Thesis Title

Effects of rain upon radionuclide and nutrient mobility in soil

Thesis Credits

6

Candidate

Miss Sirawan Ruangchuay

Supervisors

Dr. Narumon Withers Harvey

Mr. Pirat Sriyotha

Degree of Study

Master of Science

Department

Environmental Technology

Academic Year

1998

Abstract

The aim of this research was to study how the simulated groundwater and the acidity of rain affected the mobility of Cs-134 and Co-60 in soil, and the physical and chemical properties of the soil.

This was a column experiment, in which soil was packed in a series of columns, and 5 cm of top soil was contaminated with radionuclides. The columns were kept standing in water manually maintained at a level of 3 cm for 120 days. During this time, for columns subjected to both groundwater and rain application, soil was supplied from the top with artificial acid rain, with a controlled pH of either 6, 4.5 or 3, with the application rate of 80 ml/day. Soil samples were collected every 30 days. Samples from 6 depths along the soil profile were collected to determine parameters including: total and extractable radioactivity, CEC, exch. H⁺ and TEB (exch. Na⁺, exch. K⁺, exch. Ca²⁺ and exch. Mg²⁺).

The results show that radionuclide migration is enhanced by rain, but not its acidity. The migration of Co-60 was greater than Cs-134. Extractable radioactivity was found at 0-10 cm, whilst at 35 cm for total radioactivity. In soil with low moisture content, more Cs-134 was extracted than Co-60, whilst for moist soil the situation was reversed.

The acidity of the rain had no significant effect on the physical and chemical properties of soil, except for a small increase in exch. H^{+} . However, CEC and mineral nutrients in the soil decreased with the order: exch. $Na^{+} >$ exch. $Ca^{2+} \approx$ exch. $Mg^{2+} >$ exch. K^{+} .

Keywords: acid rain / migration / total radioactivity / extractable radioactivity /Cs-134 / Co-60