการบำบัดน้ำเสียจะภาคต่อของโรงงานสกัดน้ำมันปาล์มด้วยระบบบำบัดไม่ใช้อกซิเจนแบบยูเออสบี และแอนแօโรบิคເອສบีອาร์ โดยใช้แบบจำลองของถังปฏิกรณ์ยูเออสบี 2 ถัง ปริมาตร 4.8 ลิตร และแบบจำลองของถังปฏิกรณ์แอนแօโรบิคເອສบีອาร์ 2 ถัง ปริมาตร 0.8 ลิตร น้ำเสียที่ใช้ในการทดลองมาจากการจะภาคต่อของโรงงานสกัดน้ำมันปาล์ม โดยมีค่าซีໂອดีประมาณ 5000 มก./ล. มีอัตราส่วน COD:N:P เท่ากับ 100 : 1.39 : 1.09 ใช้สัดจ์เปียก 590 กรัม (หรือ 30 กรัม ต่อหน่วยของแข็ง) สำหรับใส่ในถังปฏิกรณ์ยูเออสบี และสัดจ์เปียก 31 กรัม (หรือ 10 กรัมต่อหน่วยของแข็ง) สำหรับถังปฏิกรณ์แอนแօโรบิคເອສบีອาร์ เป็นต่อหน่วยเริ่มต้น และการบรรเทาทุกสารอินทรี (OLR) เริ่มต้นที่ 1.0 ก./ล.-วัน และ 0.5 ก./ล.-วัน สำหรับถังปฏิกรณ์ยูเออสบี และ แอนแօโรบิคເອສบีອาร์ ตามลำดับ โดยศึกษาประสิทธิภาพการกำจัดซีໂອดีเมื่อ OLR เพิ่มขึ้น

สำหรับถังปฏิกรณ์ยูเออสบีผลการทดลองในช่วงระยะเวลา 7 เดือนพบว่า สามารถเพิ่ม OLR ได้ถึง 30 กรัมซีໂອดี/ลิตร-วัน ให้ค่าประสิทธิภาพการบำบัดของทั้ง 2 ถังปฏิกรณ์อยู่ระหว่าง 80-90% ผลการวิเคราะห์ค่า Specific Methanogenic Activity (SMA) ของจุลินทรีจากระบบยูเออสบีทั้ง 2 ถังปฏิกรณ์ ให้ค่า SMA เท่ากับ 0.847 และ 1.488 g.COD/gVSS-day ตามลำดับ

สำหรับถังปฏิกรณ์แอนแօโรบิคເອສบีອาร์ผลการทดลองในช่วงระยะเวลา 5 เดือนพบว่า สามารถเพิ่ม OLR ได้ 1.8 กรัมซีໂອดี/ลิตร-วัน ให้ค่าประสิทธิภาพการบำบัดของทั้ง 2 ถังปฏิกรณ์อยู่ระหว่าง 70-80% ผลการวิเคราะห์ค่า SMA ของจุลินทรีจากระบบแอนแօโรบิคເອສบีອาร์ทั้ง 2 ถังปฏิกรณ์ ให้ค่า SMA เท่ากับ 0.419 และ 0.400 g.COD/gVSS-day ตามลำดับ

The objective of this thesis was to study biogas production and COD removal efficiency of decanted cake leached wastewater from palm oil mill industry using upflow anaerobic sludge blanket (UASB) reactors and Anaerobic Sequencing Batch Reactor (AnSBR). Two UASB reactors were made by 4.8 liters reactor volume and two AnSBR were made by 0.8 liter reactor volume. In this study, wastewater leached from decanter cake, which has COD concentration about 5000 mg/l, and COD: N: P ratio as 100: 1.39: 1.09 were used. Five hundred and ninety grams of wet sludge (equivalent to 30 grams solids) was put into UASB reactor while thirty-one grams of wet sludge (equivalent to 10 grams solids) was put into AnSBR as seed. The organic loading rate at the beginning of the study was around 1 g/l.-day and 0.5 g/l.-day, for UASB reactors and AnSBR, respectively. Then, the organic loading rate was continually increased in order to examine the efficiency of COD removal.

For UASB reactors, the results after seven months of study showed that an organic loading rate increased to 30 g/l.-day; the COD removal efficiency of both reactors were in range of 80 – 90 %. Through the analysis of Specific Methanogenic Activity (SMA), the finding showed that SMA of sludges were 0.847 and 1.488 gCOD/gVSS-day, accordingly.

For AnSBR, the results after five months of study showed that an organic loading rate increased to 1.8 g/l.-day; the COD removal efficiency of both reactors were in range of 70 – 80 %. Through the analysis of Specific Methanogenic Activity (SMA), the finding showed that SMA of sludges were 0.419 and 0.400 gCOD/gVSS-day, accordingly.