```
## C535102: MAJOR
                   ARCHITECTURE
 KEY WORD: : PASSIVE COOLING/ COOLING TUBE/ INDIRECT EARTH TUBE
         SUPOJ TUANGSINTAWEEKUL : COOLING SYSTEM THROUGH UNDERGROUND TUBE.
         THESIS ADVISOR: ASSO, PROF. SOONTORN BOONYATIKARN, Dr. 137 PP.
         ISBN 574-584-608-4
        This research has the objective to study building cooling system
through underground tube. An experiment is placed in Bangkok during March to
April 1994.
         The experimental model comprises a main stainless tube, which has
0.55 mm. thickness and 16 inch diameter, and three branched tubes, which all
8 m length and 8 inch, 10 inch, and 12 inch diameter each in the order
given. This model is placed underground 1.10 m. depth. An electric fan is
used to ventilate air through the tube. Thermocouples are positioned along
the interior tube to measure and keep all temperature data.
          The result of consideration :
          -Stainless tube which has 12 inch, diameter can reduce
air-temperature which is through the tube in daytime more than sized 10 inch
and 8 inch diameter.
          -Soil-temperature, which has 1.10 m depth, is stable although
air-temperature varies through the day.
          The study shows that the temperature of the ventilated air which
is through the tube, is decreased in daytime and increased in nighttime.
The diversity of temperatures is put into the process of regression for
finding the ralation with other factors such as air-temperature, soil-
temperature, wind-speed through the tube and the internal surface of the
tube as the following principle:
          HE = -1.873 + 0.295 (OS) + 0.019 (A) + 0.002 (V)
          OS = Difference of temperature between air-temperature and
               soil-temperature (°C)
          A = Internal surface of tube (ft^2.)
          V = Air Flow (CPM)
          HE = Cool Down (BTU/Hr)
```