

BIOLOGICAL CONTROL OF BACTERIAL WILT IN PATHUMMA (Curcuma alismatifalia Gagnep.)

SARAN PROMSAI

DOCTOR OF PRILOSOPRY
IN APPLIED MICROBIOLOGY

THE GRADUATE SCHOOL CHIANG MAI UNIVERSITY SUPTEMBER 2011

BIOLOGICAL CONTROL OF BACTERIAL WILT IN PATHUMMA (Curcuma alismatifolia Gagnep.)

SARAN PROMSAI

A THESIS SUBMITTED TO THE GRADUATE SCHOOL IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN APPLIED MICROBIOLOGY

THE GRADUATE SCHOOL CHIANG MAI UNIVERSITY SEPTEMBER 2011

BIOLOGICAL CONTROL OF BACTERIAL WILT IN PATHUMMA (Curcuma alismatifolia Gagnep.)

SARAN PROMSAI

THIS THESIS HAS BEEN APPROVED TO BE A PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN APPLIED MICROBIOLOGY

Assoc. Prof. Wanchai Sonthichai

EXAMINING COMMITTEE	THESIS ADVISORY COMMITTEE
Asst. Prof. Dr. Prasart Phonimdang	Asst. Prof. Dr. Narumol Thongwai A. Zahi CO-ADVISOR
Now - Thy MEMBER	
Asst. Prof. Dr. Narumol Thongwai	Assoc. Prof. Dr. Arayar Jatisatienr
A-Jalis MEMBER	Jry Trayal- CO-ADVISOR
Assoc. Prof. Dr. Arayar Jatisatienr	Asst. Prof. Dr. Yingmanee Tragoolpua
Yym Trajolyn MEMBER	
Asst. Prof. Dr. Yingmanee Tragoolpua	
W. Cothch. MEMBER	

12 September 2011 © Copyright by Chiang Mai University

ACKNOWLEDGEMENTS

The author would like to express heart-felt gratitude to my advisor Asst. Prof. Dr. Narumol Thongwai for her guidance, motivation, patience and supervision throughout my Ph.D. study. I am deeply grateful to my co-advisor, Assoc. Prof. Dr. Arayar Jatisatienr and Asst. Prof. Dr. Yingmanee Tragoolpua for their kindness, advice guidance and valuable suggestions on my thesis work. I am grateful to the examining committee members, Asst. Prof. Dr. Prasart Phonimdang and Assoc. Prof. Wanchai Sonthichai for their comments and suggestions.

I sincerely thank Asst. Prof. Dr. Sumalee Pruksakorn for her valuable comment on molecular studies.

I sincerely thank the Bua Lai Pathumma Garden in Amphur San Sai, Chiang Mai, for pathumma rhizomes.

I would like to thank the office of the Higher Education Commission, Ministry of Education, Thailand under the program of Strategic Scholarship for Frontier Research Network for the Ph.D. Program Thai Doctoral Degree for financial support.

I would like to thank the Department of Biology, Faculty of Science, Chiang Mai University and the Graduate School of Chiang Mai University for all supports.

I would like to thank Dr. Panitnart Auputinan, Ruangwoot Chutima, Pawalee Srisuksomwong, Raenu Yucharoen, Jiraporn Palee, Nongluck Jaito and Sutatip Treepolauksorn for their help and friendship.

I would like to thank all the members of ScB2711, other friends and the staff in the Department of Biology for their friendship, help, guidance, enjoyable and memorable time during my research work.

Most of all, I would like to express my gratefulness to my family; father, mother and sister for their love, encouragement and emotion support.

Saran Promsai

Thesis Title

Biological Control of Bacterial Wilt in Pathumma

(Curcuma alismatifolia Gagnep.)

Author

Mr. Saran Promsai

Degree

Doctor of Philosophy (Applied Microbiology)

Thesis Advisory Committee Asst. Prof. Dr. Narumol Thongwai

Advisor

Assoc. Prof. Dr. Arayar Jatisatienr

Co-advisor

Asst. Prof. Dr. Yingmanee Tragoolpua

Co-advisor

ABTRACT

E 47367

Forty-five isolates of wilt causing bacteria were isolated from infected Pathumma rhizomes using TZC medium. Ten bacterial isolates, namely PRZ, PT1B, PT1J, PT2X, D1, RRD, RT1S, Rh1-1 were identified as Enterobacter spp., Tu1-1 was identified as Klebsiella sp. and Tu1-2 was identified as Pseudomonas sp. by conventional and molecular methods. These bacteria were determined for their abilities to cause high disease severity in Pathumma plant both in vivo and laboratory bioassays. Fifteen bacterial isolates, namely PRZ, PT1B, PT1J, PT2X, RRD, RT1K, RT1S, RT2R, C4, D1, Rh1-1, Rh3-1, Tu1-1, Tu2-1 and R1512 were evaluated the persistence in natural soil without Pathumma plants. It was found that these bacteria had 42-70% survival rate after incubation for 1 year.

E47367

For the study of the adhesion of wilt causing bacteria in Pathumma tissue, *E. asburiae* PT1J was selected to investigate due to its high level of disease incidence. The infected pseudostems were observed changes under light compound and scanning electron microscope. The electron microscopic studies clearly showed the bacteria adhesion and structural changes of plant tissues. This bacterium could adhere to the vascular bundle walls and caused plant tissue shrunken.

One hundred and two bacterial isolates were isolated from soil samples collected from different sites in Thailand using TSA medium. After testing their ability to inhibit growth of the pathogenic bacteria using paper disc diffusion method, it was found that four isolates namely SP15, SP38, SP46 and SP58 had the highest ability to inhibit growth of wilt causing bacteria. From biochemical and molecular identification, the isolates SP15, SP38, SP46 and SP58 were *Bacillus subtilis*, *Pseudomonas mosselii*, *Pseudomonas mosselii* and *Pseudomonas aeruginosa*, respectively. The optimal conditions of inhibiting substances from the isolate SP15 was 30°C at pH 8 in modified TSB medium containing 0.5% (w/v) glucose and 2% (w/v) peptone, SP38 was 25°C at pH 7 in modified TSB medium containing 0.5% (w/v) sucrose and 2% (w/v) glucose and 1.5% (w/v) peptone, and SP58 was 25°C at pH 7 in modified TSB medium containing 0.5% (w/v) peptone, and SP58 was 25°C at pH 7 in modified TSB medium containing 0.5% (w/v) peptone, and SP58 was 25°C at pH 7 in modified TSB medium containing 0.5% (w/v) sucrose and 1.5% (w/v) peptone.

Characterization of inhibiting substances produced by antagonistic bacteria was found that all antagonists could produce both hydroxamate-type and catecholate-type siderophore. Among four antagonists, only three strains *Ps. mosselii* SP38, *Ps.*

mosselii SP46 and Ps. aeruginosa SP58 showed the ability to produce phenazine derivatives.

The three experimental designs were used to evaluate the ability to control bacterial wilt in pots of pathumma. Experiment 1, both antagonistic and pathogenic bacteria were co-applied to pathumma rhizomes and to soil in pots before cultivation. Experiment 2, both antagonistic and pathogenic bacteria were co-applied to shooting pathumma. Experiment 3, pathogenic bacteria were applied to rhizomes and to soil before pathumma cultivation while the mixed culture of antagonistic bacteria were added to the plant pots after shooting. All experiments were conducted three times consecutively in 2008, 2009 and 2010. The results revealed that experiment 1 and 2 had the disease incidence of 0-33% while experiment 3 had the disease incidence of 33-67%. In all experiments, the bacterial cell numbers of antagonistic mixture were declined by 5-15% on average while pathogenic bacteria PT1J, PT2X, D2, RRD, RT1S and R227 were declined by 30, 35, 25, 40, 30 and 30% on average, respectively. However, all experiments could reduce wilt disease compared with the disease plant controls which were not treated with antagonistic bacteria.

Molasses and soil were found to be most suitable carrier materials for the optimal formulation for all antagonistic bacteria. The cell numbers of each antagonistic bacterial isolate were 1×10^4 - 1×10^5 cfu/g in molasses or soils after 2 months of incubation.

Keywords: biological control, *Curcuma alismatifolia*, Pathumma, wilt disease, antagonistic bacteria, *Enterobacter* spp.

ชื่อเรื่องวิทยานิพนธ์

การควบคุมโรคเพี่ยวในปทุมมา (Curcuma alismatifolia

Gagnep.) ที่เกิดจากแบคทีเรียโดยวิธีทางชีวภาพ

ผู้เขียน

นายศรัณย์ พรหมสาย

ปริญญา

วิทยาศาสตรคุษฎีบัณฑิต (จุลชีววิทยาประยุกต์)

คณะกรรมการที่ปรึกษาวิทยานิพนธ์

ผศ. คร. นฤมล ทองไว

อาจารย์ที่ปรึกษาหลัก

รศ. คร. อารยา จาติเสถียร

อาจารย์ที่ปรึกษาร่วม

ผศ. คร. ยิ่งมณี ตระกูลพัว

อาจารย์ที่ปรึกษาร่วม

บทคัดย่อ

E 47367

แบคทีเรียก่อ โรคเหี่ยวในปทุมมาถูกคัดแยกได้จากหัวพันธุ์ที่เป็นโรคเหี่ยว โดยใช้อาหาร TZC พบว่าสามารถแยกเชื้อได้ทั้งสิ้น 45 ไอโซเลท ในจำนวนนี้มี 10 ไอโซเลทที่มีความสามารถใน การก่อ โรคได้รุนแรงที่สุด โดยการทดสอบการก่อ โรคในแปลงปลูกปทุมมาและในห้องปฏิบัติการ ซึ่งได้แก่ Enterobacter sp. PRZ, PT1B, PT1J, PT2X, D1, RRD, RT1S และ Rh1-1, Klebsiella sp. Tu1-1 และ Pseudomonas sp. Tu1-2 เมื่อศึกษาการคงอยู่ในคินที่ปราสจากพืชอาศัยของแบคทีเรียก่อ โรคเหี่ยวจำนวน 15 ไอโซเลท ได้แก่ PRZ, PT1B, PT1J, PT2X, RRD, RT1K, RT1S, RT2R, C4, D1, Rh1-1, Rh3-1, Tu1-1, Tu2-1 และ R1512 พบว่ามีอัตราการรอดชีวิต 42-70% เมื่อเวลาผ่านไป 1 ปี

ในการศึกษาการเกาะติดเนื้อเยื่อพืชของ E. asburiae PT1J ซึ่งสามารถก่อโรคได้รุนแรง โดยการสังเกตภายใต้กล้องจุลทรรศน์แบบส่องกราด พบว่าแบคทีเรียสามารถเกาะติดเนื้อเยื่อพืชได้ ดี เนื้อเยื่อพืชมีการหดตัวเมื่อเปรียบเทียบกับกลุ่มควบคุมที่ไม่มีเชื้อ

ในการแยกแบคทีเรียจากดินบริเวณต่างๆของประเทศไทยค้วยอาหาร TSA พบว่าสามารถ แยกได้ 102 ใอโซเลท แบคทีเรียทั้งหมคถูกนำไปทคสอบการยับยั้งการเจริญของแบคทีเรียก่อโรค เหี่ยวคั่วยวิธี paper disc diffusion พบว่ามี 4 ใอโซเลท ได้แก่ Bacillus subtilis SP15, Pseudomonas mosselii SP38, Pseudomonas mosselii SP46 และ Pseudomonas aeruginosa SP58 มีความสามารถ ในการสร้างสารยับยั้งการเจริญของแบคทีเรียก่อโรคเหี่ยว โดยมีสภาวะที่เหมาะสมคือ B. subtilis

E47367

SP15 สร้างสารยับยั้งได้ดีที่อุณหภูมิ 30 องศาเซลเซียส ในอาหารเลี้ยงเชื้อ pH 8 ที่มีส่วนประกอบ ของ 0.5% (w/v) glucose และ 2% (w/v) peptone สำหรับ Ps. mosselii SP38 คือ ที่อุณหภูมิ 25 องศาเซลเซียส ในอาหารเลี้ยงเชื้อ pH 7 ที่มีส่วนประกอบของ 0.5% (w/v) sucrose และ 2% (w/v) peptone สำหรับ Ps. mosselii SP46 คือ ที่อุณหภูมิ 25 องศาเซลเซียส ในอาหารเลี้ยงเชื้อ pH 7 ที่มี ส่วนประกอบของ 0.5% (w/v) glucose และ 1.5% (w/v) peptone และสำหรับ Ps. aeruginosa SP58 คือ ที่อุณหภูมิ 25 องศาเซลเซียส ในอาหารเลี้ยงเชื้อ pH 7 ที่มีส่วนประกอบของ 0.5% (w/v) sucrose และ 1.5% (w/v) peptone

ในการศึกษาสารยับยั้งที่ผลิตโดยแบคทีเรียปฏิปักษ์ SP15, SP38, SP46 และ SP58 พบว่าทั้ง 4 ไอโซเลทสามารถสร้างสาร siderophore ชนิด hydroxamate และ catecholate นอกจากนี้ยังพบว่า แบคทีเรียปฏิปักษ์ SP38, SP46 และ SP58 สามารถผลิตสารในกลุ่ม phenazine ได้

เมื่อนำแบคทีเรียปฏิปักษ์ใปทคสอบความสามารถในการควบคุมแบคทีเรียก่อโรคเหี่ยวใน แปลงปลูก โดยแบ่งการทคลองเป็น 3 กลุ่มคือ กลุ่มที่ 1 ทำการเพาะเชื้อแบคทีเรียปฏิปักษ์พร้อมกับ แบคทีเรียก่อโรคเหี่ยวตอนเริ่มปลูกปทุมมา กลุ่มที่ 2 ทำการเพาะเชื้อแบคทีเรียปฏิปักษ์พร้อมกับ แบคทีเรียก่อโรคเหี่ยวตอนต้นปทุมมางอก และกลุ่มที่ 3 ทำการเพาะเชื้อแบคทีเรียก่อโรคเหี่ยวตอน เริ่มปลูกปทุมมา และตามค้วยแบคทีเรียปฏิปักษ์ภายหลังจากต้นปทุมมางอก ทำการทคลองทั้งหมด 3 ซ้ำในปี 2008, 2009 และ 2010 ในการวิจัยพบว่า กลุ่มที่ 1 และ 2 มีอัตราการเกิดโรค 0-33% ในขณะที่กลุ่มที่ 3 มีอัตราการเกิดโรค 33-67% ในการตรวจสอบหาปริมาณเชื้อแบคทีเรียปฏิปักษ์ และแบคทีเรียก่อโรคเหี่ยวในทั้งสามกลุ่มการทคลอง พบว่าปริมาณเชื้อผสมของแบคทีเรียปฏิปักษ์ ลดลง 5-15% ส่วนแบคทีเรียก่อโรคเหี่ยว PT1J, PT2X, D1, RRD, RT1S และ R227 ลดลง 30, 35, 25, 40, 30 และ 30% ตามลำดับ อย่างไรก็ตามทั้ง 3 กลุ่มการทคลองสามารถลดการเกิดโรคเหี่ยวได้ เมื่อเทียบกับกลุ่มควบคุมที่มีการเพาะเชื้อแบคทีเรียก่อโรคเหี่ยวเพียงอย่างเดียว

ในการศึกษาหาส่วนผสมที่เหมาะสมต่อการเพาะเลี้ยงแบกทีเรียปฏิปักษ์พบว่า กากน้ำตาล และดินมีความเหมาะสมที่สุด โคยพบปริมาณเชื้อแบกทีเรียปฏิปักษ์ทุกใอโซเลทอยู่ระหว่าง 1x10⁴ -1x10⁵ cfu/g เมื่อเวลาผ่านไป 2 เดือน

คำสำคัญ: การควบคุมทางชีวภาพ, ปทุมมา, โรคเหี่ยว, แบคทีเรียปฏิปักษ์, Enterobacter spp.

TABLE OF CONTENTS

	Page
Acknowledgements	iii
Abstract (English)	v
Abstract (Thai)	viii
List of Tables	xii
List of Figures	xvi
Abbreviations and Symbols	xxiii
Chapter 1 Introduction	1
Chapter 2 Literature reviews	4
Chapter 3 Materials and Methods	45
Chapter 4 Results and Discussions	70
Chapter 5 Conclusions	185
References	187

TABLE OF CONTENTS (CONTINUED)

		Page
Appendices		201
Appendix A	Media	202
Appendix B	Chemical reagents for agarose gel electrophoresis	209
Appendix C	Standard curves of siderophore production	211
Curriculum Vitae		213

LIST OF TABLES

Table		Page
1	Antibiotics produced by BCAs	27
2	Laboratory equipment	48
3	Summary of the experiments of pathogenicity tests	55
4	The mixture of antagonistic bacteria	65
5	Design of treatment using mixture of antagonistic bacteria to	66
	suppress growth of wilt causing bacteria	
6	Biochemical characteristics of wilt causing bacteria of the isolate	74
	PRZ, PT1B, PT1J, PT2X, D1, RRD, RT1S, Tu1-1 and Rh1-1	
7	Biochemical characteristics of wilt causing bacteria of the isolate	76
	Tu2-1 and R1512	
8	Biochemical characteristics of wilt causing bacteria of the isolate	77
	R227	
9	Species identification of wilt causing bacteria based on biochemical	79
	and 16s rRNA gene sequence analysis	
10	Disease incidence (DI) and change of bacterial population in Pathumma	86
	rhizomes in 2007	
11	Disease incidence (DI) and change of bacterial population in Pathumma	86
	pseudostems in 2007	
12	Disease incidence (DI) and change of bacterial population in Pathumma	91
	rhizomes in 2008	

LIST OF TABLES (CONTINUED)

Table		Page
13	Disease incidence (DI) and change of bacterial population in Pathumma	91
	pseudostems in 2008	
14	Disease incidence (DI) and change of bacterial population in Pathumma	98
	rhizomes in 2009	
15	Disease incidence (DI) and change of bacterial population in Pathumma	99
	pseudostems in 2009	
16	Disease incidence (DI) and change of bacterial population in Pathumma	100
	rhizomes in 2010 during out of season	
17	Disease incidence (DI) and change of bacterial population in Pathumma	104
	rhizomes in 2010	
18	Disease incidence (DI) and change of bacterial population in Pathumma	104
	pseudostems in 2010	
19	Summary of the disease incidence (DI) and change of bacterial	105
	population in all experiments	
20	Wilt appearances and change in rhizome size in 2010 under hydroponic	109
	condition	
21	Population and survival rate of wilt causing bacteria after 12 months	120
22	Soil samples used for bacterial isolation	122
23	Inhibition of four antagonistic bacteria against growth of wilt	122
	causing bacteria	
24	Biochemical characteristics of the isolate SP15	125

LIST OF TABLES (CONTINUED)

Table		Page
25	Biochemical characteristics of the isolate SP38, SP46 and SP58	126
26	Species identification of antagonistic bacteria based on biochemical	127
	and 16S rRNA sequence analysis	
27	Effect of carbon sources on production of antibacterial substances	132
	by the antagonistic bacteria	
28	Effect of carbon source concentration on production of antibacterial	134
	substances by antagonistic bacteria	
29	Effect of nitrogen sources on production of antibacterial substances	137
	by the antagonistic bacteria	
30	Effect of peptone concentration on production of antibacterial substances	139
	by the antagonistic bacteria	
31	Effect of initial media pH on production of antibacterial substances	142
	by the antagonistic bacteria	
32	Effect of temperature on production of antibacterial substances by	144
	the antagonistic bacteria	
33	Summary results of optimization production	145
34	Siderophore production by antagonistic bacteria after in MGs-1	147
	medium	
35	The disease incidence of Pathumma plants after the application	154
	of antagonistic bacteria in 2008	

LIST OF TABLES (CONTINUED)

Table		Page
36	The disease incidence of Pathumma plants after the application	162
	of antagonistic bacteria in 2009	
37	The disease incidence of Pathumma plants after the application	170
	of antagonistic bacteria in 2010	
38	The growth of antagonistic bacteria in various media	180

LIST OF FIGURES

Figu	re	Page
1	C. alismatifolia ev. Chiang Mai Pink	5
2	Inflorescence flower of C. alismatifolia	6
3	True flower of C. alismatifolia	6
4	Morphology of tuber of Curcuma alismatifolia	8
5	Diversity of Paracurcuma found in Thailand	9
6	Diversity of Eucurcuma found in Thailand	10
7	The chemical structure of zineb and maneb	19
8	The chemical structure of iprodione	20
9	The chemical structure of Carbendazim	21
10	Structure of some phenazine derivatives	29
11	Schematic representation of the excretion of siderophore from	32
	a bacterium	
12	The collecting area and rhizome of wilt disease in Pathumma field	70
13	Cultural characteristics of the isolates PRZ, PT1B, PT1J and PT2X	71
14	Cultural characteristics of isolates RRD, RT1S and D1 on TZC agar	72
15	Scheme for differentiation of Enterobacter, Klebsiella and	78
	Pseudomonas from other Gram negative, rods	
16	PCR products of wilt causing bacteria based on 16s rRNA gene	78

xvii

Figui	re	Page
17	Neighbour-joining tree based on 16S rRNA gene sequences	80
	showing the position of the isolates PT11B, PT1J, PT2X, RRD,	
	RT1S, D1, Tu1-1 and R227and related strains	
18	Neighbour-joining tree based on 16S rRNA gene sequences	81
	showing the position of the isolates Tu2-1 and R1512and related strains	
19	Pathumma plantation at first experiment in 2007 and wilt disease	85
	appearances	
20	Viable cell count of wilt causing bacteria in the soil after inoculation	87
	on Pathumma rhizomes in direct infection in 2007 experiment	
21	Viable cell count of wilt causing bacteria in the soil after inoculation	87
	on Pathumma rhizomes in cross infection in 2007 experiment	
22	Viable cell count of wilt causing bacteria in the soil after inoculation	88
	on Pathumma pseudostems in direct infection in 2007 experiment	
23	Viable cell count of wilt causing bacteria in the soil after inoculation	88
	on Pathumma pseudostems in cross infection in 2007 experiment	
24	The plantation and inoculation of wilt-bacterial isolates conducted in	90
	greenhouse 2008	
25	Viable cell count of wilt causing bacteria in the soil after inoculation	92
	on Pathumma rhizomes in direct infection in 2008 experiment	
26	Viable cell count of wilt causing bacteria in the soil after inoculation	92
	on Pathumma rhizomes in cross infection in 2008 experiment	

xviii

Figure	e	Page
27	Viable cell count of wilt causing bacteria in the soil after inoculation	93
	on Pathumma pseudostems in direct infection in 2008 experiment	
28	Viable cell count of wilt causing bacteria in the soil after inoculation	93
	on Pathumma pseudostems in cross infection in 2008 experiment	
29	The experimental pots were placed in the shelf providing light in	94
	2009 experiment during out of growing season	
30	Viable cell count of wilt causing bacteria after inoculation on	95
	Pathumma rhizomes in direct infection in 2009 experiment during	
	out of growing season	
31	Viable cell count of wilt causing bacteria after inoculation on	95
	Pathumma rhizome in cross infection in 2009 experiment during	
	out of growing season	
32	The plantation of Pathumma in the greenhouse in 2009	96
33	Examples of Pathumma plants showing wilt symptoms by	97
	wilt-bacterial strains in 2009	
34	The experimental pots were placed in the shelf providing light in	100
	2010 experiment during out of growing season	
35	The uninoculated Pathumma in 2010 experiment	101
36	The wilt symptoms showing leave fold and chlorosis in 2010 experiment	102
37	The wilt symptoms showing leave fold and chlorosis in 2010 experiment	103

Figur	e	Page
38	The bioassay pathgenicity test in Erlenmeyer flask of control, PT1J	107
	and PT2X	
39	The bioassay pathgenicity test in Erlenmeyer flask of RRD, RT1S	108
	and R227	
40	The pathogenicity of five wilt-bacterial strains were tested	110
	under hydroponic condition	
41	The treatment pots under hydroponic condition	110
42	The treatment pots and rhizomes after inoculation with wilt	111
	causing bacteria under hydroponic condition	
43	Light micrographs of cell parenchyma and vascular bundles	115
44	Scanning electron micrograph of pseudostem tissue	116
45	Scanning electron micrograph of pseudostem tissue	117
46	Average populations of wilt causing bacteria in soil mix after	120
	12 months of cultivation	
47	Clear zone of PT1J growth inhibition by antagonistic bacteria	123
48	Cultural characteristics of antagonistic bacteria on TSA	124
49	16S rRNA gene PCR products of antagonistic bacteria	127
50	Neighbour-joining tree based on 16S rRNA gene sequences	128
	showing the position of the isolates SP38, SP46 and SP58 and	
	related strains	
51	CAS agar plate assay showing the yellow or pink halo	147

Figure	,	Page
52	The antagonistic culture on KB plate under UV light showing	150
	fluorescent light around colonies	
53	Silica plate chromatogram showing the spot of standard phenazine	151
	and antagonistic bacterial extracts under UV light 254 nm	
54	Examples of uninoculated and treatment plant inoculated	155
	with mixed antagonists in 2008 experiment	
55	The examples of treatment plant inoculated with mixed antagonists	156
	in 2008 experiment	
56	Viable cell count of mixed antagonists and PT1J in soil in 2008	157
	experiment	
57	Viable cell count of mixed antagonists and D1 in soil in 2008	158
	experiment	
58	Viable cell count of mixed antagonists and RRD in soil in 2008	159
	experiment	
59	Viable cell count of mixed antagonists and RT1S in soil in 2008	160
	experiment	
60	Examples of experimental plants in 2009 experiment	163
61	Examples of plant treated with mixed antagonistic bacteria in	164
	2009 experiment	
62	Viable cell count of mixed antagonists and PT1J in soil in 2009	165
	experiment	

Figure		Page
63	Viable cell count of mixed antagonists and PT2X in soil in 2009	166
	experiment	
64	Viable cell count of mixed antagonists and RRD in soil in 2009	167
	experiment	
65	Viable cell count of mixed antagonists and RT1S in soil in 2009	168
	experiment	
66	The examples of experimental plants in 2010 experiment	171
67	The examples of plant treated with mixed antagonistic bacteria	172
	in 2010 experiment	
68	Viable cell count of mixed antagonists and PT1J in soil in 2010	173
	experiment	
69	Viable cell count of mixed antagonists and PT2X in soil in 2010	174
	experiment	
70	Viable cell count of mixed antagonists and RRD in soil in 2010	175
	experiment	
71	Viable cell count of mixed antagonists and RT1S in soil in 2010	176
	experiment	
72	Viable cell count of mixed antagonists and R227 in soil in 2010	177
	experiment	
73	Viable cell count of antagonistic bacteria in 5% (v/v) molasses	181

xxii

Figure		Page
74	Viable cell count of antagonistic bacteria in soil after incubation	182
	for 60 days at room temperature	
75	Viable cell count of antagonistic bacteria in coir after incubation	182
	for 60 days at room temperature	
76	Viable cell count of antagonistic bacteria in chaff after incubation	182
	for 60 days at room temperature	

ABBREVIATIONS AND SYMBOLS

% = percent

°C = degree Celsius

bp = base pair

cm = centrimeter

cfu/g = colony forming unit per gram

cfu/ml = colony forming unit per milliliter

cv = cultivar

g = gram

g/l = gram per liter

kg/ha = kilogram per hectare

1 = liter

m = meter

mg = milligram

mm = millimeter

mM = millimolar

 $\mu l = microliter$

 $\mu m = micrometer$

 μM = micromolar

M = molar

OD = optical density

pH = power of hydrogen ion

xxiv

v/v = volume by volume

w/v = weight by volume