C225360 MAJOR PHYSICS KEY WORD: PVDF / PYROELECTRIC POLYMER / PYROELECTRIC COEFFICIENT / INFRARED DETECTOR CHOOSRI UTAIWASIN : DEVELOPMENT OF POLYVINYLIDENE FLUORIDE AS PYROELECTRIC POLYMER AND ITS APPLICATION. THESIS ADVISOR : ASSO. PROF. ANUNTASIN TECHAGUMPUCH, Ph.D. 84 PP. ISBN 974-584-337-7

In this research work, a method for determining the pyroelectric coefficient of PVDF has been developed. A film completely covered with thin plastic was dipped in warm oil. The temperature increase (ΔT) of the film was measured by a thermistor which has an accuracy of about 0.1°C. The charge transferred between electrodes of the film (Q) has been determined using an electrometer. It was found that the relation between Q and ΔT is linear when $\Delta T \leq 4^{\circ}$ C. The pyroelectric coefficients (p₃) of available PVDF films obtained from Q/ ΔT are found to be between 0.34-1.91 nC/cm²K. The plot between the pyroelectric (p₃) and piezoelectric coefficients (d₃₁) of each film tended to be a straight line, as was predicted by various theoretical models of piezo-pyroelectricity of PVDF films.

For the films of high p_3 , a temperature increase of 0.2° C in these films produced a voltage of about 1 Volt between their electrodes, which is enough to trigger many devices. From this principle various kinds of electronic switches and also highly sensitive infrared detectors have been developed.